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Introduction Motivation

Repairman’s Roulette

Maintenance of a safety critical system:

• System is operational in state up.

• Failures are exponentially distributed:

• Mean delay to next failure 1
µ
.

• Probability for a failure within time t:

• A failure moves the system from up to off .

• Two types of repairmen:

1 cautious: slow and reliable via α or

2 aggressive: unreliable but fast via β.
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Neuhäußer, Katoen (RWTH Aachen) Bisimulation and Logical Preservation for CTMDPs CONCUR 2007 2 / 23



Introduction Motivation

Repairman’s Roulette

Maintenance of a safety critical system:

• System is operational in state up.

• Failures are exponentially distributed:

• Mean delay to next failure 1
µ
.

• Probability for a failure within time t:

• A failure moves the system from up to off .

• Two types of repairmen:

1 cautious: slow and reliable via α or

2 aggressive: unreliable but fast via β.

up off

rep1

rep2

rep ′
1

µ

β, ε

β, ε

ε

α, 4λ

ε

λ
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Measure of interest: Probability to return to up in t time units after a failure.
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Introduction Motivation

Why Continuous-Time Markov Decision Processes?

1 CTMDPs are an important model in
• stochastic control theory [Qiu et al.]

• stochastic scheduling [Feinberg et al.]

2 CTMDPs provide the semantic basis for
• non-well-specified stochastic activity networks [Sanders et al.]

• generalised stochastic Petri nets with confusion [Chiola et al.]

• Markovian process algebras [Hermanns et al., Hillston et al.]

In this talk:

1 Preliminary definitions.

2 Strong bisimulation on CTMDPs.

3 Adaptation of Continuous Stochastic Logic (cf. CTL) to CTMDPs.

4 Preservation of CSL under strong bisimulation.
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Introduction Preliminaries

Definition (Continuous Time Markov Decision Process)
A CTMDP (S, Act,R, AP, L) has a finite set of states S and propositions AP.
L : S → 2AP is its state labelling. Further

• Act = {α, β, . . . } is a finite set of actions and

• R : S × Act × S → R≥0 is a transition rate matrix such that
• R(s, α, s′) = λ is the rate of a negative exponential distribution

fX(t) =

(

λ · e−λ·t if t ≥ 0

0 otherwise
and E[X] =

1

λ

such that Act(s) = {α ∈ Act | ∃s′ ∈ S . R(s, α, s′) > 0} 6= ∅ for all s ∈ S .

• E(s, α) =
P

s′∈S
R(s, α, s′) is the exit rate of s under α.

Example

1 Choose action in Act(s1) = {α, β}
nondeterministically: say α

2 Race condition between α-transitions:
• Mean delay: 1

R(s1,α,s2)+R(s1,α,s3)
= 1

20

• Probability to move to s3:
R(s1,α,s3)

E(s,α)
= 1

4
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Introduction Preliminaries

Transitions and paths

Definition (Paths)

1 Finite paths of length n ∈ N are denoted

π = s0
α0,t0
−−−→ s1

α1,t1
−−−→ s2

α2,t2
−−−→ · · ·

αn−1,tn−1
−−−−−−−→ sn

• Pathsn is the set of paths of length n and

• π↓ = sn is the last state of π.

2 Pathsω is the corresponding set of infinite paths

• π@t is the state occupied at time t on path π.

Definition (Combined transition)

A combined transition m = (α, t, s′)

• α is the action (chosen externally),

• t is the transition’s firing time and

• s′ the transition’s successor state.
Ω := Act×R≥0×S is the set of combined transitions.
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Introduction Measure Space Construction

Definition (Measurable spaces)
Probability measures are defined on σ-fields

1 F of sets of combined transitions:

Ω := Act ×R≥0 × S

F := σ
(

FAct × B(R≥0) × FS

)

B(R≥0) : Borel σ-field for R≥0

2 FPathsn of sets of paths of length n:

FPathsn := σ ({S0 × M1 × · · · × Mn | S0 ∈ FS , Mi ∈ F})

3 FPathsω of sets of infinite paths:

Cylinder set construction:

• Any Cn ∈ FPathsn defines a cylinder base (of finite length)

• Cn := {π ∈ Pathsω | π[0..n] ∈ Cn} is a cylinder (extension to infinity).

The σ-field FPathsω is then

FPathsω := σ
(

∞
⋃

n=0

{Cn | Cn ∈ FPathsn}
)
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Introduction Resolving Nondeterminism by Schedulers

Defining probability measures
Schedulers resolve nondeterministic choices between actions. Classes are

1 either deterministic or randomized and

2 depending on available history.

Definition (Measurable scheduler)
A measurable scheduler [WJ, 2006] is a mapping

D : Paths⋆ × FAct → [0, 1] where:

1 D(π, ·) ∈ Distr(Act(π↓)) for π ∈ Paths⋆

2 D(·, A) are measurable for A ∈ FAct.

Example (Why such schedulers?)
Stationary schedulers are not optimal:

• t ≤ t0: choose β to maximize probability

• t > t0: now start choosing α
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Introduction Probability Measures

Example (One-step probabilities)

The event to go from off to rep1 in 2 time units:
M = {β} × [0, 2] × {rep1} ∈ F.

Its probability µD(π, M) depends on:

1 the probability D(π, {β}) of choosing β

2 the exp. distr. residence time in off :

ηE(off ,β)(t) = E(off , β) · e−E(off ,β)·t = 2ε · e−2ε·t

3 the race between rep1 and rep2:

P(off , β, rep1) =
R(off , β, rep1)

E(off , β)
=

ε

2ε
= 0.5.

rep′
1

off

rep1

rep2

β, ε

β, ε

π

α, 4λ
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Definition (Measuring sets of combined transitions)
For history π ∈ Paths⋆ and D ∈ THR define probability measure µD(π, ·) on F:

µD(π, M) :=

∫

Act

D(π, dα)

∫R≥0

ηE(π↓,α)(dt)

∫

S

IM (α, t, s) P(π↓, α, ds).
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Introduction Probability Measures

Definition (Measuring sets of paths)

1 Initial distribution ν:
The probability to start in state s is ν({s}) = ν(s).

2 Prn
ν,D on sets of finite paths:

Let ν ∈ Distr(S) and D ∈ THR. Define inductively:

Pr0ν,D(Π) :=
∑

s∈Π

ν(s)

Prn+1
ν,D (Π) :=

∫

Pathsn

Prn
ν,D(dπ)

∫

Ω

IΠ(π ◦ m) µD(π, dm)

3 Prω
ν,D on sets of infinite paths:

• A cylinder base is a measurable set Cn ∈ FPathsn

• Cn defines cylinder Cn = {π ∈ Pathsω | π[0..n] ∈ Cn}
• The probability of cylinder Cn is that of its base Cn:

Prω
ν,D(Cn) = Prn

ν,D(Cn).

This extends to FPathsω by Ionescu-Tulcea.

Neuhäußer, Katoen (RWTH Aachen) Bisimulation and Logical Preservation for CTMDPs CONCUR 2007 9 / 23



Introduction Probability Measures

Definition (Measuring sets of paths)

1 Initial distribution ν:
The probability to start in state s is ν({s}) = ν(s).

2 Prn
ν,D on sets of finite paths:

Let ν ∈ Distr(S) and D ∈ THR. Define inductively:

Pr0ν,D(Π) :=
∑

s∈Π

ν(s)

Prn+1
ν,D (Π) :=

∫

Pathsn

Prn
ν,D(dπ)

∫

Ω

IΠ(π ◦ m) µD(π, dm)

3 Prω
ν,D on sets of infinite paths:

• A cylinder base is a measurable set Cn ∈ FPathsn

• Cn defines cylinder Cn = {π ∈ Pathsω | π[0..n] ∈ Cn}
• The probability of cylinder Cn is that of its base Cn:

Prω
ν,D(Cn) = Prn

ν,D(Cn).

This extends to FPathsω by Ionescu-Tulcea.
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Strong Bisimulation on CTMDPs

Definition (Strong bisimulation relation)
Equivalence R ⊆ S × S is a strong bisimulation relation

iff for all (u, v) ∈ R and all α ∈ Act:

1 L(u) = L(v) and

2 ∀C ∈ SR. R(u, α, C) = R(v, α, C).
R(u, α, C) :=

P

u′∈C
R(u, α, u′)

u, v are strongly bisimilar (u ∼ v) iff ∃ str. bisim. relation R with (u, v) ∈ R.

Definition (Quotient under ∼)
For C = (S, Act,R, AP, L), its quotient under ∼ is C̃ := (S̃, Act, R̃, AP, L̃):

L̃ ([s]) := L(s)

R̃ ([s] , α, C) := R(s, α, C)

S̃ :=
˘

[s]∼| s ∈ S
¯

Example
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A Logic for CTMDPs

Continuous Stochastic Logic [Aziz et al. 2000, Baier et al. 2003]

Example (Transient state formula)
In state off , the probability to reach the up state
within 20 time units exceeds 0.5 under any
scheduling decision:

Φ = off → ∀>0.5♦[0,20]up

Example (Long-run average [de Alfaro, LICS 98])
For any scheduler, the system on average is not
operational for less than 1% of its execution time:

Ψ = L<0.01¬up
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rep ′
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A Logic for CTMDPs Syntax and Semantics of CSL

Definition (Syntax of CSL)
For a ∈ AP, p ∈ [0, 1], I ⊆ R≥0 a nonempty interval and ⊑ ∈ {<,≤,≥, >},
state formulas and path formulas are:

Φ ::= a | ¬Φ | Φ ∧ Φ | ∀⊑pϕ| L⊑pΦ ϕ ::= XIΦ | ΦUIΦ.

Definition (Semantics of path formulas)
For CTMDP C and infinite path π = s0

α0,t0
−−−→ s1

α1,t1
−−−→ · · · define:

π |= XIΦ ⇐⇒ π[1] |= Φ ∧ t0 ∈ I

π |= ΦUIΨ ⇐⇒ ∃t ∈ I. (π@t |= Ψ ∧ (∀t′ ∈ [0, t). π@t′ |= Φ)) .

Example
Let ϕ = ΦU[1,2]Ψ and π ∈ Pathsω as follows:
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0.0 2.01.60.8

π =

0.5 1.31.0
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A Logic for CTMDPs Syntax and Semantics of CSL

Average residence time
For state formula Φ, path π = s0

α0,t0
−−−→ s1

α1,t1
−−−→ s2 · · · and time point t:

avg(Φ, t, π) :=
1

t

∫ t

0

ISat(Φ)(π@t′) dt′.
ISat(Φ)(s) :=

(

1 if s ∈ Sat(Φ)

0 otherwise

Example
The average time spent in Sat(Φ)-states up to time t = 8:

avg(Φ, 8, π) =
4
3
+ 5

3
8

= 3
8

Definition (Semantics of state formulas)
Let p ∈ [0, 1], ⊑∈ {≤, <,≥, >} and Φ, ϕ state and path formulas:

s |= L⊑pΦ ⇐⇒ ∀D ∈ THR. lim
t→∞

∫

Pathsω

avg(Φ, t, π) Prω
νs,D(dπ) ⊑ p

s |= ∀⊑pϕ ⇐⇒ ∀D ∈ THR. Prω
νs,D {π ∈ Pathsω | π |= ϕ}⊑ p
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Preservation of CSL properties Preservation Theorem

Strong bisimilarity preserves CSL properties

Theorem
Let (S, Act,R, AP, L) be a CTMDP. For all states u, v ∈ S it holds:

u ∼ v =⇒ ∀Φ ∈ CSL. (u |= Φ ⇐⇒ v |= Φ) .

Proof by structural induction:

1 a, ¬, ∧ omitted

2 ∀⊑pϕ sketch in this talk

3 L⊑pϕ straightforward, relies on ∀⊑pϕ
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Preservation of CSL properties Preservation Theorem

The reverse conjecture does not hold:

Counterexample [Segala et al., Nordic J. of Comp. 1995, Baier 1998]

s

u1

v1

v2

α, 6

α, 6

β, 8

u2

u3

v3

δ, 3

δ, 9

β, 4
s′

u′
1

v′1

α, 6

α, 6

u′
3

v′3

δ, 3

δ, 9

1 s 6∼ s′ as R(s, β, [u2]) = 4 whereas R(s′, β, ·) = 0.

2 For all Φ it holds: s |= Φ ⇐⇒ s′ |= Φ :

• CSL can only express extreme probability bounds.

• The choice of action β does not contribute an infimum or supremum.

• Some examples:

• Φ = ∃≤
1
3 X[0,∞) yellow : choose δ

• Φ = ∃≥
1
3 X[0,∞) yellow : choose α

∃⊑pϕ ≡ ¬∀⊒pϕ
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Preservation of CSL properties Proof sketch

Preservation of CSL formulas

Proof idea for transient state formulas

• Assume u ∼ v and u |= ∀⊑pϕ. To prove: v |= ∀⊑pϕ, i.e.

∀V ∈ THR. Prω
νv ,V

{

π ∈ Pathsω | π |= ϕ
}

⊑ p. (1)

• Let V ∈ THR be a scheduler (w.r.t. νv).

• From V, construct U (w.r.t. νu) such that

Prω
νu,U

{

π ∈ Pathsω | π |= ϕ
}

= Prω
νv ,V

{

π ∈ Pathsω | π |= ϕ
}

. (2)

• Since u |= ∀⊑pϕ, we obtain Prω
νv ,V

{

π ∈ Pathsω | π |= ϕ
}

⊑ p.

How to prove equation (2)

For a specific subclass of sets of paths:
lift the argument to the quotient space
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νv,V

ν̃v,V
νv
∼

νu,U

ν̃u,U
νu
∼

C :
!
=

C̃ : =

= de
fin

es

=

prove =
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Preservation of CSL properties Quotient scheduler

Preliminaries

Definition (Simple bisimulation closed sets of paths)
A measurable set of paths of the form

Π = [s0] × A0 × T0 × [s1] × · · · × An−1 × Tn−1 × [sn]

is called simple bisimulation closed. Π corresponds to the set Π̃ on C̃:

Π̃ = {[s0]} × A0 × T0 × {[s1]} × · · · × An−1 × Tn−1 × {[sn]}

Preliminary goal
For initial distribution ν ∈ Distr(S) and scheduler D ∈ THR:
Provide a measure preserving scheduler Dν

∼ on C̃ such that

Prω
ν,D

(

Π
)

= Prω
ν̃,Dν

∼

(

Π̃
)

for simple bisimulation closed sets of paths Π.
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Preservation of CSL properties Quotient scheduler

Example

s0 s1

s2 s3

1
4

2
3

1
12

α, 1.0

α, 1.0

α, 2.0α, 3.0

β, 0.5 α, 0.5

α, 0.5 β, 0.5
[s0]

[s2]

[s3]

11
12

1
12α, 0.5

β, 0.5

α, 1.0 α, 1.0

α, 2.0

α, 3.0

Let the first decision of D be as follows:

Intuitively, the quotient scheduler Dν
∼ then decides in [s0] as follows:

Dν
∼([s0] , {α}) =

P

s∈[s0] ν(s) · D(s,{α})
P

s∈[s0] ν(s)
=

1
4
· 2

3
+ 2

3
· 1

4
1
4

+ 2
3

=
4

11

Dν
∼([s0] , {β}) =

P

s∈[s0] ν(s) · D(s,{β})
P

s∈[s0] ν(s)
=

1
4
· 1

3
+ 2

3
· 3

4
1
4

+ 2
3

=
7

11
.
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Neuhäußer, Katoen (RWTH Aachen) Bisimulation and Logical Preservation for CTMDPs CONCUR 2007 18 / 23



Preservation of CSL properties Quotient scheduler

Quotient scheduler

Definition (History weight)
Given CTMDP C, ν ∈ Distr(S) and D ∈ THR.
Define the weight of history π ∈ Paths⋆ inductively:

hw0(ν,D, π) := ν(π) if π ∈ Paths0 = S and

hwn+1(ν,D, π
αn,tn
−−−−→ sn+1) := hwn(ν,D, π) · D(π, {αn}) · P(π↓, αn, sn+1).

Definition (Quotient scheduler)
For any history π̃ = [s0]

α0,t0
−−−→ [s1]

α1,t1
−−−→ · · ·

αn−1,tn−1
−−−−−−−→ [sn], the quotient

scheduler Dν
∼ is defined by:

Dν
∼

(

π̃, {αn}
)

:=

∑

π∈Π hwn(ν,D, π) · D(π, {αn})
∑

π∈Π hwn(ν,D, π)

where Π = [s0] × {α0} × {t0} × · · · × {αn−1} × {tn−1} × [sn].
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Preservation of CSL properties Proof Details

Proof sketch I

Lemma

1 For simple bisimulation closed sets of paths Π:

Prω
ν,D(Π) = Prω

ν̃,Dν
∼

(

Π̃
)

.

2 For any path formula ϕ there exists a family {Πk}k∈N such that

n

π ∈ Pathsω
˛

˛

˛

π |= ϕ
o

=
∞
]

k=0

Πk

and Πk is simple bisimulation closed.

What have we gained?

For any Πk ⊆ {π ∈ Pathsω | π |= ϕ}:

Prω
ν,D(Πk) = Prω

ν̃,Dν
∼

(

Π̃k

)

.
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νv,V

ν̃v,V
νv
∼

νu,U

ν̃u,U
νu
∼

C :
!
=

C̃ :

= de
fin

es

=

prove =
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Preservation of CSL properties Proof Details

Proof sketch II

Sketch of the proof
Let Π =

{

π ∈ Pathsω | π |= ϕ
}

. To show: Prω
νu,U(Π) = Prω

νv ,V(Π):

1 Define scheduler U to mimic Vνv
∼ on the quotient:

U
“

s0
a0,t0−−−−→ · · ·

an−1,tn−1
−−−−−−−−→ sn

”

:= Vνv
∼

“

[s0]
a0,t0−−−−→ · · ·

an−1,tn−1
−−−−−−−−→ [sn]

”

.

2 Then Uνu
∼ = Vνv

∼ and ν̃u = ν̃v:

Uνu
∼ (π̃, αn) =

P

π∈Π hwn(νu,U , π) · Vνv
∼

`

π̃, αn

´

P

π∈Π hwn(νu,U , π)

Now we obtain the proof:

Prω
νv ,V

(

Π
)

=

∞
∑

k=0

Prω
νv ,V

(

Πk

)

=

∞
∑

k=0

Prω
ν̃v ,Vνv

∼

(

Π̃k

)

=

∞
∑

k=0

Prω
ν̃u,Uνu

∼

(

Π̃k

)

=

∞
∑

k=0

Prω
νu,U

(

Πk

)

= Prω
νu,U

(

Π
)

.
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Neuhäußer, Katoen (RWTH Aachen) Bisimulation and Logical Preservation for CTMDPs CONCUR 2007 21 / 23



Preservation of CSL properties Proof Details

Proof sketch II

Sketch of the proof
Let Π =

{

π ∈ Pathsω | π |= ϕ
}

. To show: Prω
νu,U(Π) = Prω

νv ,V(Π):

1 Define scheduler U to mimic Vνv
∼ on the quotient:

U
“

s0
a0,t0−−−−→ · · ·

an−1,tn−1
−−−−−−−−→ sn

”

:= Vνv
∼

“

[s0]
a0,t0−−−−→ · · ·

an−1,tn−1
−−−−−−−−→ [sn]

”

.

2 Then Uνu
∼ = Vνv

∼ and ν̃u = ν̃v:

Uνu
∼ (π̃, αn) =

P

π∈Π hwn(νu,U , π) · Vνv
∼

`

π̃, αn

´

P

π∈Π hwn(νu,U , π)

Now we obtain the proof:

Prω
νv ,V

(

Π
)

=

∞
∑

k=0

Prω
νv ,V

(

Πk

)

=

∞
∑

k=0

Prω
ν̃v ,Vνv

∼

(

Π̃k

)

=

∞
∑

k=0

Prω
ν̃u,Uνu

∼

(

Π̃k

)

=

∞
∑

k=0

Prω
νu,U

(

Πk

)

= Prω
νu,U

(

Π
)

.

νv,V

ν̃v,V
νv
∼

νu,U

ν̃u,U
νu
∼

C :
!
=

C̃ :
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Summary Related Work

Related Work

Measure theoretic basis of THR schedulers [Wolovick et al., FORMATS 06]

Probabilistic branching time logics [Baier et al., Distr. Comp. 98]

Long run average behaviour [de Alfaro, LICS 1998]

Time-bounded reachability in uniform CTMDPs [Baier et al., TCS 05]

Model Checking of prob. and nondet. systems [Bianco et al., FSTTCS 95]

Abstraction for continuous-time Markov chains [Katoen et al., CAV 07]
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Summary Summary

Summary

What did we do?

1 provided the measure-theoretic foundations of CSL on CTMDPs,

2 defined strong bisimulation on CTMDPs and

3 proved the preservation of CSL under strong bisimilarity

Example (Model minimization)
Bisimulation minimization preserves transient and steady-state measures:
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up off

r1

r′1

r2
τ, µ

β, ε

β, ε

τ, ε

τ, ε

α, 4λ τ, λ

[up] [off]

[r1]

[r2]
τ, µ

β, ε

β, ε

τ, ε

α, 4λ

τ, λ
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Thank you for your attention!
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