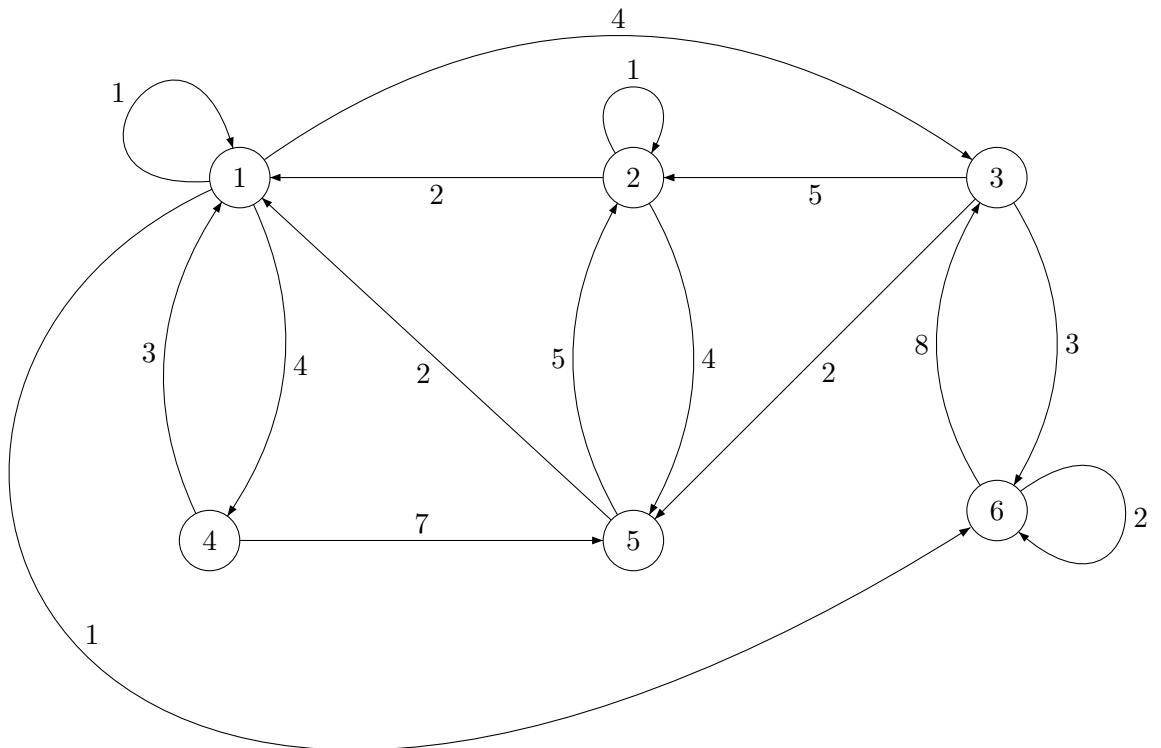


Modeling and Verification of Probabilistic Systems
Summer term 2011
– Series 10 –

Hand in on 29th June before the exercise class.


Exercise 1

(3 points)

 Consider the CTMC given in the figure with starting distribution $p(0) = (0.1, 0.2, 0, 0, 0.4, 0.3)$.

- Determine $C / \sim m$.
- Determine the steady-state (limiting) distribution of C. The steady-state-distribution of a CTMC is given as:

$$p \cdot \mathbf{Q} = 0 \text{ where } \sum_{s \in S} p_s = 1$$

where p is the steady-state probability vector and $\mathbf{Q} = \mathbf{R} - \text{diag}(E)$ is the infinitesimal generator matrix.

Exercise 2

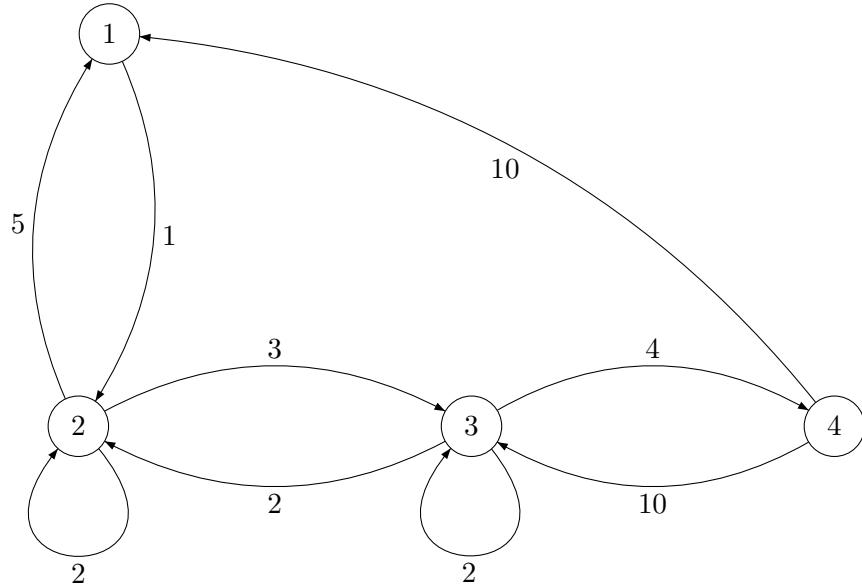
(2 points)

Prove that exponential distributions are not closed under maximum.

Exercise 3

(2 points)

Uniformize the following CTMC with rate $r=20$

**Exercise 4**

(3 points)

A professor supervises three Ph.D. students who all need quite a bit of advice. When any of these students visits the professor, the time to the next visit has an exponential distribution with a mean of 8 hours. The time for the professor to advise the students has a mean value of $1/2$ hour. (All times in this problem have exponential distributions). Students visit the professor one at a time. If the professor is busy, the students wait outside his office. And the students are treated in a first-come-first-served manner.

- Construct the CTMC that describes the situation.
- At steady state what proportion of the professor's time does he have for himself (without students)?
- Give the expression of computing the transient distribution of the CTMC at time T . Suppose initially the professor is free. Use the uniformised CTMC.
- If now comes a new Ph.D. student, who has the same arrival rate as the others, but requires a mean time of one hour with the professor. Do 1 again.