

Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains

Tingting Han, Joost-Pieter Katoen and Alexandru Mereacre

RWTH Aachen University

HSCC 2008

Outline

1 Motivation

- Continuous-Time Markov Chains
- Inhomogeneous Continuous-Time Markov Chains

2 Transient probability distribution

- General case
- Special case

3 Inhomogeneous Interactive Markov Chains

4 Strong bisimulation

- ICTMC Strong bisimulation
- I²MC Strong bisimulation
- Quotienting Algorithm

5 Conclusions and Future work

1 Motivation

- Continuous-Time Markov Chains
- Inhomogeneous Continuous-Time Markov Chains

2 Transient probability distribution

- General case
- Special case

3 Inhomogeneous Interactive Markov Chains

4 Strong bisimulation

- ICTMC Strong bisimulation
- I²MC Strong bisimulation
- Quotienting Algorithm

5 Conclusions and Future work

Time-dependence

- Current techniques for evaluation of performance and dependability of computer and communications systems assume time-independence.

Time-dependence

- Current techniques for evaluation of performance and dependability of computer and communications systems assume time-independence.
- **Can we go a bit further?**

Time-dependence

- Current techniques for evaluation of performance and dependability of computer and communications systems assume time-independence.
- Can we go a bit further?

Time-dependence

- The failure of hardware components is **time-dependent**. Failure rates follow a bath-tub curve.
- Reliability of software in embedded systems is **time-dependent**.
- The process of battery depletion is **time-dependent**.

CTMC - (Student canteen)

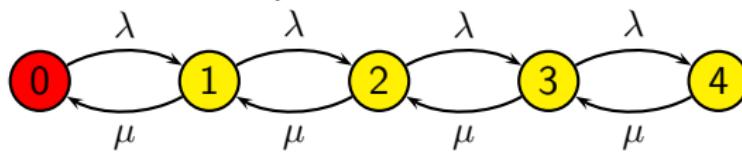
A counter processing requests:

Configuration

- Each request arrives to the counter with rate λ .
- The counter processes the requests with rate μ .
- Additional requests are placed in the **queue**.

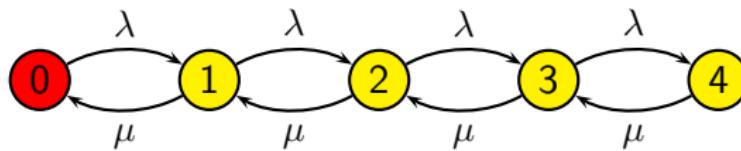
CTMC - 2 (State of the art)

CTMC model of canteen example:



CTMC - 2 (State of the art)

CTMC model of canteen example:

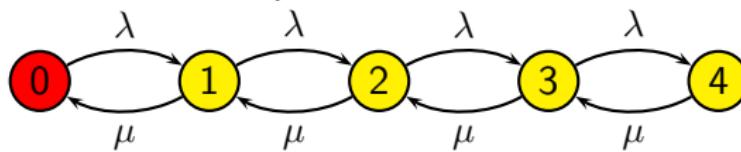


CTMC results

- **Transient distribution** for CTMCs is well defined.
- Interactive Markov Chain=CTMC+LTS (Labeled Transition Systems).
- Compositional specification of IMCs using **Process Algebra**.
- **Bisimulation** technique for state-space minimization.
- A CTL-like logics for property specification on CTMCs.

CTMC - 2 (State of the art)

CTMC model of canteen example:

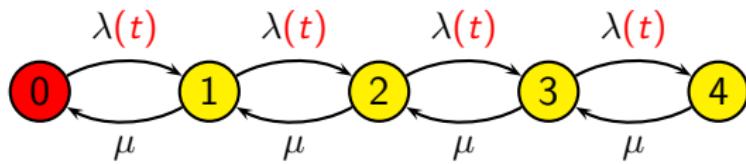
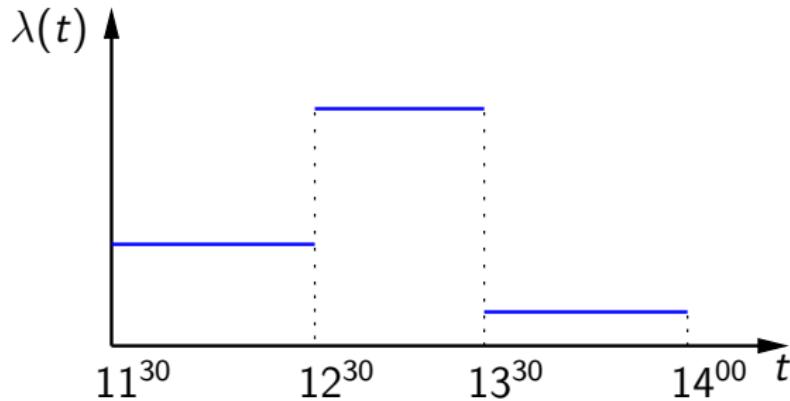


CTMC results

- **Transient distribution** for CTMCs is well defined.
- Interactive Markov Chain=CTMC+LTS (Labeled Transition Systems).
- Compositional specification of IMCs using **Process Algebra**.
- **Bisimulation** technique for state-space minimization.
- A CTL-like logics for property specification on CTMCs.

? - is a model with **time-varying** rates.

CTMC - 3 (State of the art)



Definition

An **Inhomogeneous Continuous-Time Markov Chain** (ICTMC) is a tuple $\mathcal{C} = (\mathbb{S}, \mathbf{R})$ where:

- $\mathbb{S} = \{1, 2, \dots, n\}$ is a countable set of states, and
- $\mathbf{R}(t) = [R_{i,j}(t) \geq 0] \in \mathbb{R}_+^{n \times n}$ is a time-dependent rate matrix, where $R_{i,j}(t)$ is the rate between states $i, j \in \mathbb{S}$ at time $t \geq 0$.

- $\mathbf{E}(t) = \text{diag}[E_i(t)] \in \mathbb{R}_+^{n \times n}$ is the **exit rate** diagonal matrix, with $E_i(t) = \sum_{j \in \mathbb{S}} R_{i,j}(t)$ $i, j \in \mathbb{S}$ and $i \neq j$.

ICTMC - 2 (Measures)

- Probability to **leave** some state s in Δt units of time at time t :

$$\underbrace{1 - e^{- \int_0^{\Delta t} E_s(t+\ell) d\ell}}_{\text{ICTMC}}$$

$$\underbrace{1 - e^{- E_s \Delta t}}_{\text{CTMC}}$$

- Probability to **select** transition $s \rightarrow s'$ at time t :

$$\underbrace{\int_0^{\infty} R_{s,s'}(t+\tau) e^{- \int_0^{\tau} E_s(t+\ell) d\ell} d\tau}_{\text{ICTMC}}$$

$$\underbrace{\frac{R_{s,s'}}{E_s}}_{\text{CTMC}}$$

- Probability to **make** transition $s \rightarrow s'$ in Δt units of time at time t :

$$\underbrace{\int_0^{\Delta t} R_{s,s'}(t+\tau) e^{- \int_0^{\tau} E_s(t+\ell) d\ell} d\tau}_{\text{ICTMC}}$$

$$\underbrace{\frac{R_{s,s'}}{E_s} (1 - e^{- E_s \Delta t})}_{\text{CTMC}}$$

1 Motivation

- Continuous-Time Markov Chains
- Inhomogeneous Continuous-Time Markov Chains

2 Transient probability distribution

- General case
- Special case

3 Inhomogeneous Interactive Markov Chains

4 Strong bisimulation

- ICTMC Strong bisimulation
- I²MC Strong bisimulation
- Quotienting Algorithm

5 Conclusions and Future work

Transient distribution - (General case)

Definition

Transient probability distribution - $\Pr\{X(t + \Delta t) = j\}$ denoted by $\pi_j(t + \Delta t)$ is the probability to be in a state j at time $t + \Delta t$:

$$\pi_j(t + \Delta t) = \sum_{i \in \mathbb{S}} \Pr\{X(t) = i\} \cdot \Pr\{X(t + \Delta t) = j | X(t) = i\}$$

Transient probability distribution in **matrix form**:

$$\pi(t + \Delta t) = \pi(t) \Phi(t + \Delta t, t),$$

- $\pi(t) = [\pi_1(t), \dots, \pi_n(t)]$ and
- $\Phi(t + \Delta t, t)$ - **transition probability matrix**.

Transient distribution - 2 (General case)

Transient probability distribution as system of **ODEs**:

$$\frac{d\pi(t)}{dt} = \lim_{\Delta t \rightarrow 0} \frac{\pi(t + \Delta t) - \pi(t)}{\Delta t} = \pi(t) \underbrace{\lim_{\Delta t \rightarrow 0} \frac{[\Phi(t + \Delta t, t) - \mathbf{I}]}{\Delta t}}_{\mathbf{Q}(t)}.$$

- **Infinitesimal generator $\mathbf{Q}(t)$:**

$$\mathbf{Q}(t) = \mathbf{R}(t) - \mathbf{E}(t).$$

Transient distribution - 3 (General case)

- The **solution** $\pi(t)$:

$$\pi(t) = \pi(t_0) \Phi(t, t_0)$$

- The general form of $\Phi(t, t_0)$ is given by the **Peano-Baker** series:

$$\Phi(t, t_0) = \mathbf{I} + \int_{t_0}^t \mathbf{Q}(\tau_1) d\tau_1 + \int_{t_0}^t \mathbf{Q}(\tau_1) \int_{t_0}^{\tau_1} \mathbf{Q}(\tau_2) d\tau_2 d\tau_1 + \dots$$

Transient distribution - 3 (General case)

- The **solution** $\pi(t)$:

$$\pi(t) = \pi(t_0) \Phi(t, t_0)$$

- The general form of $\Phi(t, t_0)$ is given by the **Peano-Baker** series:

$$\Phi(t, t_0) = \mathbf{I} + \int_{t_0}^t \mathbf{Q}(\tau_1) d\tau_1 + \int_{t_0}^t \mathbf{Q}(\tau_1) \int_{t_0}^{\tau_1} \mathbf{Q}(\tau_2) d\tau_2 d\tau_1 + \dots$$

- Consider the case of matrix commutativity:

$$\int_{t_0}^t \mathbf{Q}(\tau_1) \int_{t_0}^{\tau_1} \mathbf{Q}(\tau_2) d\tau_2 d\tau_1 = \int_{t_0}^t \int_{t_0}^{\tau_1} \mathbf{Q}(\tau_2) d\tau_2 \mathbf{Q}(\tau_1) d\tau_1$$

- $\Phi(t, t_0)$ takes the form:

$$\Phi(t, t_0) = e^{\int_{t_0}^t \mathbf{Q}(\tau) d\tau}$$

Transient distribution - 4 (Special Case)

Piecewise uniform rate matrix $\mathbf{R}(t)$.

- $M + 1$ - total number of pieces.
- For all $t \in [t_k, t_{k+1})$ and $k \leq M \in \mathbb{N}$:

$$\mathbf{R}(t) = \mathbf{R}_k(t) = f_k(t) \mathbf{R}_k,$$
$$\mathbf{Q}(t) = \mathbf{Q}_k(t) = f_k(t) \mathbf{Q}_k.$$

- Transient probability distribution:

$$\pi(t) = \begin{cases} \pi(t_0) e^{\mathbf{Q}_0 \int_{t_0}^t f_0(\tau) d\tau} & , \text{if } t \in [t_0, t_1) \\ \vdots & \vdots \\ \pi(t_M) e^{\mathbf{Q}_M \int_{t_M}^t f_M(\tau) d\tau} & , \text{if } t \in [t_M, \infty) \end{cases}$$

- $\pi(t_k) = \pi(t_{k-1}) e^{\mathbf{Q}_{k-1} \int_{t_{k-1}}^{t_k} f_{k-1}(\tau) d\tau}$.

1 Motivation

- Continuous-Time Markov Chains
- Inhomogeneous Continuous-Time Markov Chains

2 Transient probability distribution

- General case
- Special case

3 Inhomogeneous Interactive Markov Chains

4 Strong bisimulation

- ICTMC Strong bisimulation
- I²MC Strong bisimulation
- Quotienting Algorithm

5 Conclusions and Future work

Compositionality

- Modeling large stochastic systems is difficult.
- The solution is to construct models of simpler components.
- ICTMC+LTS used for **compositional modeling**.
- ICTMC+LTS=I²MC.

Compositionality

- Modeling large stochastic systems is difficult.
- The solution is to construct models of simpler components.
- ICTMC+LTS used for **compositional modeling**.
- ICTMC+LTS=I²MC.

Definition

An **Inhomogeneous Interactive Markov Chain** (I²MC) is a collection $\mathcal{I} = (\mathbb{S}, \text{Act}, \rightarrow, \mathbf{R}, s^0)$ where \mathbb{S} and \mathbf{R} are as before,

- **Act** is a set of actions,
- $\rightarrow \subseteq \mathbb{S} \times \text{Act} \times \mathbb{S}$ is a transition relation and
- $s^0 \in \mathbb{S}$ is the initial state.

I²MC - 2 (Process Algebra)

Grammar

$$P ::= 0 \mid a.P \mid \lambda(t).P \mid P + P \mid P \parallel_A P \mid P \setminus A \mid X := P$$

Operators:

- Sequential composition - $a.P \xrightarrow{a} P$
- Sequential composition - $\lambda(t).P \xrightarrow{\lambda(t)} P$
- Choice - $P + P$.
- Parallel Composition - $P \parallel_A P$ (A is the synchronization set).
- Abstraction - $P \setminus A$ (A is the abstraction set).
- Recursion - $X := E[X]$ (E is an expression).

I²MC - 3 (SOS rules)

Structural operational semantic (SOS) rules:

$$\frac{}{a.P \xrightarrow{a} P}$$

$$\frac{P \xrightarrow{a} P'}{P + Q \xrightarrow{a} P'}$$

$$\frac{P \xrightarrow{a} P'}{P \|_A Q \xrightarrow{a} P' \|_A Q} (a \notin A)$$

$$\frac{P \xrightarrow{a} P' \quad \text{and} \quad Q \xrightarrow{a} Q'}{P \|_A Q \xrightarrow{a} P' \|_A Q'} (a \in A)$$

$$\frac{P \xrightarrow{a} P'}{P \setminus A \xrightarrow{a} P \setminus A} (a \notin A)$$

$$\frac{P \xrightarrow{a} P'}{P \setminus A \xrightarrow{\tau} P \setminus A} (a \in A)$$

$$\frac{}{\lambda(t).P \xrightarrow{\lambda(t)} P}$$

$$\frac{P \xrightarrow{\lambda(t)} P'}{P + Q \xrightarrow{\lambda(t)} P'}$$

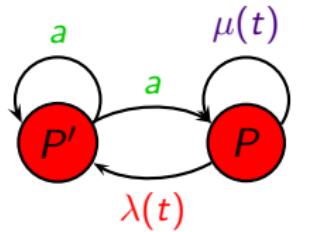
$$\frac{P \xrightarrow{\lambda(t)} P'}{P \|_A Q \xrightarrow{\lambda(t)} P' \|_A Q}$$

$$\frac{P \xrightarrow{\lambda(t)} P'}{P \setminus A \xrightarrow{\lambda(t)} P \setminus A}$$

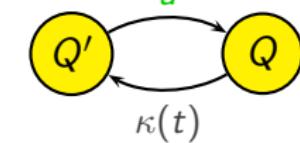
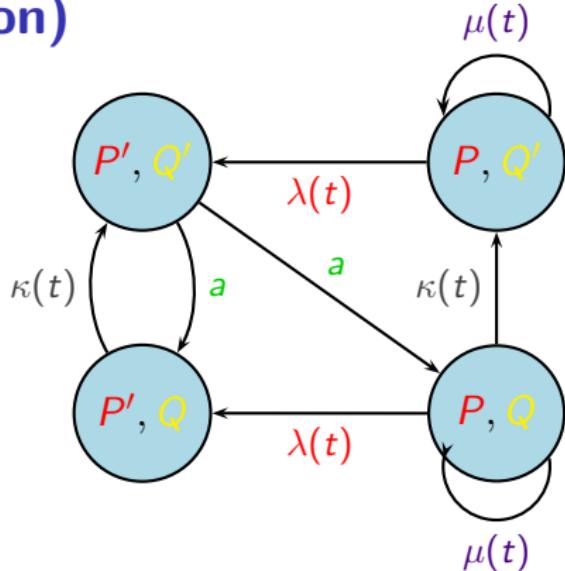
$$\frac{E[X := E/X] \xrightarrow{\lambda(t)} E'}{X := E \xrightarrow{\lambda(t)} E'}$$

$$\frac{E[X := E/X] \xrightarrow{a} E'}{X := E \xrightarrow{a} E'}$$

I²MC - 4 (Parallel composition)



\parallel



$$\frac{P \xrightarrow{\lambda(t)} P'}{P \parallel_A Q \xrightarrow{\lambda(t)} P' \parallel_A Q}$$

$$\frac{Q \xrightarrow{\kappa(t)} Q'}{P \parallel_A Q \xrightarrow{\kappa(t)} P \parallel_A Q'}$$

Memoryless property

$$\Pr\{W(\textcolor{teal}{t}) \leq \textcolor{red}{t}' + \Delta t | W(\textcolor{teal}{t}) > \textcolor{red}{t}'\} = \Pr\{W(\textcolor{teal}{t} + \textcolor{red}{t}') \leq \Delta t\}$$

1 Motivation

- Continuous-Time Markov Chains
- Inhomogeneous Continuous-Time Markov Chains

2 Transient probability distribution

- General case
- Special case

3 Inhomogeneous Interactive Markov Chains

4 Strong bisimulation

- ICTMC Strong bisimulation
- I²MC Strong bisimulation
- Quotienting Algorithm

5 Conclusions and Future work

Definition

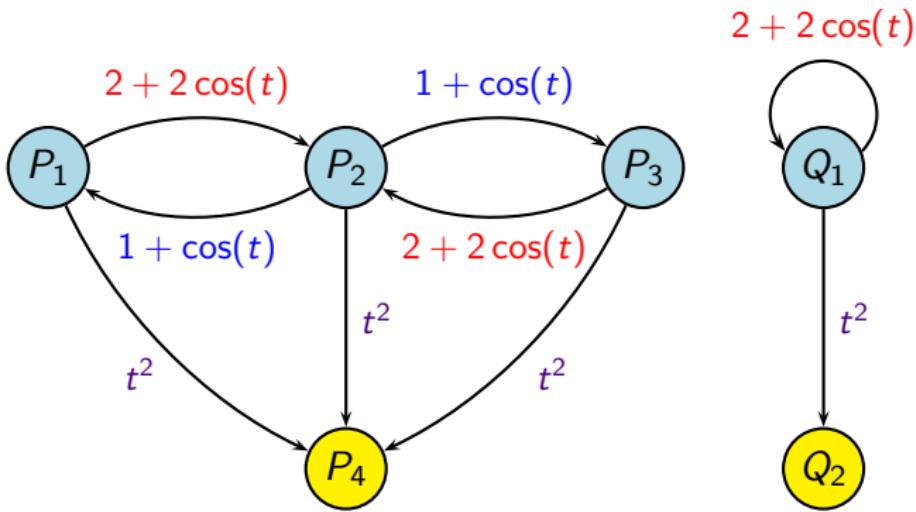
An equivalence relation $\mathcal{R} \subseteq \mathbb{S} \times \mathbb{S}$ is a **strong bisimulation** whenever: for all $(P, Q) \in \mathcal{R}$, $t \in \mathbb{R}_{\geq 0}$ and $C \in \mathbb{S}/\mathcal{R}$:

$$R(P, C, t) = R(Q, C, t),$$

where

- R is the multiset $R(P, C, t) = \sum_i \{|\lambda(t)|P \xrightarrow{i} P', P' \in C|\}$.
- P and Q are strongly bisimilar, denoted $P \sim Q$, if they are contained in some strong bisimulation \mathcal{R} , i.e. $(P, Q) \in \mathcal{R}$.

ICTMC Strong bisimulation - 2 (Example)



Equivalence classes:

- $C_1 = \{P_1, P_2, P_3, Q_1\}$
- $C_2 = \{P_4, Q_2\}$

ICTMC Strong bisimulation - 3 (Quotient)

Definition

For the ICTMC $\mathcal{C} = (\mathbb{S}, \mathbf{R}, s^0)$ and \sim , the quotient \mathcal{C}/\sim is defined by $\mathcal{C}/\sim = (\mathbb{S}/\sim, \mathbf{R}_\sim, s_\sim^0)$ where $s_\sim^0 = [s^0]_\sim$ and \mathbf{R}_\sim is defined by:

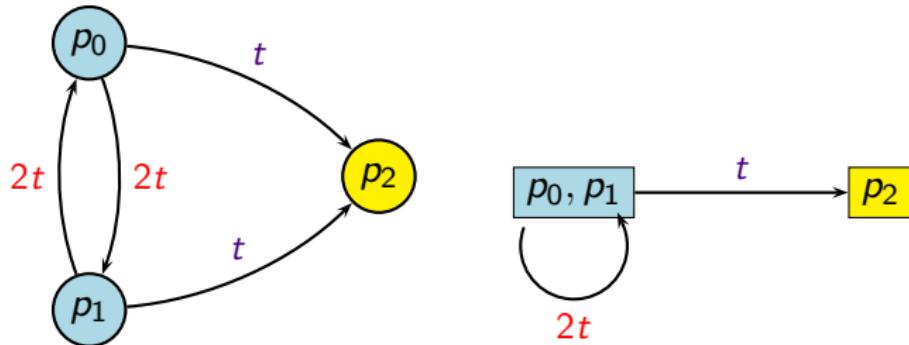
$$R([P]_\sim, [P']_\sim, t) = \frac{\sum_{P'' \in [P]_\sim} R(P'', [P']_\sim, t)}{|[P]_\sim|} \text{ for all } t \in \mathbb{R}_{\geq 0},$$

and $|[P]_\sim|$ the size of $[P]_\sim$.

$$\pi_C(t) = \sum_{s \in C} \pi_s(t) \quad \text{for all } t \in \mathbb{R}_{\geq 0},$$

- $\pi_C(t)$ - transient distribution of state C in quotient \mathcal{C}/\sim .

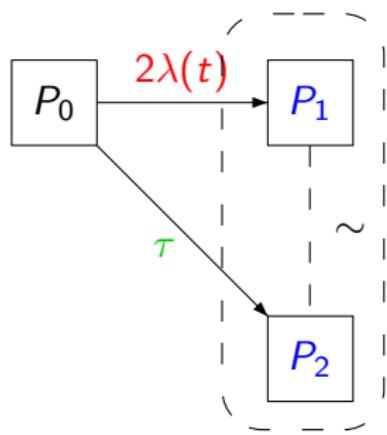
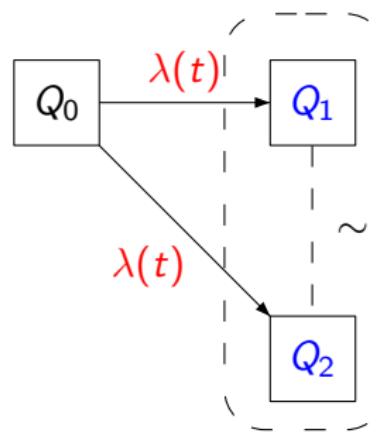
ICTMC Strong bisimulation - 4 (Example)



Equivalence classes:

- $C_1 = \{p_0, p_1\}$
- $C_2 = \{p_2\}$

I²MC Strong bisimulation



Maximal progress

- Internal action $τ$ consumes no time.
- Probability to take $P_0 \xrightarrow{2\lambda(t)} P_1$ in zero time is 0.

I²MC Strong bisimulation - 2 (Definition)

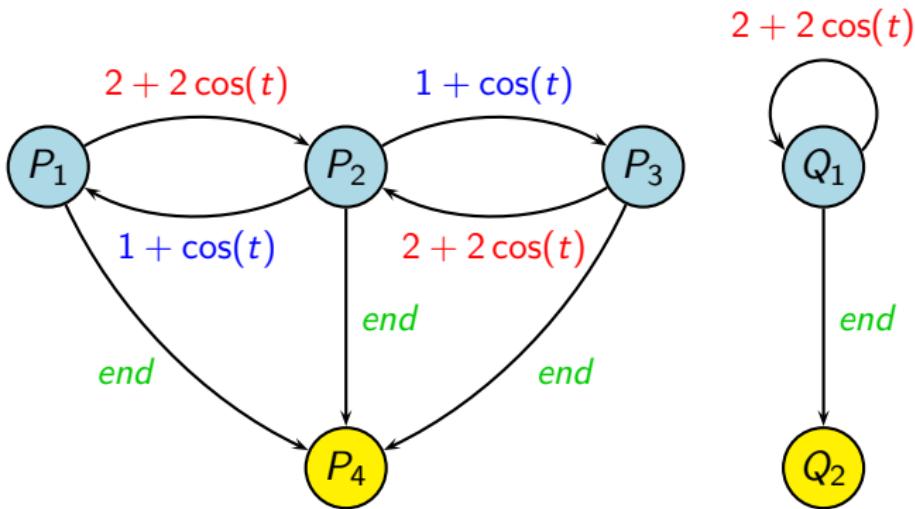
Definition

An equivalence relation $\mathcal{R} \subseteq \mathbb{S} \times \mathbb{S}$ is a **strong bisimulation** whenever: for all $(P, Q) \in \mathcal{R}$, $t \in \mathbb{R}_{\geq 0}$, $a \in \text{Act}$ and $C \in \mathbb{S}/\mathcal{R}$:

- $P \xrightarrow{a} P'$ implies $Q \xrightarrow{a} Q'$ for some Q' and $(P', Q') \in \mathcal{R}$.
- $Q \xrightarrow{a} Q'$ implies $P \xrightarrow{a} P'$ for some P' and $(P', Q') \in \mathcal{R}$.
- $P \xrightarrow{T} ($ or $Q \xrightarrow{T}$) implies $R(P, C, t) = R(Q, C, t)$.

P and Q are strongly bisimilar, denoted $P \sim Q$, if they are contained in some strong bisimulation \mathcal{R} , i.e. $(P, Q) \in \mathcal{R}$.

I²MC Strong bisimulation - 3 (Example)



Equivalence classes:

- $C_1 = \{P_1, P_2, P_3, Q_1\}$
- $C_2 = \{P_4, Q_2\}$

I²MC Strong bisimulation - 4 (Congruence)

Congruence properties:

- $P \sim P'$ implies $P \parallel_A Q \sim P' \parallel_A Q$.
- $P \sim Q$ implies $a.P \sim a.Q$ for any $a \in \text{Act}$.
- $P \sim Q$ implies $\lambda(t).P \sim \lambda(t).Q$ for any $t \in \mathbb{R}_{\geq 0}$.
- $P \sim Q$ implies $P + R \sim Q + R$.
- $P \sim Q$ implies $X := P \sim X := Q$.

I²MC Strong bisimulation - 5 (Axioms)

Sound and complete axioms for sequential fragment:

- $P + 0 = P$
- $(P + Q) + R = P + (Q + R)$
- $a.P + a.P = a.P$ and $\lambda(t).P + \mu(t).P = (\lambda(t) + \mu(t)).P$
- $\lambda(t).P + \tau.Q = \tau.Q$

Quotienting Algorithm

- Composition modeling results in **huge** state-spaces.
- Bisimulation minimization achieve **exponential** state-space reduction for LTS and CTMC.
- We adopt the **partition refinement** paradigm for minimizing I^2MC .

Quotienting Algorithm

- Composition modeling results in **huge** state-spaces.
- Bisimulation minimization achieve **exponential** state-space reduction for LTS and CTMC.
- We adopt the **partition refinement** paradigm for minimizing I^2MC .

- For general rate function the problem is **undecidable**.
- We restrict the rate function to **piecewise constant**, **piecewise polynomial** and **polynomial**.

Quotienting Algorithm - 2

Input: I²MC $(\mathbb{S}, \text{Act}, \rightarrow, \mathbf{R})$, M

Output: I²MC $(\mathbb{S}/\sim, \text{Act}, \rightarrow_{\sim}, \tilde{\mathbf{R}})$

- 1: $\Pi_{\tau} := \{s \in \mathbb{S} | s \xrightarrow{\tau}\}$ $\Pi := \{s \in \mathbb{S} | s \not\xrightarrow{\tau}\}$
- 2: $L := \text{push}(\{\mathbb{S}\})$
- 3: **while** $L \neq \emptyset$ **do**
- 4: $C := \text{pop}(L)$
- 5: $[\Pi, L] := \text{Refine}_a(\Pi, C, L, \text{Act})$
- 6: $[\Pi, L] := \text{Refine}(\Pi, C, L, \mathbf{R}, M)$
- 7: **end while**

Rate matrix parameter M :

- $M + 1$ - number of constant or polynomial pieces,
- $M + 1$ - degree of the polynomial for polynomial rate function.

Quotienting Algorithm - 3

Input: I²MC $(\mathbb{S}, \text{Act}, \rightarrow, \mathbf{R})$, M

Output: I²MC $(\mathbb{S}/\sim, \text{Act}, \rightarrow_{\sim}, \tilde{\mathbf{R}})$

- 1: $\Pi_{\tau} := \{s \in \mathbb{S} | s \xrightarrow{\tau}\}$ $\Pi := \{s \in \mathbb{S} | s \not\xrightarrow{\tau}\}$
- 2: $L := \text{push}(\{\mathbb{S}\})$
- 3: **while** $L \neq \emptyset$ **do**
- 4: $C := \text{pop}(L)$
- 5: $[\Pi, L] := \text{Refine}_a(\Pi, C, L, \text{Act})$
- 6: $[\Pi, L] := \text{Refine}(\Pi, C, L, \mathbf{R}, M)$
- 7: **end while**

Refinement functions:

- Refine_a - partition refinement with respect to **actions**,
- Refine - partition refinement with respect to **rates**.

Refining wrt. actions

Refine_a can be implemented using a simple adaptation of Paige and Tarjan's algorithm.

Complexity

- Time - $\mathcal{O}(m_a \log n)$,
- Space - $\mathcal{O}(m_a)$,

where m_a is the number of action-labelled transitions.

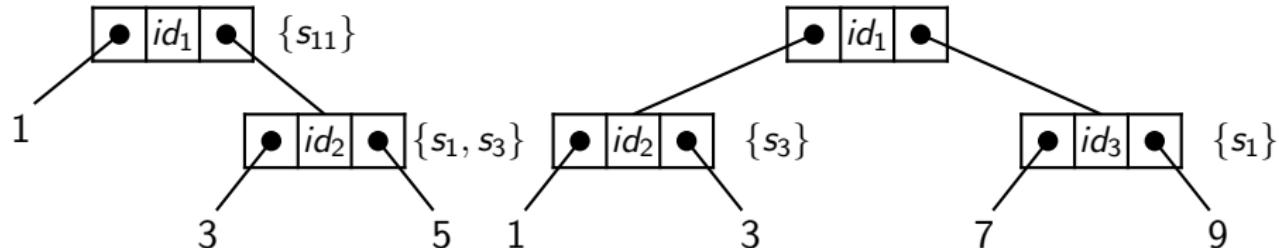
Refining wrt. rates - 2

Input: $\text{Refine}(\Pi, C, L, R, M)$

```
1: for  $i = 0$  to  $M$  do
2:    $B_\Pi := \emptyset$ 
3:   ... (*initialization*) ...
4:   for all  $s \in \text{Pre}(C)$  do
5:      $B' := [s]_\Pi$ 
6:     delete  $s$  from  $B'$ 
7:     Insert( $\text{T}(B')$ ,  $s$ )
8:     if  $B' \notin B_\Pi$  then
9:        $B_\Pi := B_\Pi \cup B'$ 
10:      end if
11:    end for
12:    for all  $B' \in B_\Pi$  do
13:       $\Pi := \Pi \cup$ 
14:       $\{\text{T}(B')[1], \dots, \text{T}(B')[k]\}$ 
15:    end for
16:  end for
17:
```

- $\text{Pre}(C)$ - predecessors of C .
- B_Π - set of blocks in Π .
- $\text{T}(B')$ - binary tree B' .
- $\text{T}(B')[j]$ - j 'th block of $\text{T}(B')$.
- *Insert*($\text{T}(B')$, s) - insert $s \in B'$ into $\text{T}(B')$.

Refining wrt. rates - 3



$T(B')$ node structure:

- $node.left$ - points to the left child.
- $node.right$ - points to the right child.
- $node.sum$ - stores the sum of all rates to splitter C on the i 'th piece.
- $node.S$ - stores all states with the same $node.sum$.

Refining wrt. rates - 4

Using **splay** trees instead of **balanced** binary trees results in:

- Time complexity - $\mathcal{O}(Mm_r \log n)$,
- Space complexity - $\mathcal{O}(m_r)$,

where m_r is the number of rate-labelled transitions.

Refining wrt. rates - 4

Using **splay** trees instead of **balanced** binary trees results in:

- Time complexity - $\mathcal{O}(Mm_r \log n)$,
- Space complexity - $\mathcal{O}(m_r)$,

where m_r is the number of rate-labelled transitions.

Bisimulation Quotienting Algorithm

- Time complexity - $\mathcal{O}(m_a \log n + Mm_r \log n)$,
- Space complexity - $\mathcal{O}(m_a + m_r)$.

1 Motivation

- Continuous-Time Markov Chains
- Inhomogeneous Continuous-Time Markov Chains

2 Transient probability distribution

- General case
- Special case

3 Inhomogeneous Interactive Markov Chains

4 Strong bisimulation

- ICTMC Strong bisimulation
- I²MC Strong bisimulation
- Quotienting Algorithm

5 Conclusions and Future work

Conclusions and Future work

Conclusions:

- Full-fledged process algebra for interactive ICTMCs.
- Congruence results for weak and strong bisimulation.
- Polynomial-time quotienting algorithm.

Future work:

- Extension of quotienting algorithm to a larger class of rate functions.
- Simulation relations for ICTMCs.
- Model-checking algorithms for ICTMCs.

Thank you!