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Time-dependence

@ Current techniques for evaluation of performance and dependability of
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Time-dependence

@ Current techniques for evaluation of performance and dependability of
computer and communications systems assume time-independence.

@ Can we go a bit further?

Time-dependence

@ The failure of hardware components is time-dependent. Failure rates
follow a bath-tub curve.

@ Reliability of software in embedded systems is time-dependent.

@ The process of battery depletion is time-dependent.
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CTMC - (Student canteen)

A counter processing requests:

Counter+Queue
Request 2 Request 1
N
Request 4 ﬁ Request 3 ﬁ Departure
g

Arrival

Configuration
@ Each request arrives to the counter with rate \.
@ The counter processes the requests with rate p.

@ Additional requests are placed in the queue.
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CTMC - 2 (State of the art)

CTMC model of canteen example:

A A A A
EHOEBOWSOWS 0
1 1 0 1
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CTMC results
@ Transient distribution for CTMCs is well defined.
@ Interactive Markov Chain=CTMC+LTS (Labeled Transition Systems).
@ Compositional specification of IMCs using Process Algebra.

@ Bisimulation technique for state-space minimization.

@ A CTL-like logics for property specification on CTMCs.
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? - is a model with time-varying rates.
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CTMC - 3 (State of the art)

At) At) A(t) At)

EHOESOWSOWS 0O
1 1 0 1
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ICTMC

Definition
An Inhomogeneous Continuous-Time Markov Chain (ICTMC) is a tuple
C = (S,R) where:

@ S={1,2,...,n} is a countable set of states, and

@ R(t) = [R;;(t) > 0] € RT*" is a time-dependent rate matrix, where
R; j(t) is the rate between states /,j € S at time t > 0.

o E(t) = diag[Ei(t)] € RT*" is the exit rate diagonal matrix, with
E,'(t') = ZjES R,'J(t') i,j €S and 175_]
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ICTMC - 2 (Measures)

@ Probability to leave some state s in At units of time at time ¢

1— e JAYE(t+0)de

1 _ e—EsAt
~ ——
ICTMC CTMC

@ Probability to select transition s — s’ at time t
o0 Rss
/ Rs,s(t +7)e™ Jo E(t+0de gy d

0 Es
——
ICTMC

CTMC
@ Probability to make transition s — s’ in At units of time at time t

At N R
/ Rss(t + T)e_fo Es(t+6)de 4 51— e—EsAt)
0

ICTMC
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ICTMC

© Transient probability distribution
@ General case
@ Special case
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Transient distribution - (General case)

Definition
Transient probability distribution - Pr{X(t + At) = j} denoted by
mj(t + At) is the probability to be in a state j at time t + At:

mi(t+ At) =Y Pr{X(t) =i} - Pr{X(t + At) = j|X(t) = i}
ieS

Transient probability distribution in matrix form:

w(t+ At) = w(t)P(t + At, t),

o m(t)=[m(t),...,m(t)] and
o P(t+ At,t) - transition probability matrix.

HSCC 2008
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Transient distribution - 2 (General case)

Transient probability distribution as system of ODEs:

dm(t) . w(t+At)—w(t) . [®(t+ At t) - 1T]
dt Alltmo At = m(t) Alltmo At '
Q(t)

@ Infinitesimal generator Q(t):

Q(t) = R(t) — E(1).
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Transient distribution - 3 (General case)

@ The solution 7(t):
7(t) = m(to)P(t, to)

@ The general form of ®(t, ty) is given by the Peano-Baker series:

t t T1
(I)(t, to) :I—I—/ Q(Tl)dT1+/ Q(Tl)/ Q(Tg)d’7'2d7'1—|—...
to to to
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@ The general form of ®(t, ty) is given by the Peano-Baker series:
t t T1
(I)(t, to) :I—I—/ Q(Tl)dT1+/ Q(Tl)/ Q(Tg)d’7'2d7'1—|—...
to to to
@ Consider the case of matrix commutativity:

t T1 t T1
/to Q(Tl)/to Q(Tz)dedle/tO /to Q(m2)dmQ(m1)dm

o P(t,tp) takes the form:

B(t, ) = o Y
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Transient distribution - 4 (Special Case)

Piecewise uniform rate matrix R(t).
@ M+ 1 - total number of pieces.
@ Forall t € [ty, tkr1) and k < M e N:

R(t) = Ry(t) = fi(t)Ry,
Q(t) = Qu(t) = fi(t)Qx-

@ Transient probability distribution:

Q0 Ji; H(r)dr

7T(t0) Jif t e [to, tl)

Qu f;w fm(T)dr

w(ty)e Jf t € [ty, 00)

t
Qi1 fy, fima(r)dr

o m(tx) = m(tk_1)e
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ICTMC

© Inhomogeneous Interactive Markov Chains
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1°MC

Compositionality
@ Modeling large stochastic systems is difficult.
@ The solution is to construct models of simpler components.
@ ICTMCHLTS used for compositional modeling.
@ ICTMCHLTS=I’MC.
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1°MC

Compositionality
@ Modeling large stochastic systems is difficult.
@ The solution is to construct models of simpler components.
@ |ICTMCHLTS used for compositional modeling.
@ ICTMCHLTS=I’MC.

Definition
An Inhomogeneous Interactive Markov Chain (I2MC) is a collection
T = (S, Act,—,R,s%) where S and R are as before,

@ Act is a set of actions,

@ —C S x Act x S is a transition relation and

o s0 € S is the initial state.
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I°MC - 2 (Process Algebra)

Grammar
P:=0|aP | Xt).P| P+P | PllaP | P\A| X:=P J

Operators:

@ Sequential composition - a.P — P

A
@ Sequential composition - A(t).P 20

@ Choice- P+ P.

P

@ Parallel Composition - P|[4P (A is the synchronization set).
@ Abstraction - P\ A (A is the abstraction set).
@ Recursion - X := E[X] (E is an expression).
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12MC - 3 (SOS rules)

Structural operational semantic (SOS) rules:

a.P—=P A(t)-P

P
p_2,p! PMP’
P+Q—P' P+Qpr
p_,p (2¢ A) _ pPUp
PlAQ—P'[AQ PIA@ P Q
PP and Q@ ) P29 pr
PlaQ—P'||aQ PA Y pra
P—>P E[x=E/x]2%
( ¢ A)
PA— x=e2p
p_2,p! E[X:=E/X]|-5FE’
;( € A) [ — / a] y
PA— X =E——E
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I°MC - 4 (Parallel composition) u(t)

a u(t)
X0 H @Q 0
t Kt

" ) p(t)
p ( ) P/ Q ﬂ Ql
A K
PlIAQ =2 P1la@ PlAQ % Pla@
Memoryless property
Pr{w(t) < t' + At|W(t) > '} = Pr{W(t + t') < At} J
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ICTMC

@ Strong bisimulation
@ |CTMC Strong bisimulation
@ I2MC Strong bisimulation
@ Quotienting Algorithm
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ICTMC Strong bisimulation

Definition
An equivalence relation R C S x S is a strong bisimulation whenever: for
all (P,Q) e R, t € Rxp and C € S/R:

R(P,C,t) = R(Q, C,1t),
where
o R is the multiset R(P, C, t) = S.{\(1)|P ¥} PP € 1.

@ P and Q are strongly bisimilar, denoted P ~ @, if they are contained
in some strong bisimulation R, i.e. (P,Q) € R.
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ICTMC Strong bisimulation - 2 (Example)

2 4 2 cos(t)

2 4 2 cos(t) 1+ cos(t) ~

Equivalence classes:
o G ={P1,P>,P3,Q1}
o G ={Ps, Q}
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ICTMC Strong bisimulation - 3 (Quotient)

Definition

For the ICTMC C = (S, R, so) and ~, the quotient C/~ is defined by
C/~= (S/~,R~,s2) where s = [s°] _ and R.. is defined by:

2prerpl. R(P [P~ )

R([P]~,[P]~, t) = Pl for all t € R>o,

and [[P]~| the size of [P]~.

= Z?Ts(t) for all t € R>o,
seC

@ 7c(t) - transient distribution of state C in quotient C/~.

M. L. Bujorianu (University of Twente)
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ICTMC Strong bisimulation - 4 (Example)

2t (7)) a7
@ 2t

Equivalence classes:

® G ={po,p1}
o &= {p}
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I’MC Strong bisimulation

Maximal progress
@ Internal action 7 consumes no time.

@ Probability to take Py 2/\—>(t) P71 in zero time is 0.
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I’MC Strong bisimulation - 2 (Definition)

Definition
An equivalence relation R C S X S is a strong bisimulation whenever: for
all (P,Q) € R, t € Rxg, a€ Act and C € S/R:

o P P'implies Q - Q' for some @ and (P, Q') € R.

o Q = Q implies P - P’ for some P’ and (P, Q') € R.

@ P (or Q ») implies R(P,C,t) = R(Q, C, t).

P and Q are strongly bisimilar, denoted P ~ @, if they are contained in
some strong bisimulation R, i.e. (P,Q) € R.
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I2MC Strong bisimulation - 3 (Example)

2 4+ 2 cos(t)

Equivalence classes:
o Gy ={P1,P2, P35 Q1}
o G =1{Ps,Q}
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I’MC Strong bisimulation - 4 (Congruence)

Congruence properties:
@ P~ P implies P||aQ ~ P'||aQ.
@ P~ @ implies a.P ~ a.Q for any a € Act.
® P~ @ implies \(t).P ~ A(t).Q for any t € Rxo.
@ P~ Q implies P+ R~ Q + R.
o P~ Q implies X := P~ X := Q.
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I’MC Strong bisimulation - 5 (Axioms)

Sound and complete axioms for sequential fragment:
® P+ 0=P
o (P+Q)+R=P+(Q+R)
@ a.P+ a.P=a.P and A(t).P + pu(t).P=(\(t) + p(t)).P
o \Nt).P+71.Q=7.Q
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Quotienting Algorithm

@ Composition modeling results in huge state-spaces.

@ Bisimulation minimization achieve exponential state-space reduction
for LTS and CTMC.

@ We adopt the partition refinement paradigm for minimizing I2MC.
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Quotienting Algorithm

Composition modeling results in huge state-spaces.

Bisimulation minimization achieve exponential state-space reduction
for LTS and CTMC.

We adopt the partition refinement paradigm for minimizing I2MC.

(]

For general rate function the problem is undecidable.

We restrict the rate function to piecewise constant, piecewise
polynomial and polynomial.
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Quotienting Algorithm - 2

Input: I2MC (S, Act,—,R), M
Output: I2MC (S/~, Act,—.,R)
1: M, :={scSls >} MN:={secS|s=»}
2: L := push({S})

3: while L # @ do

4 C:=pop(L)

5 [, L] := Refine,(MN, C, L, Act)

6: [M, L] := Refine(N, C,L,R, M)

7. end while

Rate matrix parameter M:
@ M + 1 - number of constant or polynomial pieces,

@ M + 1 - degree of the polynomial for polynomial rate function.
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Quotienting Algorithm - 3

Input: I2MC (S, Act,—,R), M
Output: I2MC (S/~, Act,—,R)
1: M, :={scSls >} MN:={secS|s=»}
2: L := push({S})

3: while L # @ do

4. C:=pop(L)

5 [, L] := Refine,(MN, C, L, Act)

6: [M, L] := Refine(N, C,L,R, M)

7. end while

Refinement functions:
@ Refine, - partition refinement with respect to actions,

@ Refine - partition refinement with respect to rates.
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Refining wrt. actions

Refine, can be implemented using a simple adaptation of
Paige and Tarjan’s algorithm.

Complexity
@ Time - O (m,logn),
@ Space - O (m,),

where mj, is the number of action-labelled transitions.
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Refining wrt. rates - 2
Input: Refine(, C,L,R, M)
1: for i=0to M do

2: Bn =9

3: ... (xinitializationx) . ..

4:  for all s € Pre(C) do

> B' = sln ® Pre(C) - predecessors of C.

6: delete s from B’

7. Insert(T(B'), s) @ Bp - set of blocks in 1.

8: if B’ ¢ Br then @ T(B') - binary tree B'.

9 Br = BnUB’ o T(B')[j] - j'th block of T(B').
10: end if

11-  end for @ Insert(T(B'),s) - insert s € B’ into
12. forall B' € By do T(B).

13: M:=Ty

14: {T(BN[1],...,T(B")[k]}

15:  end for

16: end for
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Refining wrt. rates - 3

T(B') node structure:
@ node.left - points to the left child.
@ node.right - points to the right child.
@ node.sum - stores the sum of all rates to splitter C on the i'th piece.

@ node.S - stores all states with the same node.sum.
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Refining wrt. rates - 4

Using splay trees instead of balanced binary trees results in:
@ Time complexity - O (Mm, log n),
@ Space complexity - O (m,),

where m, is the number of rate-labelled transitions.
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Refining wrt. rates - 4

Using splay trees instead of balanced binary trees results in:
@ Time complexity - O (Mm, log n),
@ Space complexity - O (m,),

where m, is the number of rate-labelled transitions.

Bisimulation Quotienting Algorithm
@ Time complexity - O (m,log n+ Mm;, log n),
@ Space complexity - O (m, + m,).
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© Conclusions and Future work
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Conclusions and Future work

Conclusions:
@ Full-fledged process algebra for interactive ICTMCs.
@ Congruence results for weak and strong bisimulation.

@ Polynomial-time quotienting algorithm.

Future work:

@ Extension of quotienting algorithm to a larger class of rate functions.
@ Simulation relations for ICTMCs.
@ Model-checking algorithms for ICTMCs.
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Thank you!
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