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Time-dependence

Current techniques for evaluation of performance and dependability of
computer and communications systems assume time-independence.
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Time-dependence

Current techniques for evaluation of performance and dependability of
computer and communications systems assume time-independence.

Can we go a bit further?

Time-dependence

The failure of hardware components is time-dependent. Failure rates
follow a bath-tub curve.

Reliability of software in embedded systems is time-dependent.

The process of battery depletion is time-dependent.
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CTMC - (Student canteen)

A counter processing requests:

Request 4 Request 3

Request 2 Request 1

Arrival

Departure

Counter+Queue

Configuration

Each request arrives to the counter with rate λ.

The counter processes the requests with rate µ.

Additional requests are placed in the queue.
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CTMC - 2 (State of the art)

CTMC model of canteen example:

0 1 2 3 4

λ λ λ λ

µµµµ
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CTMC results

Transient distribution for CTMCs is well defined.

Interactive Markov Chain=CTMC+LTS (Labeled Transition Systems).

Compositional specification of IMCs using Process Algebra.
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A CTL-like logics for property specification on CTMCs.

M. L. Bujorianu (University of Twente) Time-Inhomogeneous Markov Chains HSCC 2008 6 / 39



CTMC - 2 (State of the art)

CTMC model of canteen example:

0 1 2 3 4

λ λ λ λ

µµµµ

CTMC results

Transient distribution for CTMCs is well defined.

Interactive Markov Chain=CTMC+LTS (Labeled Transition Systems).

Compositional specification of IMCs using Process Algebra.

Bisimulation technique for state-space minimization.

A CTL-like logics for property specification on CTMCs.

? - is a model with time-varying rates.
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CTMC - 3 (State of the art)

0 1 2 3 4

λ(t) λ(t) λ(t) λ(t)

µµµµ

λ(t)

1130 1230 1330 1400 t
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ICTMC

Definition

An Inhomogeneous Continuous-Time Markov Chain (ICTMC) is a tuple
C = (S,R) where:

S = {1, 2, . . . , n} is a countable set of states, and

R(t) = [Ri ,j(t) ≥ 0] ∈ R
n×n
+ is a time-dependent rate matrix, where

Ri ,j(t) is the rate between states i , j ∈ S at time t ≥ 0.

E(t) = diag [Ei (t)] ∈ R
n×n
+ is the exit rate diagonal matrix, with

Ei (t) =
∑

j∈S
Ri ,j(t) i , j ∈ S and i 6= j .
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ICTMC - 2 (Measures)

Probability to leave some state s in ∆t units of time at time t:

1 − e−
R ∆t
0 Es(t+ℓ)dℓ

︸ ︷︷ ︸

ICTMC

1 − e−Es∆t

︸ ︷︷ ︸

CTMC

Probability to select transition s → s ′ at time t:

∫ ∞

0
Rs,s′(t + τ)e−

R

τ

0
Es (t+ℓ)dℓdτ

︸ ︷︷ ︸

ICTMC

Rs,s′

Es
︸ ︷︷ ︸

CTMC

Probability to make transition s → s ′ in ∆t units of time at time t:

∫ ∆t

0
Rs,s′(t + τ)e−

R

τ

0
Es(t+ℓ)dℓdτ

︸ ︷︷ ︸

ICTMC

Rs,s′

Es
(1 − e−Es∆t)

︸ ︷︷ ︸

CTMC
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Transient distribution - (General case)

Definition

Transient probability distribution - Pr{X (t + ∆t) = j} denoted by
πj(t + ∆t) is the probability to be in a state j at time t + ∆t:

πj(t + ∆t) =
∑

i∈S

Pr{X (t) = i} · Pr{X (t + ∆t) = j |X (t) = i}

Transient probability distribution in matrix form:

π(t + ∆t) = π(t)Φ(t + ∆t, t),

π(t) = [π1 (t) , . . . , πn (t)] and

Φ(t + ∆t, t) - transition probability matrix.
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Transient distribution - 2 (General case)

Transient probability distribution as system of ODEs:

dπ(t)

dt
= lim

∆t→0

π(t + ∆t) − π(t)

∆t
= π(t) lim

∆t→0

[Φ(t + ∆t, t)− I]

∆t
︸ ︷︷ ︸

Q(t)

.

Infinitesimal generator Q(t):

Q(t) = R(t) −E(t).
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Transient distribution - 3 (General case)

The solution π(t):
π(t) = π(t0)Φ(t, t0)

The general form of Φ(t, t0) is given by the Peano-Baker series:

Φ(t, t0) = I +

∫ t

t0

Q(τ1)dτ1 +

∫ t

t0

Q(τ1)

∫ τ1

t0

Q(τ2)dτ2dτ1 + . . .
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Φ(t, t0) = I +

∫ t

t0

Q(τ1)dτ1 +

∫ t

t0

Q(τ1)

∫ τ1

t0

Q(τ2)dτ2dτ1 + . . .

Consider the case of matrix commutativity:

∫ t

t0

Q(τ1)

∫ τ1

t0

Q(τ2)dτ2dτ1 =

∫ t

t0

∫ τ1

t0

Q(τ2)dτ2Q(τ1)dτ1

Φ(t, t0) takes the form:

Φ(t, t0) = e
R t

t0
Q(τ)dτ
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Transient distribution - 4 (Special Case)

Piecewise uniform rate matrix R(t).

M + 1 - total number of pieces.

For all t ∈ [tk , tk+1) and k ≤ M ∈ N:

R(t) = Rk(t) = fk(t)Rk ,

Q(t) = Qk(t) = fk(t)Qk .

Transient probability distribution:

π(t) =







π(t0)e
Q0

R t
t0

f0(τ)dτ
, if t ∈ [t0, t1)

...
...

π(tM)e
QM

R t
tM

fM(τ)dτ
, if t ∈ [tM ,∞)

π(tk) = π(tk−1)e
Qk−1

R tk
tk−1

fk−1(τ)dτ
.
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I2MC

Compositionality

Modeling large stochastic systems is difficult.

The solution is to construct models of simpler components.

ICTMC+LTS used for compositional modeling.

ICTMC+LTS=I2MC.
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I2MC

Compositionality

Modeling large stochastic systems is difficult.

The solution is to construct models of simpler components.

ICTMC+LTS used for compositional modeling.

ICTMC+LTS=I2MC.

Definition

An Inhomogeneous Interactive Markov Chain (I2MC) is a collection
I = (S,Act,→,R, s0) where S and R are as before,

Act is a set of actions,

→⊆ S × Act × S is a transition relation and

s0 ∈ S is the initial state.
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I2MC - 2 (Process Algebra)

Grammar

P ::= 0 | a.P | λ(t).P | P + P | P‖AP | P \ A | X := P

Operators:

Sequential composition - a.P
a

−→ P

Sequential composition - λ(t).P
λ(t)
−→ P

Choice - P + P .

Parallel Composition - P‖AP (A is the synchronization set).

Abstraction - P \ A (A is the abstraction set).

Recursion - X := E [X ] (E is an expression).
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I2MC - 3 (SOS rules)

Structural operational semantic (SOS) rules:

a.P
a

−→P λ(t).P
λ(t)
−→P

P
a

−→P ′

P+Q
a

−→P ′

P
λ(t)
−→P ′

P+Q
λ(t)
−→P ′

P
a

−→P ′

P‖AQ
a

−→P ′‖AQ
(a /∈ A)

P
λ(t)
−→P ′

P‖AQ
λ(t)
−→P ′‖AQ

P
a

−→P ′ and Q
a

−→Q ′

P‖AQ
a

−→P ′‖AQ ′
(a ∈ A)

P
λ(t)
−→P ′

P\A
λ(t)
−→P ′\A

P
a

−→P ′

P\A
a

−→P ′\A
(a /∈ A)

E [X :=E/X ]
λ(t)
−→E ′

X :=E
λ(t)
−→E ′

P
a

−→P ′

P\A
τ

−→P ′\A
(a ∈ A)

E [X :=E/X ]
a

−→E ′

X :=E
a

−→E ′
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I2MC - 4 (Parallel composition)

P ′ P

a

a

λ(t)

µ(t)

∥
∥
∥ Q ′ Q

a

κ(t)

P ′,Q ′ P ,Q ′

P ′,Q P,Q

λ(t)

aκ(t)
a

λ(t)

κ(t)

µ(t)

µ(t)

P
λ(t)
−→ P ′

P‖AQ
λ(t)
−→ P ′‖AQ

Q
κ(t)
−→ Q ′

P‖AQ
κ(t)
−→ P‖AQ ′

Memoryless property

Pr{W (t) ≤ t ′ + ∆t|W (t) > t ′} = Pr{W (t + t ′) ≤ ∆t}
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ICTMC Strong bisimulation

Definition

An equivalence relation R ⊆ S × S is a strong bisimulation whenever: for
all (P ,Q) ∈ R, t ∈ R≥0 and C ∈ S/R:

R(P ,C , t) = R(Q,C , t),

where

R is the multiset R(P ,C , t) =
∑

i{|λ(t)|P
λ(t)
→i P ′,P ′ ∈ C |}.

P and Q are strongly bisimilar, denoted P ∼ Q, if they are contained
in some strong bisimulation R, i.e. (P ,Q) ∈ R.
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ICTMC Strong bisimulation - 2 (Example)

P1 P2 P3

P4

2 + 2 cos(t) 1 + cos(t)

1 + cos(t) 2 + 2 cos(t)

t2

t2

t2

Q1

Q2

2 + 2 cos(t)

t2

Equivalence classes:

C1 = {P1,P2,P3,Q1}

C2 = {P4,Q2}
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ICTMC Strong bisimulation - 3 (Quotient)

Definition

For the ICTMC C = (S,R, s0) and ∼, the quotient C/∼ is defined by
C/∼= (S/∼,R∼, s0

∼) where s0
∼ = [s0]∼ and R∼ is defined by:

R([P ]∼, [P ′]∼, t) =

∑

P′′∈[P]∼
R(P ′′, [P ′]∼, t)

|[P ]∼|
for all t ∈ R≥0,

and |[P ]∼| the size of [P ]∼.

πC (t) =
∑

s∈C

πs(t) for all t ∈ R≥0,

πC (t) - transient distribution of state C in quotient C/∼.
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ICTMC Strong bisimulation - 4 (Example)

p0

p2

p1

t

t

2t2t p0, p1 p2
t

2t

Equivalence classes:

C1 = {p0, p1}

C2 = {p2}
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I2MC Strong bisimulation

P0 P1

P2

2λ(t)

τ ∼

Q0 Q1

Q2

λ(t)

λ(t)
∼

Maximal progress

Internal action τ consumes no time.

Probability to take P0
2λ(t)
−→ P1 in zero time is 0.
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I2MC Strong bisimulation - 2 (Definition)

Definition

An equivalence relation R ⊆ S × S is a strong bisimulation whenever: for
all (P ,Q) ∈ R, t ∈ R≥0, a ∈ Act and C ∈ S/R:

P
a

−→ P ′ implies Q
a

−→ Q ′ for some Q ′ and (P ′,Q ′) ∈ R.

Q
a

−→ Q ′ implies P
a

−→ P ′ for some P ′ and (P ′,Q ′) ∈ R.

P
τ
9 (or Q

τ
9) implies R(P ,C , t) = R(Q,C , t).

P and Q are strongly bisimilar, denoted P ∼ Q, if they are contained in
some strong bisimulation R, i.e. (P ,Q) ∈ R.
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I2MC Strong bisimulation - 3 (Example)

P1 P2 P3

P4

2 + 2 cos(t) 1 + cos(t)

1 + cos(t) 2 + 2 cos(t)

end

end

end

Q1

Q2

2 + 2 cos(t)

end

Equivalence classes:

C1 = {P1,P2,P3,Q1}

C2 = {P4,Q2}
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I2MC Strong bisimulation - 4 (Congruence)

Congruence properties:

P ∼ P ′ implies P‖AQ ∼ P ′‖AQ.

P ∼ Q implies a.P ∼ a.Q for any a ∈ Act.

P ∼ Q implies λ(t).P ∼ λ(t).Q for any t ∈ R≥0.

P ∼ Q implies P + R ∼ Q + R .

P ∼ Q implies X := P ∼ X := Q.
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I2MC Strong bisimulation - 5 (Axioms)

Sound and complete axioms for sequential fragment:

P + 0=P

(P + Q) + R=P + (Q + R)

a.P + a.P=a.P and λ(t).P + µ(t).P=(λ(t) + µ(t)).P

λ(t).P + τ.Q=τ.Q
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Quotienting Algorithm

Composition modeling results in huge state-spaces.

Bisimulation minimization achieve exponential state-space reduction
for LTS and CTMC.

We adopt the partition refinement paradigm for minimizing I2MC.
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Quotienting Algorithm

Composition modeling results in huge state-spaces.

Bisimulation minimization achieve exponential state-space reduction
for LTS and CTMC.

We adopt the partition refinement paradigm for minimizing I2MC.

For general rate function the problem is undecidable.

We restrict the rate function to piecewise constant, piecewise
polynomial and polynomial.
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Quotienting Algorithm - 2

Input: I2MC (S,Act,→,R), M

Output: I2MC (S/∼,Act,→∼, R̃)
1: Πτ := {s ∈ S|s

τ
→} Π := {s ∈ S|s

τ
9}

2: L := push({S})
3: while L 6= ∅ do
4: C := pop(L)
5: [Π,L] := Refinea(Π,C ,L,Act)
6: [Π,L] := Refine(Π,C ,L,R,M)
7: end while

Rate matrix parameter M:

M + 1 - number of constant or polynomial pieces,

M + 1 - degree of the polynomial for polynomial rate function.
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Quotienting Algorithm - 3

Input: I2MC (S,Act,→,R), M

Output: I2MC (S/∼,Act,→∼, R̃)
1: Πτ := {s ∈ S|s

τ
→} Π := {s ∈ S|s

τ
9}

2: L := push({S})
3: while L 6= ∅ do
4: C := pop(L)
5: [Π,L] := Refinea(Π,C ,L,Act)
6: [Π,L] := Refine(Π,C ,L,R,M)
7: end while

Refinement functions:

Refinea - partition refinement with respect to actions,

Refine - partition refinement with respect to rates.
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Refining wrt. actions

Refinea can be implemented using a simple adaptation of
Paige and Tarjan’s algorithm.

Complexity

Time - O (ma log n),

Space - O (ma),

where ma is the number of action-labelled transitions.
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Refining wrt. rates - 2
Input: Refine(Π,C ,L,R,M)
1: for i = 0 to M do
2: BΠ := ∅

3: . . . (∗initialization∗) . . .
4: for all s ∈ Pre(C ) do
5: B ′ := [s]Π
6: delete s from B ′

7: Insert(T(B ′), s)
8: if B ′ /∈ BΠ then
9: BΠ := BΠ ∪ B ′

10: end if
11: end for
12: for all B ′ ∈ BΠ do
13: Π := Π∪
14: {T(B ′)[1], . . . ,T(B ′)[k]}
15: end for
16: end for
17: . . .

Pre(C ) - predecessors of C .

BΠ - set of blocks in Π.

T(B ′) - binary tree B ′.

T(B ′)[j ] - j ’th block of T(B ′).

Insert(T(B ′), s) - insert s ∈ B ′ into
T(B ′).

M. L. Bujorianu (University of Twente) Time-Inhomogeneous Markov Chains HSCC 2008 34 / 39



Refining wrt. rates - 3

b id1
b {s11}

1 b id2
b {s1, s3}

3 5

b id1
b

b id2
b {s3}

1 3

b id3
b {s1}

7 9

T (B ′) node structure:

node.left - points to the left child.

node.right - points to the right child.

node.sum - stores the sum of all rates to splitter C on the i ’th piece.

node.S - stores all states with the same node.sum.
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Refining wrt. rates - 4

Using splay trees instead of balanced binary trees results in:

Time complexity - O (Mmr log n),

Space complexity - O (mr ),

where mr is the number of rate-labelled transitions.
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Refining wrt. rates - 4

Using splay trees instead of balanced binary trees results in:

Time complexity - O (Mmr log n),

Space complexity - O (mr ),

where mr is the number of rate-labelled transitions.

Bisimulation Quotienting Algorithm

Time complexity - O (ma log n + Mmr log n),

Space complexity - O (ma + mr ).
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Conclusions and Future work

Conclusions:

Full-fledged process algebra for interactive ICTMCs.

Congruence results for weak and strong bisimulation.

Polynomial-time quotienting algorithm.

Future work:

Extension of quotienting algorithm to a larger class of rate functions.

Simulation relations for ICTMCs.

Model-checking algorithms for ICTMCs.
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Thank you!
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