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Repairman’s Roulette

Maintenance of a safety critical system:

e System is operational in state up.
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Repairman’s Roulette

Maintenance of a safety critical system:

e System is operational in state up.
e Failures are exponentially distributed:
e Mean delay to next failure 1.
o Probability for a failure within time ¢:
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Introduction Motivation

Repairman’s Roulette

Maintenance of a safety critical system:

e System is operational in state up.
e Failures are exponentially distributed:

e Mean delay to next failure 1.
o Probability for a failure within time ¢:
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e A failure moves the system from up to off.
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Repairman’s Roulette

Maintenance of a safety critical system:

e System is operational in state up.
e Failures are exponentially distributed:
e Mean delay to next failure 1.
o Probability for a failure within time ¢:

0,7
0,6
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e A failure moves the system from up to off.
e Two types of repairmen:

@ cautious: slow and reliable via o or
® aggressive: unreliable but fast via .
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Repairman’s Roulette

Maintenance of a safety critical system:

e System is operational in state up.
e Failures are exponentially distributed:
e Mean delay to next failure 1.
o Probability for a failure within time ¢:

0,7
0,6

0 1.000 2.00
time

e A failure moves the system from up to off.
e Two types of repairmen:

@ cautious: slow and reliable via o or
® aggressive: unreliable but fast via .

Measure of interest: Probability to return to up in ¢ time units after a failure.
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Introduction Motivation

Why Continuous-Time Markov Decision Processes?

@ CTMDPs are an important model in
e stochastic control theory [Qiu et al]
e stochastic scheduling [Feinberg et al ]
® CTMDPs provide the semantic basis for
e non-well-specified stochastic activity networks  [Sanders et al.]
e generalised stochastic Petri nets with confusion [Chiola et al]

e Markovian process algebras [Hermanns et al., Hillston et al.]
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Introduction Motivation

Why Continuous-Time Markov Decision Processes?

@® CTMDPs are an important model in
e stochastic control theory [Qiu et al]
e stochastic scheduling [Feinberg et al ]

® CTMDPs provide the semantic basis for
e non-well-specified stochastic activity networks  [Sanders et al.]
e generalised stochastic Petri nets with confusion [Chiola et al]
e Markovian process algebras [Hermanns et al., Hillston et al.]

In this talk:

@ Preliminary definitions.
@® Strong bisimulation on CTMDPs.
©® Adaptation of Continuous Stochastic Logic (cf. CTL) to CTMDPs.

@ Preservation of CSL under strong bisimulation.
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Preliminaries
Definition (Continuous Time Markov Decision Process)
A CTMDP (S, Act,R,AP,L) has a finite set of states S and propositions AP.
L:S — 22F is its state labelling. Further
o Act ={a,f,...} is a finite set of actions and
e R:S8 x Act x § — R>q is a transition rate matrix such that
e R(s,a,s')=\is th_e rate of a negative exponential distribution

fx(@) = and EX] ==

A

Noe”™ ift>0 1
0 otherwise

such that Act(s) = {a € Act |3’ € S. R(s,,8’) > 0} # 0 for all s € S.
e E(s,a) =), c5R(s,a,s) is the exit rate of s under a.

NeuhiuBer, Katoen (RWTH Aachen) Bisimulation and Logical Preservation for CTMDPs CONCUR 2007

4/23



Preliminaries
Definition (Continuous Time Markov Decision Process)
A CTMDP (S, Act,R,AP,L) has a finite set of states S and propositions AP.
L:S — 22F is its state labelling. Further
o Act ={a,f,...} is a finite set of actions and
e R:S8 x Act x § — R>q is a transition rate matrix such that
e R(s,a,s')=\is th_e rate of a negative exponential distribution

fx(@) = and EX] ==

A

Noe”™ ift>0 1
0 otherwise

such that Act(s) = {a € Act |3’ € S. R(s,,8’) > 0} # 0 for all s € S.
e E(s,a) =) . csR(s,a,s) is the exit rate of s under a.
Example

@ Choose action in Act(s1) = {a, 5}
nondeterministically: say o ® B,05

® Race condition between a-transitions:

. 1 _ 1
* Mean delay' R(s1,a,s2)+R(s1,,83) ~ 20

o Probability to move to ss: % =1
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Transitions and paths

Definition (Paths)
@ Finite paths of length n € N are denoted

@o,to ai,t1 az,t2 Qn—1,ln—1
™ =S80 51 S92 e Sn

e Paths”™ is the set of paths of length n and
e 7| = s, is the last state of .

@® Paths” is the corresponding set of infinite paths
e 7@t is the state occupied at time ¢ on path 7.
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[DICE TG  Preliminaries

Transitions and paths

Definition (Paths)
@ Finite paths of length n € N are denoted

@o,to ai,t1 az,t2 Qn—1,ln—1
™ =S80 51 S92 e Sn

e Paths”™ is the set of paths of length n and
e 7| = s, is the last state of .

@® Paths” is the corresponding set of infinite paths
e 7@t is the state occupied at time ¢ on path 7.

Definition (Combined transition)

A combined transition m = (q,t, s’)

. . ;N - oLt
e (v is the action (chosen externally), N ~L LT . .
e { is the transition’s firing time and
e s’ the transition’s successor state.
Q= Act xR>0 xS is the set of combined transitions.
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Introduction Measure Space Construction

Definition (Measurable spaces)
Probability measures are defined on o-fields
@ § of sets of combined transitions:
Q:= Act x Ryo x S B(R>() : Borel o-field for R>q
F = 0(Tact X B(R>0) X §s)
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Introduction Measure Space Construction

Definition (Measurable spaces)
Probability measures are defined on o-fields
@ § of sets of combined transitions:
Q:= Act x Ryo x S B(R>() : Borel o-field for R>q
F = 0(Tact X B(R>0) X §s)
® Spathse Of sets of paths of length n:

Sprathse == 0 ({So X My x --- x M, | So € §s, M; € §})
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Introduction Measure Space Construction

Definition (Measurable spaces)
Probability measures are defined on o-fields
@ § of sets of combined transitions:
Q:= Act x Ryo x S B(R>() : Borel o-field for R>q
F = 0(Tact X B(R>0) X §s)
® Spathse Of sets of paths of length n:

Spathst =0 ({So X My x -+ x M,, | Sp € §s, M; € F})
© Tpatnsw Of sets of infinite paths:

Cylinder set construction:

o Any C" € Fpathsn defines a cylinder base (of finite length)
o (), :={m € Paths” | 7[0..n] € C"} is a cylinder (extension to infinity).

The o-field Fpathsw is then
Paths® ...

o cn Cp
SPaths"" = O'(U {Cn | o S gPaths"})

n=0
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Introduction Resolving Nondeterminism by Schedulers

Defining probability measures
Schedulers resolve nondeterministic choices between actions. Classes are
@ cither deterministic or randomized and

® depending on available history.
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Introduction Resolving Nondeterminism by Schedulers

Defining probability measures
Schedulers resolve nondeterministic choices between actions. Classes are
@ cither deterministic or randomized and

® depending on available history.
Definition (Measurable scheduler)
A measurable scheduler [WJ, 2006] is a mapping

D : Paths® x Fact — [0,1]  where:
® D(r,) € Distr(Act(n])) for m € Paths*
® D(-, A) are measurable for A € Fact.
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Introduction Resolving Nondeterminism by Schedulers

Defining probability measures
Schedulers resolve nondeterministic choices between actions. Classes are
@ cither deterministic or randomized and

® depending on available history.

Definition (Measurable scheduler)
A measurable scheduler [WJ, 2006] is a mapping

D : Paths® x Fact — [0,1]  where:
® D(r,) € Distr(Act(n])) for m € Paths*
® D(-, A) are measurable for A € Fact.

Example (Why such schedulers?)
Stationary schedulers are not optimal: Egg
o t < ty: choose 3 to maximize probability EEE
e t > ty: now start choosing o k; o 1o o e’
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Introduction Probability Measures

Example (One-step probabilities)

The event to go from off to rep; in 2 time units:
M = {B} x [0,2] x {rep,} € 3.

Its probability up(mw, M) depends on:
@ the probability D(m, {8}) of choosing 3 N
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Introduction Probability Measures

Example (One-step probabilities)

The event to go from off to rep; in 2 time units:
M = {B} x [0,2] x {rep,} € 3.
Its probability up(mw, M) depends on:
@ the probability D(m, {8}) of choosing 3 N

@ the exp. distr. residence time in off: N

NE (o5 (t) = E(off, B) - e PRt = 9 . o= 26t
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Introduction Probability Measures

Example (One-step probabilities)

The event to go from off to rep; in 2 time units:
M ={p} x[0,2] x {rep, } € 3.
Its probability up(mw, M) depends on:
@ the probability D(m, {8}) of choosing 3 N
@ the exp. distr. residence time in off: N
N5(ofy3) () = E(off, B) - e FoTAt = ¢ . e2et
© the race between rep; and repy:

Rlf.Birev) _ 2 _ 5

E(off, B) 2e

P(off,B,repy) =
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Introduction Probability Measures

Example (One-step probabilities)

The event to go from off to rep; in 2 time units:
M ={p} x[0,2] x {rep, } € 3.
Its probability up(mw, M) depends on:
@ the probability D(m, {8}) of choosing 3 N
@ the exp. distr. residence time in off: N
N5(ofy3) () = E(off, B) - e FoTAt = ¢ . e2et
© the race between rep; and repy:

Rlf.Birev) _ 2 _ 5

E(off, B) 2e

P(off,B,repy) =

Definition (Measuring sets of combined transitions)
For history 7 € Paths* and D € THR define probability measure up(w,-) on §:

wp(m, M) := D(W,da)/ nE(ﬂLa)(dt)/IM(a,t,s) P(rl,a,ds).
Act R S

>0
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Definition (Measuring sets of paths)

@ Initial distribution v:
The probability to start in state s is v({s}) = v(s).
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Definition (Measuring sets of paths)

@ Initial distribution v:
The probability to start in state s is v({s}) = v(s).

@ Prj 1 on sets of finite paths:
Let v € Distr(S) and D € THR. Define inductively:

Prd (1) == 3 v(s)

Prﬁ’g(l—[) ::/P ] Pry p(dr) /Q I (mom) pup(r,dm)
aths™
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Definition (Measuring sets of paths)

@ Initial distribution v:
The probability to start in state s is v({s}) = v(s).

@ Prj 1 on sets of finite paths:
Let v € Distr(S) and D € THR. Define inductively:

Pr) 5 (I1) := Y v(s)
Prfg (II) = / PI‘ZD(dTT)/ I (mom) pup(r,dm)
Paths™ Q

© Pry p on sets of infinite paths:

e A cylinder base is a measurable set C" € Fpathsn
e (" defines cylinder C,, = {m € Paths” | 7[0..n] € C"}
e The probability of cylinder (', is that of its base C":

Pr?p(Cr) = Prlp(C"). a

This extends to Fpathsw by lonescu-Tulcea.
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Strong Bisimulation on CTMDPs

Definition (Strong bisimulation relation)

Equivalence R C § x S is a strong bisimulation relation
iff for all (u,v) € R and all a € Act:

® L(u)=L(v) and

R(u, o, C) := Y cc Ru, o, ')
® VC € Sr. R(u,a,C) = R(v,a,C). <@

u, v are strongly bisimilar (u ~ v) iff 3 str. bisim. relation R with (u,v) € R.
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Strong Bisimulation on CTMDPs

Definition (Strong bisimulation relation)

Equivalence R C § x S is a strong bisimulation relation
iff for all (u,v) € R and all a € Act:

® L(u)=L(v) and

R(u, o, C) := Y cc Ru, o, ')
® VC € Sr. R(u,a,C) = R(v,a,C). <@

u, v are strongly bisimilar (u ~ v) iff 3 str. bisim. relation R with (u,v) € R.
Definition (Quotient under ~)
For C = (S, Act,R, AP, L), its quotient under ~ is C := (S, Act, R, AP, L):

L ([s]) :=L(s) §i={sl s €5}
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Strong Bisimulation on CTMDPs

Definition (Strong bisimulation relation)

Equivalence R C § x S is a strong bisimulation relation
iff for all (u,v) € R and all a € Act:

® L(u)=L(v) and

R(u, o, C) := Y cc Ru, o, ')
® VC € Sr. R(u,a,C) = R(v,a,C). <@

u, v are strongly bisimilar (u ~ v) iff 3 str. bisim. relation R with (u,v) € R.

Definition (Quotient under ~)
For C = (S, Act,R, AP, L), its quotient under ~ is C := (S, Act, R, AP, L):

L ([s]) :=L(s) §i={sl s €5}

Example
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Continuous Stochastic LOZIC [aziz et al. 2000, Baier et al. 2003]

Example (Transient state formula)

In state off, the probability to reach the up state
within 20 time units exceeds 0.5 under any
scheduling decision:

P = Oﬁ N V>0'5<>[0’20] up

Example (Long-run average [de Affaro, LiCS 95])

For any scheduler, the system on average is not
operational for less than 1% of its execution time:

U = L<0401_‘up
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LY RIS IO VIpll  Syntax and Semantics of CSL

Definition (Syntax of CSL)

Fora € AP, p € [0,1], I € R>( a nonempty interval and C € {<, <, >, >},
state formulas and path formulas are:

D= a|-D|DAD|V=Pyp| LEPD = X' | dU D,
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LY RIS IO VIpll  Syntax and Semantics of CSL

Definition (Syntax of CSL)
Fora € AP, p € [0,1], I € R>( a nonempty interval and C € {<, <, >, >},
state formulas and path formulas are:

D= a|-D|DAD|V=Pyp| LEPD = X' | dU D,

Definition (Semantics of path formulas)
For CTMDP C and infinite path m = so —2%% s

a1,t1 .
—= ... define:

rEX® = nllE®Atyel
TEOUIV <« 3tecl (rQtE VAWV €[0,t). 1Qt = ®)).
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LY RIS IO VIpll  Syntax and Semantics of CSL

Definition (Syntax of CSL)

Fora € AP, p € [0,1], I € R>( a nonempty interval and C € {<, <, >, >},
state formulas and path formulas are:

D= a|-D|DAD|V=Pyp| LEPD = X' | dU D,

Definition (Semantics of path formulas)
For CTMDP C and infinite path m = so —2%% s

a1,t1 .
—= ... define:

rEX® = nllE®Atyel
TEOUIV <« 3tecl (rQtE VAWV €[0,t). 1Qt = ®)).

Example
Let ¢ = ®UML2W and 7 € Paths® as follows:
0.0 05 08 1.0 1.3 1.6 2.0
r= | A I S I
| | I | | |
SPA-T SPAY SPA-T SPA-T Sw S— (V)
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RTINS YIDI I  Syntax and Semantics of CSL

Average residence time

For state formula ®, path m = sg 2o)to, S1 LN S+ -+ and time point t:
1t I (5) = 1 if s € Sat(D)
avg(D,t,m) := ?/ Isat(q;)(?'r@t') dat'. Sat(@X 710 otherwise
0
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RTINS YIDI I  Syntax and Semantics of CSL

Average residence time
For state formula ®, path 7 = 5o 22'% 5, 211

—— 81 —— S --- and time point t:
1 rt I (5) = 1 if s € Sat(D)
avg(D,t,m) := ?/ Isat(q;)(?'r@t') dat'. Sat(@X 710 otherwise
0

Example
The average time spent in Sat(®)-states up to time ¢t = 8:
:
\

> 5-3

0 6 72t
: 445

™= } | | } avg(P,8,m) = 513 —%
S~ g ’

P S S—p So@ s
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RTINS YIDI I  Syntax and Semantics of CSL

Average residence time
For state formula @, path

1
avg(D,t,m) == ?/

Isas(a)
0

Example

T=8) ——§

a1ty
1 ———> Sg -

and time point ¢:

The average time spent in Sat(®)-states up to time ¢t = 8:

0
o= | |

1
53

P

Definition (Semantics of state formulas)

|
N

4
an(q>7 87 7T) = it

Let p € [0,1], E€ {<,<,>,>} and ®, ¢ state and path formulas:

5 = LEP® <= VD € THR. )

avg(®,t,m) Pry p(dm) Ep

s = V=P <= VD € THR. Pr , {r € Paths” |7 = o} Cp
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(HERVEN T WO NG M ITEll  Preservation Theorem

Strong bisimilarity preserves CSL properties

Theorem
Let (S,Act,R,AP L) be a CTMDP. For all states u,v € S it holds:

u~v = VP eCSL. (uE® < vE?P).

Proof by structural induction:
® a, -, A\ omitted
@® V=P sketch in this talk

© LEPp straightforward, relies on V=P
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The reverse conjecture does not hold:

Cou nterexample [Segala et al., Nordic J. of Comp. 1995, Baier 1998]
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The reverse conjecture does not hold:

Cou nterexample [Segala et al., Nordic J. of Comp. 1995, Baier 1998]

® s# s asR(s,f,[uz]) = 4 whereas R(s, 3,-) = 0.
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(HERVEN T WO NG M ITEll  Preservation Theorem

The reverse conjecture does not hold:

Cou nterexample [Segala et al., Nordic J. of Comp. 1995, Baier 1998]

® ss asR(s,pf,[uz]) =4 whereas R(s', 3,) = 0.
® Forall ®itholds: (s EP <= s =o:

e CSL can only express extreme probability bounds.

e The choice of action § does not contribute an infimum

or supremum.
e Some examples:

<1 .
o & =13 i’ X[0,%0) yellow: choose & 3Cry = 2Py
o & =323X[0:%°) yellow: choose o
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Preservation of CSL formulas

Proof idea for transient state formulas
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Preservation of CSL formulas

Proof idea for transient state formulas

e Assume u ~ v and u |= V=Pg. To prove: v = V=P, ie.

VYV € THR. Pry {r € Paths” | 7 |= ¢} C p.
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Preservation of CSL formulas

Proof idea for transient state formulas

e Assume u ~ v and u |= V=Pg. To prove: v = V=P, ie.
VYV € THR. Pry {r € Paths” | 7 |= ¢} C p. (1)

o Let V € THR be a scheduler (w.r.t. v,).
e From V, construct U (w.r.t. v,) such that

Pry {m € Paths” |7 |= o} =Pry {mePaths” |7 |=p}. (2)
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Preservation of CSL formulas

Proof idea for transient state formulas

e Assume u ~ v and u |= V=Pg. To prove: v = V=P, ie.
VYV € THR. Pry {r € Paths” | 7 |= ¢} C p.

o Let V € THR be a scheduler (w.r.t. v,).
e From V, construct U (w.r.t. v,) such that

Pry {m €Paths” |7 |= o} = Pry \{m € Paths” | 7 |= ¢}.

e Since u |= V=P, we obtain Pri |, {r € Paths” | 7 = ¢} C p.
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Preservation of CSL formulas

Proof idea for transient state formulas

e Assume u ~ v and u |= V=Pg. To prove: v = V=P, ie.
VYV € THR. Pry {r € Paths” | 7 |= ¢} C p.

o Let V € THR be a scheduler (w.r.t. v,).
e From V, construct U (w.r.t. v,) such that

Pry {m €Paths” |7 |= o} = Pry \{m € Paths” | 7 |= ¢}.

e Since u |= V=P, we obtain Pri |, {r € Paths” | 7 = ¢} C p.

How to prove equation (2)

‘ C: Vy, 1% ; Vi, u ‘
= VL
For a specific subclass of sets of paths: = & =
lift the argument to the quotient space ‘ C: iy, V0 B Y ‘
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Preservation of CSL properties OIS Ia=te 1=t 11113

Preliminaries

Definition (Simple bisimulation closed sets of paths)
A measurable set of paths of the form

IT = [sp] x Ag x To X [s1] X +++ X Ap—1 X T—1 X [85]
is called simple bisimulation closed. II corresponds to the set IIonC:

1:[ = {[80]} X A() X T() X {[81]} X+ X An,1 X Tn,1 X {[Sn]}
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Preservation of CSL properties OIS Ia=te 1=t 11113

Preliminaries

Definition (Simple bisimulation closed sets of paths)
A measurable set of paths of the form

IT = [sp] x Ag x To X [s1] X +++ X Ap—1 X T—1 X [85]
is called simple bisimulation closed. II corresponds to the set IIonC:

1:[ = {[80]} X A() X T() X {[81]} X+ X An,1 X Tn,1 X {[Sn]}

Preliminary goal

For initial distribution v € Distr(S) and scheduler D € THR:
Provide a measure preserving scheduler DY, on C such that

Pry o (TT) = Pry o, (I0)
for simple bisimulation closed sets of paths II.
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Let the first decision of D be as follows:

Dsofah) =2 Deofsh=3  Dlerfel=7  Dlr{sh=1
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Let the first decision of D be as follows:

Dsofah) =2 Deofsh=3  Dlerfel=7  Dlr{sh=1

Intuitively, the quotient scheduler DY, then decides in [s¢] as follows:

v T ¥8) Dis{ad) L. 242.1

D7 ([s0],{a}) = Zse[so] (s) _ 4 g—’—é i _ »
s€[so] ¥ -D(s, {8 1,23

D (sl (3 = <L) ;)MS{ D4 E2E
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Preservation of CSL properties [ENQIIIII I V13

Quotient scheduler

Definition (History weight)
Given CTMDP C, v € Distr(S) and D € THR.
Define the weight of history 7 € Paths* inductively:

hwo(v, D, 1) :=v(r) if = € Paths® =S and

Qpytn
hwpi1(v, D, 7 > 5p41) = hwp (v, D, ) - D(m, {an}) - P(rl, an, Snt1)-
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Quotient scheduler

Definition (History weight)
Given CTMDP C, v € Distr(S) and D € THR.
Define the weight of history 7 € Paths* inductively:
hwo(v, D, 1) :=v(r) if = € Paths® =S and

hwns1 (v, D, 1 1 5 ) = hw (v, D, 7) - D(r, {ant) - P (7], ttn, Snpt)-

Definition (Quotient scheduler)

«g,to a,t1 Qap—1,tn—1
(1]

For any history 7 = [so] [sn], the quotient

scheduler DY is defined by:

Y omer hwn (v, D, ) - D(m, {an })
> e hwn(v, D, )

where IT = [sg] x {ao} % {to} x -+ X {an_1} X {tn_1} X [sn].

DY, (ﬁ', {ozn}) =
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Proof sketch |

Lemma

@ For simple bisimulation closed sets of paths 11:
Pry o (IT) = Pry o, (I0).
@ For any path formula ¢ there exists a family {11}, .y such that
{ﬂEPathsw ‘W':cp}: G—j e
k=0

and 11y, is simple bisimulation closed.
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Proof sketch |

Lemma

@ For simple bisimulation closed sets of paths 11:

Pry o (IT) = Pry o, (I0).

@ For any path formula ¢ there exists a family {11}, .y such that

{ﬂEPathsw ‘w':cp}: L—Ij Iy
k=0
and 11y, is simple bisimulation closed.

What have we gained?

‘ C : Vy, v ; Vs u ‘
~
For any II;, C {m € Paths® |  |= ¢}: I _
Pry o (IT) = Pry oo (II1). ‘ C: by, VI B2 UL ‘
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Proof sketch I

Sketch of the proof
Let Il = {r € Paths” | m |= ¢}. To show: Prt  (IT) = Pr¥ |,(II):

Uy,

@ Define scheduler U to mimic V¥» on the quotient:

ag,t an—1tn—1 ag,t ap—1,tn—1
M(so (ULUIN ’ Sn) ::V":’x,’([s(ﬂ oto, . ’ [Sn])
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Proof sketch I

Sketch of the proof
Let Il = {r € Paths” | m |= ¢}. To show: Prt  (IT) = Pr¥ |,(II):

Uy,

@ Define scheduler U to mimic V¥» on the quotient:
L[(so aosto . ap_15tn—1 Sn) — V,':”([So} aog,to An—15tp—1 [Sn])
® Then U?» = V¥ and v, = D,:

Znen hwy, (v, U, m) - VX2 (7~T, Oln)
Zﬂ—el‘[ hwn(l/u,u,ﬁ)

uze (77'7 an) =

NeuhiuBer, Katoen (RWTH Aachen) Bisimulation and Logical Preservation for CTMDPs CONCUR 2007 21 /23



Preservation of CSL properties ISR

Proof sketch Il

Sketch of the proof
Let Il = {r € Paths” | m |= ¢}. To show: Prt  (IT) = Pr¥ |,(II):
@ Define scheduler U to mimic V¥» on the quotient:
L[(so aosto . ap—1,tpn—1 Sn) — V,':”([So} aog,to An—15tp—1 [Sn])

® Then U?» = V¥ and v, = D,:

Znen hwy, (v, U, m) - VX2 (7~T, an)

uze ~7 n)=
~ (7T “ ) Zwel'[ hwn(”“7u77r)

Now we obtain the proof:

‘ C: I/U:V ; l/u-,u ‘

~

\ G: Ve DU \
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Proof sketch Il

Sketch of the proof
Let Il = {r € Paths” | m |= ¢}. To show: Prt  (IT) = Pr¥ |,(II):
@ Define scheduler U to mimic V¥» on the quotient:
L[(so aosto . ap—1,tpn—1 Sn) — V,':”([So} aog,to An—15tp—1 [Sn])

® Then U?» = V¥ and v, = D,:

Znen hwy, (v, U, m) - VX2 (7~T, an)

uze ~7 n)=
~ (7T “ ) Zwel'[ hwn(”“7u77r)

Now we obtain the proof:

!
w C: v,V = U
Prw,V (H) ‘ v "
R
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Proof sketch Il

Sketch of the proof
Let Il = {r € Paths” | m |= ¢}. To show: Prt  (IT) = Pr¥ |,(II):
@ Define scheduler U to mimic V¥» on the quotient:
L[(so aosto . ap—1,tpn—1 Sn) — V,':”([So} aog,to An—15tp—1 [Sn])

® Then U?» = V¥ and v, = D,:

Znen hwy, (v, U, m) - VX2 (7~T, an)

uze ~7 n)=
~ (7T “ ) Zwel'[ hwn(”“7u77r)

Now we obtain the proof:

> !
w _ w C: v,V =  uv,U
Pry, v (H) - E :Prw,v (Hk) ‘ v "
k=0
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Proof sketch Il

Sketch of the proof
Let Il = {r € Paths” | m |= ¢}. To show: Prt  (IT) = Pr¥ |,(II):
@ Define scheduler U to mimic V¥» on the quotient:
L[(so aosto . ap—1,tpn—1 Sn) — V,':”([So} aog,to An—15tp—1 [Sn])

® Then U?» = V¥ and v, = D,:

Znen hwy, (v, U, m) - VX2 (7~T, an)

uze ~7 n)=
~ (7T “ ) Zwel'[ hwn(”“7u77r)

Now we obtain the proof:

0 !
C: v,V =  uv,U
Pry E Prm E Hk) ‘ v "
k=0 -
‘ G: o,V B U ‘
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Preservation of CSL properties ISR

Proof sketch Il

Sketch of the proof
Let Il = {r € Paths” | m |= ¢}. To show: Prt  (IT) = Pr¥ |,(II):
@ Define scheduler U to mimic V¥» on the quotient:
L[(so aosto . ap—1,tpn—1 Sn) — V,':”([So} aog,to An—15tp—1 [Sn])

® Then U** = V" and 7, =

’U

u? (~ ) ZWEH hw"(”“M“v 7T) : V'l:v (ﬁ’ a")
AT o) =
Zwel'[ hwn(”“7u77r)

Now we obtain the proof:

0 !
E _ § w I C: v,V = U
1/ V Prlh k) - Prf/v,VZ'“ (Hk) ‘ v v
k=0 _

oo

E k) ‘ C: U,V —0,, U

Vu7
k=0
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Proof sketch Il

Sketch of the proof
Let Il = {r € Paths” | m |= ¢}. To show: Prt  (IT) = Pr¥ |,(II):

@ Define scheduler U to mimic V¥» on the quotient:

ag,t an—1tn—1 ag,t ap—1,tn—1
M(so (ULUIN ’ Sn) ::V":’x,’([s(ﬂ oto, . ’ [Sn])

® Then U?» = V¥ and v, = D,:

u? (~ ) ZWEH hw"(”“M“v 7T) : V'l:v (ﬁ’ a")
AT o) =
Zwel'[ hwn(”“7u77r)

Now we obtain the proof:

0 !
Iy, V Z Prlh k) = Z Pr;u,Vi'“ (ﬁk) ‘ c: wV = wl ‘
k=0

tqu

w T _ w C: v, Vo —p U
Prf, g (i) = § P, (1) ‘ o v
k=0 k=0
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Proof sketch Il

Sketch of the proof
Let Il = {r € Paths” | m |= ¢}. To show: Prt  (IT) = Pr¥ |,(II):
@ Define scheduler U to mimic V¥» on the quotient:
L[(so aosto . ap—1,tpn—1 Sn) — V,':”([So} aog,to An—15tp—1 [Sn])

® Then U** = V" and 7, =

’U

u? (~ ) ZWEH hw"(”“M“v 7T) : V'l:v (ﬁ’ a")
AT o) =
Zwel'[ hwn(”“7u77r)

Now we obtain the proof:

0 !
Iy, V Z Prlh k) = Z Pr;u,Vi'“ (ﬁk) ‘ c: wV = wl ‘
k=0

tqu

w T, — w — P C: b,V Dy, UL
Prf, g (i) = § P, (k) = Pry, 4 (I0). ‘ n e
k=0 =
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SuE

Summary

What did we do?

@ provided the measure-theoretic foundations of CSL on CTMDPs,
@® defined strong bisimulation on CTMDPs and

® proved the preservation of CSL under strong bisimilarity
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Summary

What did we do?

@ provided the measure-theoretic foundations of CSL on CTMDPs,
@® defined strong bisimulation on CTMDPs and

® proved the preservation of CSL under strong bisimilarity

Example (Model minimization)

Bisimulation minimization preserves transient and steady-state measures:
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Summary

Summary

What did we do?

@ provided the measure-theoretic foundations of CSL on CTMDPs,
@® defined strong bisimulation on CTMDPs and

® proved the preservation of CSL under strong bisimilarity

Example (Model minimization)

Bisimulation minimization preserves transient and steady-state measures:

Thank you for your attention!
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