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Introduction Motivation

Continuous-Time Markov Decision Processes: An Example

Imagine you have to come home by 6 pm.

• On your way, you stop at a red traffic light.

• When it turns green, you have two choices:

• turn left: 1min; traffic jam probability 1
2
.

• turn right: 5min; traffic jam probability 1
9
.

• Expected delay in a traffic jam: 30min.

• Best strategy to meet your family’s deadline?
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Aim: Maximize the probability to come home in t time units.
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Introduction Motivation

Why Continuous-Time Markov Decision Processes?

1 CTMDPs are an important model in
• stochastic control theory [Qiu et al.]

• stochastic scheduling [Feinberg et al., Puterman]

2 CTMDPs provide the semantic basis for
• non-well-specified stochastic activity networks [Sanders et al.]

• generalised stochastic Petri nets with confusion [Chiola et al.]

• Markovian process algebras [Hermanns et al., Hillston et al.]

In this talk:

1 Introduction of CTMDPs.

2 Schedulers that resolve the nondeterminism.

3 Probability measures.

4 Delaying nondeterminism.

5 Results and future work.
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Introduction Preliminaries

Continuous Time Markov Decision Process

A tuple (S,Act ,R, ν) is a CTMDP if S is a finite set of states and

• Act = {α, β, γ, . . . } is a finite set of actions and

• R : S × Act × S → R≥0 is a transition rate matrix such that

• R(s, α, s′) = λ is the rate of a negative exponential distribution

fX(t) =

(

λ · e−λ·t if t ≥ 0

0 otherwise
and E[X] =

1

λ

such that Act(s) = {α ∈ Act | ∃s′ ∈ S . R(s, α, s′) > 0} 6= ∅ for all s ∈ S .
• E(s, α) =

P

s′∈S
R(s, α, s′) is the exit rate of s under α.

Example

1 Nondeterministically choose β ∈ Act( s0 ).

2 Race between δ-transitions in s2 :

• Mean delay: 1
E(s2,δ)

= 4.

• Probability to move to s4 : R(s2,δ,s4)
E(s4,δ)

= 8
9
.
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Introduction Preliminaries

Trajectories in CTMDPs

1 Finite paths of length n ∈ N are denoted π = s0
α0,t0
−−−→ · · ·

αn−1,tn−1

−−−−−−−→ sn.

• π↓ = sn is the last state of π.
• Paths

n is the set of paths of length n and

2 Pathsω is the set of infinite paths.
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• π↓ = sn is the last state of π.
• Paths

n is the set of paths of length n and

2 Pathsω is the set of infinite paths.

π
sn sn+1

αn, tn

A combined transition m = (αn, tn, sn+1):

• αn is the action in state π↓ (chosen externally),

• tn is the transition’s firing time and

• sn+1 the transition’s successor state.

Ω := Act×R≥0×S is the set of all combined transitions.
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Introduction Semantics

Constructing events in CTMDPs

Probability measures are defined on σ-fields

1 F of sets of combined transitions:

Ω := Act × R≥0 × S

F := σ
(

FAct × B(R≥0) × FS

)

B(R≥0) : Borel σ-field for R≥0

2 FPathsn of sets of paths of length n:

FPathsn := σ ({S0 × M1 × · · · × Mn | S0 ∈ FS , Mi ∈ F})

3 FPathsω of sets of infinite paths:

Cylinder set construction:

• Any Cn ∈ FPathsn defines a cylinder base (of finite length)

• Cn := {π ∈ Paths
ω | π[0..n] ∈ Cn} is a cylinder (extension to infinity).

The σ-field FPathsω is then

FPathsω := σ
(

∞
⋃

n=0

{Cn | Cn ∈ FPathsn}
)
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Introduction Resolving Nondeterminism by Schedulers

The probability of events

Resolving nondeterminism: Assume state sn is hit after trajectory

π = s0
α0,t0
−−−→ s1

α1,t1
−−−→ s2

α2,t2
−−−→ · · ·

αn−1,tn−1

−−−−−−−→ sn.

• Nondeterminism occurs in sn if |Act(sn)| > 1.

• A scheduler resolves it and uniquely induces a stochastic process.
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• Nondeterminism occurs in sn if |Act(sn)| > 1.

• A scheduler resolves it and uniquely induces a stochastic process.

A hierarchy of scheduler classes:

1 Generic measurable scheduler (GM):

D : Paths⋆ → Distr(Act)

2 Total time positional scheduler (TTP):
D : S × R≥0 → Distr(Act)

3 Time abstract hop counting scheduler (TAHOP):
D : S × N → Distr(Act)

4 Time abstract positional scheduler (TAP):
D : S → Distr(Act)

GM

TTH

TTP

TP

TAP

TAHOP

TAH
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Introduction Resolving Nondeterminism by Schedulers

The probability of a single step M ⊆ F

1 Enter state sn along trajectory

π = s0
α0,t0
−−−→ s1

α1,t1
−−−→ · · ·

αn−1,tn−1

−−−−−−−→ sn.

2 Continue in sn with a transition

(αn, tn, sn+1) ∈ M

3 Measure probability of sets M ⊆ F!

Example: M = {αn} × [0, 1]× {sn+1}.

π

π↓ sn+1
αn, tn

Probability measure µD(π, ·) : F → [0, 1] on sets of combined transitions:

• Choose an action, wait and jump to successor state.

µD(π,M) :=

Z

Act

D(π, dα)

Z

R≥0

ηE(π↓,α)(dt)

Z

S

IM (α, t, s
′) P(π↓, α, ds

′).

• Note: ηE(π↓,α) depends on scheduler D!

Therefore: Scheduler cannot incorporate the sojourn time in state π↓.
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Introduction Resolving Nondeterminism by Schedulers

A generic probability measure on sets of paths

1 Initial distribution ν: Probability to start in state s.

2 Prn
ν,D on sets of finite paths:

Let ν ∈ Distr(S) and D ∈ TTP . Define inductively:

Pr
0
ν,D(Π) :=

X

s∈Π

ν(s) and for n > 0

Pr
n
ν,D(Π) :=

Z

Pathsn−1

Pr
n−1
ν,D (dπ)

Z

Ω

IΠ(π ◦ m) µD(π, dm) .

3 Prω
ν,D on sets of infinite paths:

• A cylinder base is a measurable set Cn ∈ FPathsn

• Cn defines cylinder Cn = {π ∈ Paths
ω | π[0..n] ∈ Cn}

• The probability of cylinder Cn is that of its base Cn:

Pr
ω
ν,D(Cn) = Pr

n
ν,D(Cn).

This extends to FPathsω by Ionescu-Tulcea.
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Neuhäußer, Stoelinga, Katoen (RWTH Aachen) Delayed CTMDPs FOSSACS 2009 9 / 18



Introduction Resolving Nondeterminism by Schedulers

Delaying the resolution of nondeterminism

• The semantics of a single step so far:

π
sn sn+1

αn, tn

1 Scheduler decides upon entering sn.
2 Sojourn time in sn depends on choice!

Z

Act

D(π, dα)

Z

R≥0

ηE(π↓,α)(dt)

Z

S

IM (α, t, s
′) P(π↓, α, ds

′)

s0

s1 s2

s3

s4

τ, 1
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α, 1 β, 1
5

τ, 1
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Uniformization

Local uniformity enables delayed scheduling

A CTMDP C = (S,Act ,R, ν) is locally uniform

iff there exists λ : S → R≥0 s.t.

∀s ∈ S. ∀α ∈ Act(s). λ(s) = E(s, α).

non-uniform CTMDP
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Neuhäußer, Stoelinga, Katoen (RWTH Aachen) Delayed CTMDPs FOSSACS 2009 11 / 18



Uniformization

Local uniformity enables delayed scheduling

A CTMDP C = (S,Act ,R, ν) is locally uniform

iff there exists λ : S → R≥0 s.t.

∀s ∈ S. ∀α ∈ Act(s). λ(s) = E(s, α).

Local uniformization yields unif (C) = (S,Act ,R, ν):

• S = S ⊎ {sα | s ∈ S , α ∈ Act with E(s, α) < λ(s)}

• R(s, α, s′) =

8

>

>

>

<

>

>

>

:

R(s, α, s′) if s, s′ ∈ S

λ(s) − E(s, α) if s ∈ S and s′ = sα

R(t, α, s′) if s = tα and s′ ∈ S

0 otherwise.
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Uniformization

A hint towards correctness of local uniformization

non-uniform CTMDP

s0

s1

s2

...

α, µ0
α, µ1

α, µ2β, µ+γ

E(s, α) = µ and E(s, β) = µ + γ
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s0

s1
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0

...

α, µ2
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α, µ1

α, γ
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Uniformization

A hint towards correctness of local uniformization

non-uniform CTMDP

s0

s1

s2

...

α, µ0
α, µ1

α, µ2β, µ+γ

E(s, α) = µ and E(s, β) = µ + γ

locally uniform CTMDP

s0

s1

s2

sα
0

...

α, µ2

β, µ+γ

α, µ1

α, γ

α, µ0

α, µ0

α, µ2

α, µ1

1.0

E(s, α) = E(s, β) = µ + γ

Correctness: If α is chosen in s, reachability of state ui within [0, t] is preserved:

µi

µ

Z t

0

ηµ(dt) =
µi

µ + γ

Z t

0

ηµ+γ(dt1) +
µ

µ + γ

Z t

0

ηµ+γ(dt1)
µi

µ

Z t−t1

0

ηµ(dt2)

where ηx = x · e−x·t and µ =
∑

µi.
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Uniformization

A hint towards correctness of local uniformization

non-uniform CTMDP

s0

s1

s2

...

α, µ0
α, µ1

α, µ2β, µ+γ

E(s, α) = µ and E(s, β) = µ + γ

locally uniform CTMDP

s0

s1

s2

sα
0

...

α, µ2

β, µ+γ

α, µ1

α, γ

α, µ0

α, µ0

α, µ2

α, µ1

1.0

E(s, α) = E(s, β) = µ + γ

Correctness: If α is chosen in s, reachability of state ui within [0, t] is preserved:

µi

µ

Z t

0

ηµ(dt) =
µi

µ + γ

Z t

0

ηµ+γ(dt1) +
µ

µ + γ

Z t

0

ηµ+γ(dt1)
µi

µ

Z t−t1

0

ηµ(dt2)

where ηx = x · e−x·t and µ =
∑

µi.

But: No nondeterminism considered yet!
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Uniformization

A correspondence between paths in C and unif (C)

non-uniform CTMDP

s0

s1 s2

s3

s4

τ, 1
30

γ, 1
3 δ, 2

9

γ, 1
3

δ, 1
36

α, 1 β, 1
5

τ, 1

local uniformization

s0 s
β
0

s1 s2

s3

s4

τ, 1
30

γ, 1
3 δ, 2

9

γ, 1
3

δ, 1
36

α, 1 β, 1
5

β, 4
5

β, 1
5

τ, 1

The function merge : Paths(C) → Paths(C) collapses copy-states sα:

π = s0
β,t0
−−→ s

β
0

β,t′
0−−→ s2

δ,t1
−−→ s4

merge(π) = s0
β,t0+t′

0−−−−−→ s2
δ,t1
−−→ s4.

The function extend : Paths(C) → F
Paths(C) is the inverse of merge.
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Uniformization

Resolving nondeterminism in unif (C)

Any CTMDP C with GM scheduler D induces the measure Prω
ν,D.

Question:
How to mimic D’s behaviour on unif (C)

to obtain the same probability?
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Definition (stutter scheduler)
Let D be a GM scheduler on C.

Define the stutter scheduler D on unif (C):

D(π) :=

{

D(π) if π↓ ∈ S ∧ merge(π) = π,

{α 7→ 1} if π↓ = sα.

s0 s
β
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s1 s2

s3
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τ, 1
30

γ, 1
3 δ, 2

9

γ, 1
3

δ, 1
36

α, 1 β, 1
5

β, 4
5

β, 1
5

τ, 1

Note: No choice in copy-state s
β
0
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Uniformization

Soundness: From C to unif (C)

The construction of D preserves all measures.

Proof sketch:

1 Uniformization is measure-preserving for measurable rectangles Cn:

Prn
ν,D(Cn) = Pr

ω

ν,D

(

extend(Cn)
)

2 This extends to the field GPathsn =
(

FS × FAct × B(R≥0)
)n

× FS .

3 Further we prove that

C =
{

Π ∈ FPathsn(C) | Prn
ν,D(Π) = Pr

ω

ν,D

(

extend
(

Π
))

}

is a monotone class .
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Uniformization

Soundness: From C to unif (C)

The construction of D preserves all measures.

Proof sketch:

1 Uniformization is measure-preserving for measurable rectangles Cn:

Prn
ν,D(Cn) = Pr

ω

ν,D

(

extend(Cn)
)

2 This extends to the field GPathsn =
(

FS × FAct × B(R≥0)
)n

× FS .

3 Further we prove that

C =
{

Π ∈ FPathsn(C) | Prn
ν,D(Π) = Pr

ω

ν,D

(

extend
(

Π
))

}

is a monotone class .

The claim follows by applying the Monotone Class Theorem.
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Uniformization

Completeness: From unif (C) to C.

Main results:

1 For scheduler classes G ∈ {TTP ,TAP}:

sup
D∈G(C)

Prω
ν,D (Π) = sup

D′∈G(C)

Prω
ν,D′ (extend(Π))

2 For the classes G ∈ {TAHOP ,TAH ,TP}:

sup
D∈G(C)

Prω
ν,D (Π) 6= sup

D′∈G(C)

Prω
ν,D′ (extend(Π))

3 Our main concern: Timed reachability analysis :

• Previous results hold for arbitrary measures.
• Reachability of states in G in time t:

sup
D∈TTP(C)

Pr
ω
ν,D

“

♦
[0,t]

G
”

= sup
D∈GM(C)

Pr
ω
ν,D

“

♦
[0,t]

G
”

.

GM

TTH

TTP

TP

TAP

TAHOP

TAH
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Uniformization

The benefit of delaying nondeterminism

• Instead of early scheduling:

µD(π, M) =

Z

Act

D(π, dα)

Z

R≥0

ηE(π↓,α)(dt)

Z

S

IM (α, t, s
′) P(π↓, α, ds

′),

• local uniformity allows late scheduling:

µD(π,M) =

Z

R≥0

ηλ(sn)(dt)

Z

Act

D(π, t, dα)

Z

S

IM (α, t, s
′) P(π↓, α, ds

′).

• What’s the benefit?
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Summary

What is achieved:

We consider locally uniform CTMDPs and late schedulers:

1 They allow to delay the resolution of nondeterminism.

2 Late schedulers are strictly better than any early scheduler.
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1 They allow to delay the resolution of nondeterminism.

2 Late schedulers are strictly better than any early scheduler.

We investigate a transformation which achieves local uniformity.

1 Local uniformization works for important scheduler classes.

2 The transform is viable to late scheduling.

3 Future work: Timed reachability analysis.

Late scheduling has proved to be algorithmically manageable!
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Summary

What is achieved:

We consider locally uniform CTMDPs and late schedulers:

1 They allow to delay the resolution of nondeterminism.

2 Late schedulers are strictly better than any early scheduler.

We investigate a transformation which achieves local uniformity.

1 Local uniformization works for important scheduler classes.

2 The transform is viable to late scheduling.

3 Future work: Timed reachability analysis.

Late scheduling has proved to be algorithmically manageable!

Thank you for your attention!
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