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Definition 1 (ICTMC). An inhomogeneous continuous-time Markov chain is
a tuple C = (S, R) where:

– S = {1, 2, . . . , n} is a finite set of states.
– R(t) = [Ri,j(t)] ∈ R

n×n

+ is a time-dependent rate matrix, with i, j ∈ S and
t ≥ 0.

Here the exit rate of a state i ∈ S at time t is Ei(t) =
∑

j∈S Ri,j(t).

Example 1. Fig. 1 shows an example of a simple queue with three capacities
and two servers. The arrival process to the queue is a Poisson process with rate
constant λ and the service rate is a function µ(t) which depends on the global
time of the system. Initially the service rate starts at µmax and decreases linearly
till µmin at t = a. From that moment on, all users are served with constant rate.

An interesting property which can be defined for every ICTMC is the distri-
bution of waiting time in a state. Before that, let us first define the notion of a
non-homogeneous Poisson process:

Definition 2 (Inhomogeneous Poisson process). A stochastic process Z :
R≥0 × Ω → S (Ω - sample space) is called a non-homogeneous Poisson process
with rate λ(t) if the following relation holds for k ∈ S:

Pr{Z(t) − Z(t0) = k} =

(

∫ t

t0
λ(τ)dτ

)k

e
−

R

t
t0

λ(τ)dτ

k!
(1)

Z(t) − Z(t0) - is the number of arrivals in the interval [t0, t].

Taking in the above equation k = 0 and t0 = 0 we obtain that the probability of
no arrivals in the interval [0, t] is Pr{Z(t)−Z(0) = 0} = e−

R

t

0
λ(τ)dτ . Therefore,

we conclude that the probability of no arrivals in the interval [t, t + ∆t] is:

Pr{Z(t + ∆t) − Z(t) = 0} = e−
R

t+∆t
t

λ(τ)dτ = e−
R

∆t
0

λ(t+τ)dτ

Let’s take a transition with rate λ(t) from some state s to s′. We are interested
in the cumulative probability distribution of the firing time of transition λ. For
this, we define a random variable Wλ(t) whose value at each moment of time
t will be the firing time of the transition λ. Then the cumulative probability
distribution Pr{Wλ(t) ≤ ∆t} of the firing time is:

Pr{Wλ(t) ≤ ∆t} = 1 − e−
R

∆t
0

λ(t+τ)dτ (2)
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Fig. 1. A three state ICTMC.

The above relation can be explained by noting that the probability to have more
than one Poisson arrival in interval [t, t + ∆t] is:

1 − Pr{Z(t + ∆t) − Z(t) = 0} = 1 − e−
R

∆t

0
λ(t+τ)dτ .

One interesting characteristic of the above distribution is the memoryless
property. This can be proven as follows:

Pr{Wλ(t) > t′ + ∆t|Wλ(t) > t′} =
Pr{Wλ(t) > t′ + ∆t, Wλ(t) > t′}

Pr{Wλ(t) > t′}

=
Pr{Wλ(t) > t′ + ∆t}

Pr{Wλ(t) > t′}

=
e−

R

t′+∆t

0
λ(t+τ)dτ

e−
R

t′

0
λ(t+τ)dτ

= e−
R

t′+∆t

t′
λ(t+τ)dτ

= Pr{Wλ(t + t′) > ∆t}

The intuition behind this property is the following. Suppose that at time t tran-
sition λ is activated i.e. it starts a clock. Then the probability that transition
λ won’t fire at time t′ + ∆t given that it didn’t fire at time t′ (Pr{Wλ(t) >

t′ + ∆t|Wλ(t) > t′}) is the same as the probability that transition λ won’t fire
at time ∆t given that the transition was activated at time t + t′ (Wλ(t + t′)).

Property 1. The cumulative distribution of the waiting time Ws(t) in state s is:

Pr{Ws(t) ≤ ∆t} = 1 − e−
R

∆t
0

Es(t+τ)dτ (3)

where Es is the exit rate of the state s.



Proof. In order to obtain the distribution of the waiting time in state s we have
to consider all transitions that leave this state. Consider all transitions λ1, . . . , λn

which leave the state s. Then we are interested in the minimum firing time of all
these n transitions. More formally this can be stated as Pr{Ws(t) ≤ ∆t} with
Ws(t) = min(Wλ1(t), . . . , Wλn

(t)). As all random variables Wλ1 (t), . . . , Wλn
(t)

are independent, we obtain:

Pr{Ws(t) > ∆t} = Pr{Wλ1(t) > ∆t} · · ·Pr{Wλn
(t) > ∆t}

= e−
R

∆t
0

λ1(t+τ)dτ · · · e−
R

∆t
0

λn(t+τ)dτ

= e−
R

∆t
0

λ1(t+τ)+···+λn(t+τ)dτ

Pr{Ws(t) ≤ ∆t} = 1 − e−
R

∆t
0

λ1(t+τ)+···+λn(t+τ)dτ

As the exit rate Es of state s is the sum of the rates of its outgoing transitions,
we obtain that:

Pr{Ws(t) ≤ ∆t} = 1 − e−
R

∆t
0

Es(t+τ)dτ

Property 2. The probability Ps,s′(t) to take the transition (s → s′) in ∆t units
of time starting at time t is:

Ps,s′(t) =

∫ ∆t

0

λs→s′ (t + τ)e−
R

τ

0
Es(t+ℓ)dℓdτ (4)

where λs→s′ is the rate of transition s → s′.

Proof. Assume we have n outgoing transitions λ1, . . . , λn from state s. We are
interested in the probability that some transition i (s → s′) will be selected.
More formally, this can be expressed as follows:

Pr{Wλi
(t) is the minimum} = Pr{Wλi

(t) < Wλj
(t) for i 6= j}

For the sake of simplicity we will consider that λj1 , . . . , λjn−1 are the transitions
which were not selected.

Pr{Wλi
(t) < Wλj

(t) for i 6= j} =
∫ ∆t

0

Pr{Wλi
(t) < Wλj

(t) for i 6= j|Wλi
(t) = τ}Pr{Wλi

(t) = τ}dτ =

∫ ∆t

0

Pr{τ < Wλj
(t) for i 6= j}Pr{Wλi

(t) = τ}dτ =

∫ ∆t

0

Pr{Wλj1
(t) > τ} · · ·Pr{Wλjn−1

(t) > τ}Pr{Wλi
(t) = τ}dτ



As the probability distribution of the firing time of transition λi is Pr{Wλi
(t) =

τ} = λi(t + τ)e−
R

τ
0

λi(t+ℓ)dℓ we obtain:

∫ ∆t

0

Pr{Wλj1
(t) > τ} · · ·Pr{Wλjn−1

(t) > τ}Pr{Wλi
(t) = τ}dτ =

∫ ∆t

0

e−
R

τ
0

λj1 (t+ℓ)dℓ · · · e−
R

τ

0
λjn−1

(t+ℓ)dℓλi(t + τ)e−
R

τ
0

λi(t+ℓ)dℓdτ =

∫ ∆t

0

λi(t + τ)e−
R

τ
0

λi(t+ℓ)+
Pn−1

k=1 λjk
(t+ℓ)dℓdτ =

∫ ∆t

0

λi(t + τ)e−
R

τ
0

Es(t+ℓ)dℓdτ

Example 2. Consider the ICTMC from Fig. 1. For this chain we observe that
the probability of no arrivals in the interval [0, a] for the initial moment of time
t = 0 is:

Pr{Z(a) − Z(0) = 0} = e−
R

a
0

λ(τ)dτ = e−λ
R

a
0

dτ = e−λa

The probability to wait in state 1 for at most a units of time is:

Pr{W1(0) ≤ a} = 1 − e−
R

a
0

E1(τ)dτ = 1 − e−
R

a
0

λ+µ(τ)dτ

= 1 − e−λa−
a(µmax+µmin)

2

The probability to select transition 1
λ
→ 2 at t = 0 is:

P1,2(0) =

∫ ∞

0

λe−
R

τ
0

Es(ℓ)dℓdτ = λ

∫ ∞

0

e−
R

τ
0

λ+µ(ℓ)dℓdτ

= λ

∫ ∞

0

e−λτ−
τ(µmax+µmin)

2 dτ =
2λ

2λ + µmax + µmin

From the above computations we get that the probability to move from state 1
to state 2 in a units of time starting at time t = 0 is:

P1,2(0, a) =
2λ

2λ + µmax + µmin

(

1 − e−a
2λ+µmax+µmin

2

)


