

Delayed Nondeterminism in Continuous-Time Markov Decision Processes

Martin R. Neuhäußer^{1,2} Mariëlle Stoelinga² Joost-Pieter Katoen^{1,2}

¹RWTH Aachen University, Germany

²University of Twente, The Netherlands

FOSSACS 2009, York, United Kingdom

Continuous-Time Markov Decision Processes: An Example

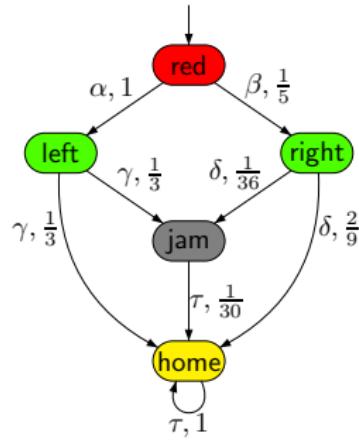
Imagine you have to come home by 6 pm.

- On your way, you stop at a red traffic light
- Waiting time depends on traffic
- What's the best strategy to meet your family's deadline?

Continuous-Time Markov Decision Processes: An Example

Imagine you have to come home by 6 pm.

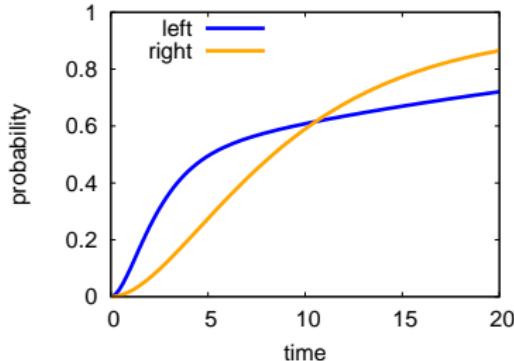
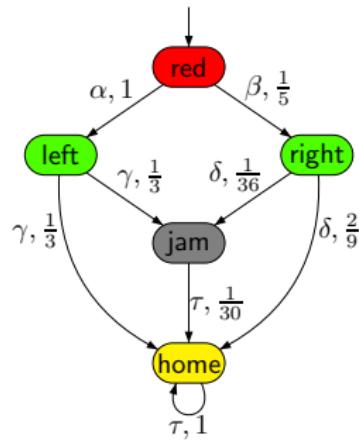
- On your way, you stop at a red traffic light.
- When it turns green, you have two choices:
 - turn left: 1min; traffic jam probability $\frac{1}{2}$.
 - turn right: 5min; traffic jam probability $\frac{1}{9}$.
 - Expected delay in a traffic jam: 30min.



Continuous-Time Markov Decision Processes: An Example

Imagine you have to come home by 6 pm.

- On your way, you stop at a red traffic light.
- When it turns green, you have two choices:
 - turn left: 1min; traffic jam probability $\frac{1}{2}$.
 - turn right: 5min; traffic jam probability $\frac{1}{9}$.
 - Expected delay in a traffic jam: 30min.
- Best strategy to meet your family's deadline?



Aim: Maximize the probability to come home in t time units.

Why Continuous-Time Markov Decision Processes?

- ① CTMDPs are an important model in
 - stochastic control theory [Qiu et al.]
 - stochastic scheduling [Feinberg et al., Puterman]
- ② CTMDPs provide the semantic basis for
 - non-well-specified stochastic activity networks [Sanders et al.]
 - generalised stochastic Petri nets with confusion [Chiola et al.]
 - Markovian process algebras [Hermanns et al., Hillston et al.]

Why Continuous-Time Markov Decision Processes?

- ① CTMDPs are an important model in
 - stochastic control theory [Qiu et al.]
 - stochastic scheduling [Feinberg et al., Puterman]
- ② CTMDPs provide the semantic basis for
 - non-well-specified stochastic activity networks [Sanders et al.]
 - generalised stochastic Petri nets with confusion [Chiola et al.]
 - Markovian process algebras [Hermanns et al., Hillston et al.]

In this talk:

- ① **Introduction** of CTMDPs.
- ② **Schedulers** that resolve the nondeterminism.
- ③ Probability **measures**.
- ④ **Delaying nondeterminism**.
- ⑤ **Results** and future work.

Continuous Time Markov Decision Process

A tuple $(\mathcal{S}, \text{Act}, \mathbf{R}, \nu)$ is a CTMDP if \mathcal{S} is a finite set of **states** and

- $\text{Act} = \{\alpha, \beta, \gamma, \dots\}$ is a finite set of **actions** and
- $\mathbf{R} : \mathcal{S} \times \text{Act} \times \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ is a transition **rate matrix** such that
 - $\mathbf{R}(s, \alpha, s') = \lambda$ is the rate of a negative exponential distribution

$$f_X(t) = \begin{cases} \lambda \cdot e^{-\lambda \cdot t} & \text{if } t \geq 0 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad E[X] = \frac{1}{\lambda}$$

such that $\text{Act}(s) = \{\alpha \in \text{Act} \mid \exists s' \in \mathcal{S}. \mathbf{R}(s, \alpha, s') > 0\} \neq \emptyset$ for all $s \in \mathcal{S}$.

- $E(s, \alpha) = \sum_{s' \in \mathcal{S}} \mathbf{R}(s, \alpha, s')$ is the **exit rate** of s under α .

Continuous Time Markov Decision Process

A tuple $(\mathcal{S}, \text{Act}, \mathbf{R}, \nu)$ is a CTMDP if \mathcal{S} is a finite set of **states** and

- $\text{Act} = \{\alpha, \beta, \gamma, \dots\}$ is a finite set of **actions** and
- $\mathbf{R} : \mathcal{S} \times \text{Act} \times \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ is a transition **rate matrix** such that
 - $\mathbf{R}(s, \alpha, s') = \lambda$ is the rate of a negative exponential distribution

$$f_X(t) = \begin{cases} \lambda \cdot e^{-\lambda \cdot t} & \text{if } t \geq 0 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad E[X] = \frac{1}{\lambda}$$

such that $\text{Act}(s) = \{\alpha \in \text{Act} \mid \exists s' \in \mathcal{S}. \mathbf{R}(s, \alpha, s') > 0\} \neq \emptyset$ for all $s \in \mathcal{S}$.

- $E(s, \alpha) = \sum_{s' \in \mathcal{S}} \mathbf{R}(s, \alpha, s')$ is the **exit rate** of s under α .

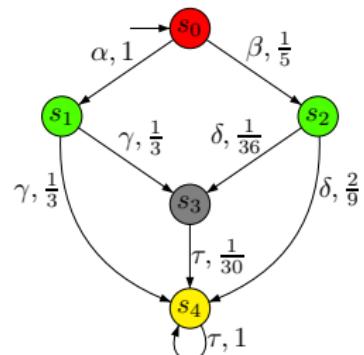
Example

① Nondeterministically choose $\beta \in \text{Act}(s_0)$.

② Race between δ -transitions in s_2 :

- **Mean delay:** $\frac{1}{E(s_2, \delta)} = 4$.

- **Probability** to move to s_4 : $\frac{\mathbf{R}(s_2, \delta, s_4)}{E(s_2, \delta)} = \frac{8}{9}$.

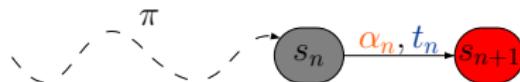


Trajectories in CTMDPs

- ① **Finite paths** of length $n \in \mathbb{N}$ are denoted $\pi = s_0 \xrightarrow{\alpha_0, t_0} \dots \xrightarrow{\alpha_{n-1}, t_{n-1}} s_n$.
 - $\pi \downarrow = s_n$ is the last state of π .
 - $Paths^n$ is the set of paths of length n and
- ② $Paths^\omega$ is the set of **infinite paths**.

Trajectories in CTMDPs

- ① **Finite paths** of length $n \in \mathbb{N}$ are denoted $\pi = s_0 \xrightarrow{\alpha_0, t_0} \dots \xrightarrow{\alpha_{n-1}, t_{n-1}} s_n$.
 - $\pi \downarrow = s_n$ is the last state of π .
 - Paths^n is the set of paths of length n and
- ② Paths^ω is the set of **infinite paths**.



A **combined transition** $m = (\alpha_n, t_n, s_{n+1})$:

- α_n is the action in state $\pi \downarrow$ (chosen externally),
- t_n is the transition's **firing time** and
- s_{n+1} the transition's **successor** state.

$\Omega := \text{Act} \times \mathbb{R}_{\geq 0} \times \mathcal{S}$ is the set of all combined transitions.

Constructing events in CTMDPs

Probability measures are defined on σ -fields

- ➊ \mathfrak{F} of sets of **combined transitions**:

$$\Omega := Act \times \mathbb{R}_{\geq 0} \times \mathcal{S}$$

$\mathfrak{B}(\mathbb{R}_{\geq 0})$: Borel σ -field for $\mathbb{R}_{\geq 0}$

$$\mathfrak{F} := \sigma(\mathfrak{F}_{Act} \times \mathfrak{B}(\mathbb{R}_{\geq 0}) \times \mathfrak{F}_{\mathcal{S}})$$

Example: $\mathfrak{F} = \{ \{ (a, 0, s), (b, 1, t), (c, 2, u) \} \mid a \in Act, t \in \mathbb{R}_{\geq 0}, u \in \mathcal{S} \}$

Probability measures are defined on σ -fields of combined transitions

Probability measures are defined on σ -fields of combined transitions

Probability measures are defined on σ -fields of combined transitions

Probability measures are defined on σ -fields of combined transitions

Probability measures are defined on σ -fields of combined transitions

Probability measures are defined on σ -fields of combined transitions

Constructing events in CTMDPs

Probability measures are defined on σ -fields

- 1 \mathfrak{F} of sets of **combined transitions**:

$$\Omega := Act \times \mathbb{R}_{\geq 0} \times \mathcal{S}$$

$\mathfrak{B}(\mathbb{R}_{\geq 0})$: Borel σ -field for $\mathbb{R}_{\geq 0}$

$$\mathfrak{F} := \sigma(\mathfrak{F}_{Act} \times \mathfrak{B}(\mathbb{R}_{\geq 0}) \times \mathfrak{F}_{\mathcal{S}})$$

- 2 \mathfrak{F}_{Paths^n} of sets of **paths of length n** :

$$\mathfrak{F}_{Paths^n} := \sigma(\{S_0 \times M_1 \times \dots \times M_n \mid S_0 \in \mathfrak{F}_{\mathcal{S}}, M_i \in \mathfrak{F}\})$$

→ Definition of combined transitions

→ Definition of paths of length n

→ Definition of combined paths of length n

→ Definition of paths of all lengths

→ Definition of combined paths of all lengths

→ Definition of σ -field of combined paths

→ Definition of σ -field of combined combined paths

→ Definition of σ -field of combined combined combined paths

→ Definition of σ -field of combined combined combined combined paths

→ Definition of σ -field of combined combined combined combined combined paths

Constructing events in CTMDPs

Probability measures are defined on σ -fields

- 1 \mathfrak{F} of sets of **combined transitions**:

$$\Omega := Act \times \mathbb{R}_{\geq 0} \times \mathcal{S}$$

$\mathfrak{B}(\mathbb{R}_{\geq 0})$: Borel σ -field for $\mathbb{R}_{\geq 0}$

$$\mathfrak{F} := \sigma(\mathfrak{F}_{Act} \times \mathfrak{B}(\mathbb{R}_{\geq 0}) \times \mathfrak{F}_{\mathcal{S}})$$

- 2 \mathfrak{F}_{Paths^n} of sets of **paths of length n** :

$$\mathfrak{F}_{Paths^n} := \sigma(\{S_0 \times M_1 \times \dots \times M_n \mid S_0 \in \mathfrak{F}_{\mathcal{S}}, M_i \in \mathfrak{F}\})$$

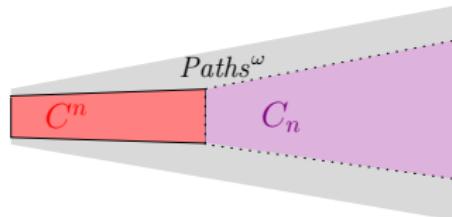
- 3 $\mathfrak{F}_{Paths^\omega}$ of sets of **infinite paths**:

Cylinder set construction:

- Any $C^n \in \mathfrak{F}_{Paths^n}$ defines a **cylinder base** (of finite length)
- $C_n := \{\pi \in Paths^\omega \mid \pi[0..n] \in C^n\}$ is a **cylinder** (extension to infinity).

The σ -field $\mathfrak{F}_{Paths^\omega}$ is then

$$\mathfrak{F}_{Paths^\omega} := \sigma\left(\bigcup_{n=0}^{\infty} \{C_n \mid C^n \in \mathfrak{F}_{Paths^n}\}\right)$$



The probability of events

Resolving nondeterminism: Assume state s_n is hit after trajectory

$$\pi = s_0 \xrightarrow{\alpha_0, t_0} s_1 \xrightarrow{\alpha_1, t_1} s_2 \xrightarrow{\alpha_2, t_2} \dots \xrightarrow{\alpha_{n-1}, t_{n-1}} s_n.$$

- Nondeterminism occurs in s_n if $|Act(s_n)| > 1$.
- A scheduler resolves it and uniquely induces a stochastic process.

The probability of events

Resolving nondeterminism: Assume state s_n is hit after trajectory

$$\pi = s_0 \xrightarrow{\alpha_0, t_0} s_1 \xrightarrow{\alpha_1, t_1} s_2 \xrightarrow{\alpha_2, t_2} \dots \xrightarrow{\alpha_{n-1}, t_{n-1}} s_n.$$

- Nondeterminism occurs in s_n if $|Act(s_n)| > 1$.
- A scheduler resolves it and uniquely induces a stochastic process.

A hierarchy of scheduler classes:

① Generic measurable scheduler (GM):

$$D : Paths^* \rightarrow Distr(Act)$$

② Total time positional scheduler (TTP):

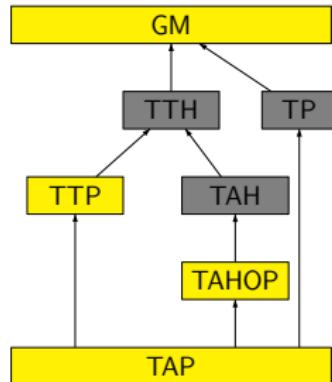
$$D : \mathcal{S} \times \mathbb{R}_{\geq 0} \rightarrow Distr(Act)$$

③ Time abstract hop counting scheduler (TAHOP):

$$D : \mathcal{S} \times \mathbb{N} \rightarrow Distr(Act)$$

④ Time abstract positional scheduler (TAP):

$$D : \mathcal{S} \rightarrow Distr(Act)$$



The probability of a single step $M \subseteq \mathfrak{F}$

① Enter state s_n along trajectory

$$\pi = s_0 \xrightarrow{\alpha_0, t_0} s_1 \xrightarrow{\alpha_1, t_1} \dots \xrightarrow{\alpha_{n-1}, t_{n-1}} s_n.$$

② Continue in s_n with a transition

$$(\alpha_n, t_n, s_{n+1}) \in M$$

③ Measure probability of sets $M \subseteq \mathfrak{F}$!

Example: $M = \{\alpha_n\} \times [0, 1] \times \{s_{n+1}\}$.

Probability measure $\mu_D(\pi, \cdot) : \mathfrak{F} \rightarrow [0, 1]$ on sets of combined transitions:

- Choose an action, **wait** and jump to **successor state**.

$$\mu_D(\pi, M) := \int_{Act} D(\pi, d\alpha) \int_{\mathbb{R}_{\geq 0}} \eta_{E(\pi \downarrow, \alpha)}(dt) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \ \mathbf{P}(\pi \downarrow, \alpha, ds').$$

- Note: $\eta_{E(\pi \downarrow, \alpha)}$ depends on scheduler D !

Therefore: Scheduler cannot incorporate the sojourn time in state $\pi \downarrow$.

A generic probability measure on sets of paths

- ① **Initial distribution ν** : Probability to start in state s .

• Probability of being in state s at time t :

• Definition of \mathcal{P}_ν and \mathcal{P}_ν^t : Define inductively

$$\mathcal{P}_\nu^0(s) = \nu(s) \quad \text{and for } t > 0$$

$$\mathcal{P}_\nu^t(s) = \sum_{s' \in S} \mathcal{P}_\nu^{t-1}(s) \left(\sum_{a \in A} \mathbb{P}(s' \mid s, a) \cdot \mu(a, s') \right)$$

• Probability of being in state s at time t :

• $\mathcal{P}_\nu^t(s) = \Pr_{\nu, \mu} \{ \text{state } s \text{ at time } t \}$

• Definition of \mathcal{P}_ν^t : Define inductively

• The probability of being in state s at time t :

$$\mathcal{P}_\nu^t(s) = \Pr_{\nu, \mu} \{ \text{state } s \text{ at time } t \}$$

• Definition of \mathcal{P}_ν^t : Define inductively

A generic probability measure on sets of paths

① Initial distribution ν : Probability to start in state s .

② $Pr_{\nu, D}^n$ on sets of finite paths:

Let $\nu \in Distr(\mathcal{S})$ and $D \in TTP$. Define inductively:

$$Pr_{\nu, D}^0(\Pi) := \sum_{s \in \Pi} \nu(s) \quad \text{and for } n > 0$$

$$Pr_{\nu, D}^n(\Pi) := \int_{Paths^{n-1}} Pr_{\nu, D}^{n-1}(d\pi) \int_{\Omega} \mathbf{I}_{\Pi}(\pi \circ m) \mu_D(\pi, dm) .$$

• Probability of sets of paths

• $\mathbf{I}_{\Pi}(\pi \circ m)$ is an indicator function

• $\mu_D(\pi, dm)$ is a probability measure on D

• The probability of a path is the probability of the set of paths

$$Pr_{\nu, D}^0(\Pi) = \Pr_{\nu}(\{s\})$$

• Probability of paths

A generic probability measure on sets of paths

① Initial distribution ν : Probability to start in state s .

② $Pr_{\nu, D}^n$ on sets of finite paths:

Let $\nu \in Distr(\mathcal{S})$ and $D \in TTP$. Define inductively:

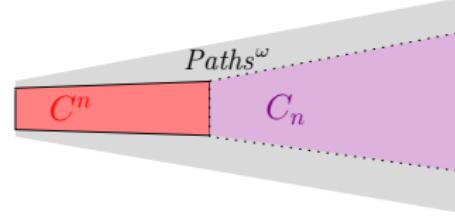
$$Pr_{\nu, D}^0(\Pi) := \sum_{s \in \Pi} \nu(s) \quad \text{and for } n > 0$$

$$Pr_{\nu, D}^n(\Pi) := \int_{Paths^{n-1}} Pr_{\nu, D}^{n-1}(d\pi) \int_{\Omega} \mathbf{I}_{\Pi}(\pi \circ m) \mu_D(\pi, dm).$$

③ $Pr_{\nu, D}^{\omega}$ on sets of infinite paths:

- A **cylinder base** is a measurable set $C^n \in \mathfrak{F}_{Paths^n}$
- C^n defines **cylinder** $C_n = \{\pi \in Paths^{\omega} \mid \pi[0..n] \in C^n\}$
- The probability of cylinder C_n is that of its base C^n :

$$Pr_{\nu, D}^{\omega}(C_n) = Pr_{\nu, D}^n(C^n).$$



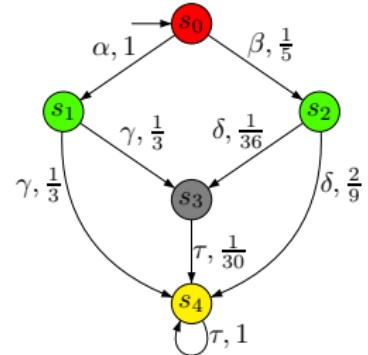
This extends to $\mathfrak{F}_{Paths^{\omega}}$ by **Ionescu-Tulcea**.

Delaying the resolution of nondeterminism

- The semantics of a single step so far:

- Scheduler decides upon entering s_n .
- Sojourn time in s_n depends on choice!

$$\int_{Act} D(\pi, d\alpha) \int_{\mathbb{R}_{\geq 0}} \eta_{E(\pi \downarrow, \alpha)}(dt) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \mathbf{P}(\pi \downarrow, \alpha, ds')$$



Delaying the resolution of nondeterminism

- The semantics of a single step so far:

- 1 Scheduler decides upon entering s_n .
- 2 Sojourn time in s_n depends on choice!

$$\int_{Act} D(\pi, d\alpha) \int_{\mathbb{R}_{\geq 0}} \eta_{E(\pi \downarrow, \alpha)}(dt) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \mathbf{P}(\pi \downarrow, \alpha, ds')$$

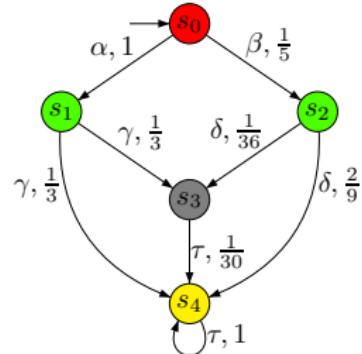
- Idea to delay resolution of nondeterminism:

Schedule only when the current state is left!

Therefore: Dissolve dependency between

- sojourn time in state s_n and
- scheduler's choice when entering s_n .

$$\int_{\mathbb{R}_{\geq 0}} \eta_{\lambda(s_n)}(dt) \int_{Act} D(\pi, t, d\alpha) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \mathbf{P}(\pi \downarrow, \alpha, ds')$$



Delaying the resolution of nondeterminism

- The semantics of a single step so far:

- Scheduler decides upon entering s_n .
- Sojourn time in s_n depends on choice!

$$\int_{Act} D(\pi, d\alpha) \int_{\mathbb{R}_{\geq 0}} \eta_{E(\pi \downarrow, \alpha)}(dt) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \mathbf{P}(\pi \downarrow, \alpha, ds')$$

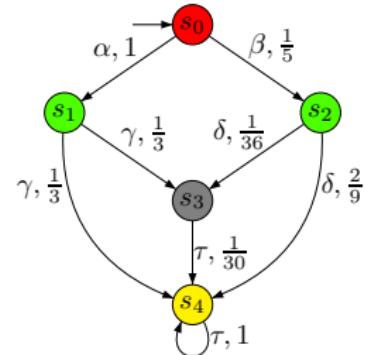
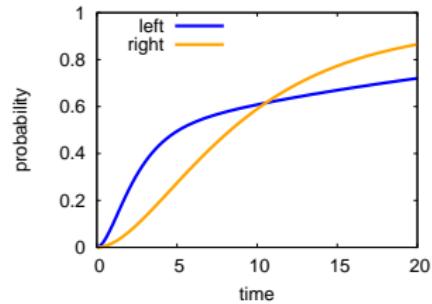
- Idea to delay resolution of nondeterminism:

Schedule only when the current state is left!

Therefore: Dissolve dependency between

- sojourn time in state s_n and
- scheduler's choice when entering s_n .

$$\int_{\mathbb{R}_{\geq 0}} \eta_{\lambda(s_n)}(dt) \int_{Act} D(\pi, t, d\alpha) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \mathbf{P}(\pi \downarrow, \alpha, ds')$$

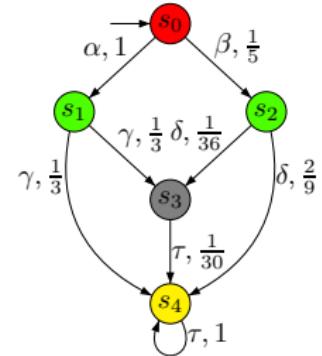


Local uniformity enables delayed scheduling

A CTMDP $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \nu)$ is **locally uniform** iff there exists $\lambda : \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ s.t.

$$\forall s \in \mathcal{S}. \forall \alpha \in \text{Act}(s). \quad \lambda(s) = E(s, \alpha).$$

non-uniform CTMDP

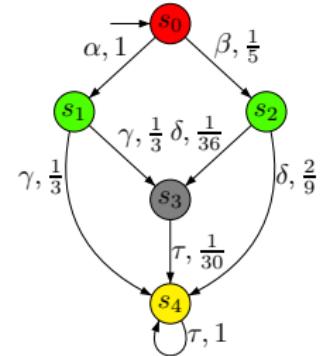


Local uniformity enables delayed scheduling

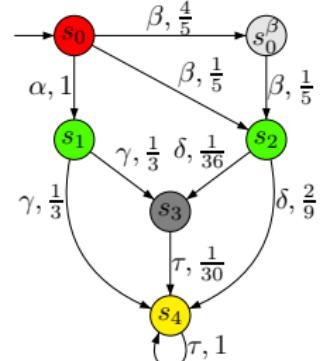
A CTMDP $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \nu)$ is **locally uniform** iff there exists $\lambda : \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ s.t.

$$\forall s \in \mathcal{S}. \forall \alpha \in \text{Act}(s). \quad \lambda(s) = E(s, \alpha).$$

non-uniform CTMDP



local uniformization

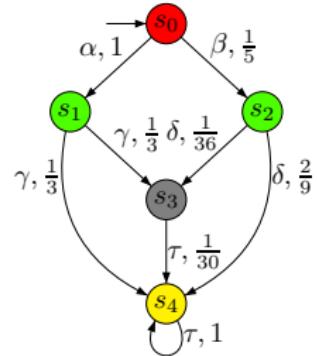


Local uniformity enables delayed scheduling

A CTMDP $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \nu)$ is **locally uniform** iff there exists $\lambda : \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ s.t.

$$\forall s \in \mathcal{S}. \forall \alpha \in \text{Act}(s). \quad \lambda(s) = E(s, \alpha).$$

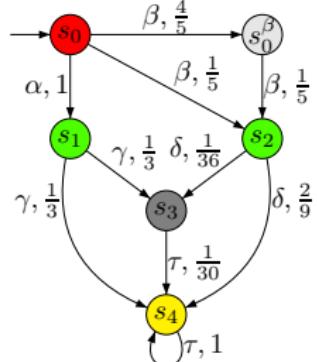
non-uniform CTMDP



Local uniformization yields $\text{unif}(\mathcal{C}) = (\overline{\mathcal{S}}, \text{Act}, \overline{\mathbf{R}}, \nu)$:

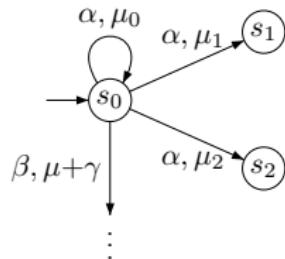
- $\overline{\mathcal{S}} = \mathcal{S} \uplus \{s^\alpha \mid s \in \mathcal{S}, \alpha \in \text{Act} \text{ with } E(s, \alpha) < \lambda(s)\}$
- $\overline{\mathbf{R}}(s, \alpha, s') = \begin{cases} \mathbf{R}(s, \alpha, s') & \text{if } s, s' \in \mathcal{S} \\ \lambda(s) - E(s, \alpha) & \text{if } s \in \mathcal{S} \text{ and } s' = s^\alpha \\ \mathbf{R}(t, \alpha, s') & \text{if } s = t^\alpha \text{ and } s' \in \mathcal{S} \\ 0 & \text{otherwise.} \end{cases}$

local uniformization



A hint towards correctness of local uniformization

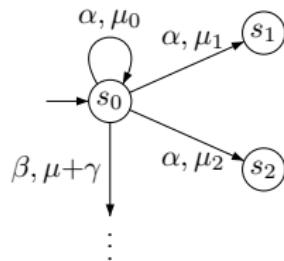
non-uniform CTMDP



$$E(s, \alpha) = \mu \text{ and } E(s, \beta) = \mu + \gamma$$

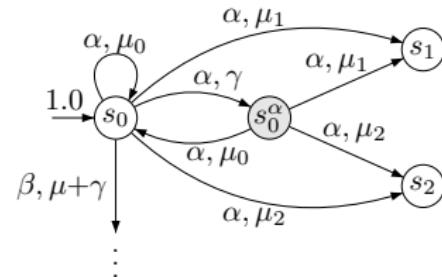
A hint towards correctness of local uniformization

non-uniform CTMDP



$$E(s, \alpha) = \mu \text{ and } E(s, \beta) = \mu + \gamma$$

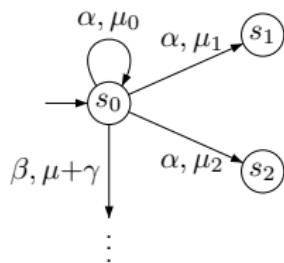
locally uniform CTMDP



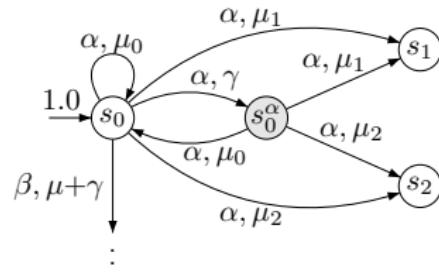
$$E(s, \alpha) = E(s, \beta) = \mu + \gamma$$

A hint towards correctness of local uniformization

non-uniform CTMDP



locally uniform CTMDP



$$E(s, \alpha) = \mu \text{ and } E(s, \beta) = \mu + \gamma$$

$$E(s, \alpha) = E(s, \beta) = \mu + \gamma$$

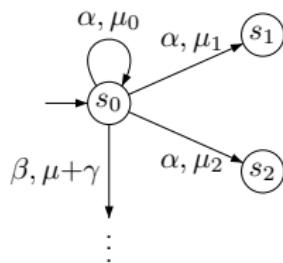
Correctness: If α is chosen in s , reachability of state u_i within $[0, t]$ is preserved:

$$\frac{\mu_i}{\mu} \int_0^t \eta_\mu(dt) = \frac{\mu_i}{\mu + \gamma} \int_0^t \eta_{\mu + \gamma}(dt_1) + \frac{\mu}{\mu + \gamma} \int_0^t \eta_{\mu + \gamma}(dt_1) \frac{\mu_i}{\mu} \int_0^{t-t_1} \eta_\mu(dt_2)$$

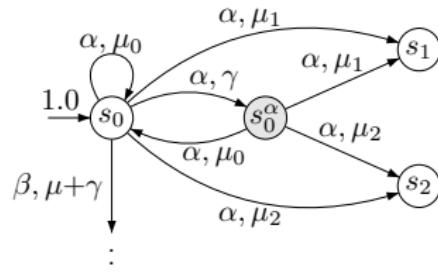
where $\eta_x = x \cdot e^{-x \cdot t}$ and $\mu = \sum \mu_i$.

A hint towards correctness of local uniformization

non-uniform CTMDP



locally uniform CTMDP



$$E(s, \alpha) = \mu \text{ and } E(s, \beta) = \mu + \gamma$$

$$E(s, \alpha) = E(s, \beta) = \mu + \gamma$$

Correctness: If α is chosen in s , reachability of state u_i within $[0, t]$ is preserved:

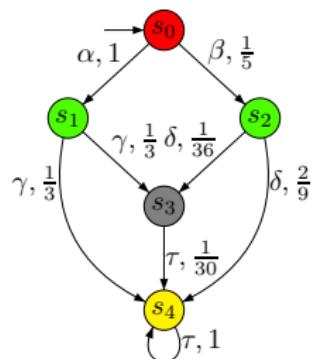
$$\frac{\mu_i}{\mu} \int_0^t \eta_\mu(dt) = \frac{\mu_i}{\mu + \gamma} \int_0^t \eta_{\mu+\gamma}(dt_1) + \frac{\mu}{\mu + \gamma} \int_0^t \eta_{\mu+\gamma}(dt_1) \frac{\mu_i}{\mu} \int_0^{t-t_1} \eta_\mu(dt_2)$$

where $\eta_x = x \cdot e^{-x \cdot t}$ and $\mu = \sum \mu_i$.

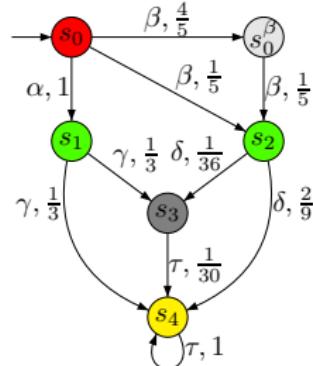
But: No nondeterminism considered yet!

A correspondence between paths in \mathcal{C} and $unif(\mathcal{C})$

non-uniform CTMDP



local uniformization



The function $merge : Paths(\overline{\mathcal{C}}) \rightarrow Paths(\mathcal{C})$ collapses copy-states s^α :

$$\overline{\pi} = s_0 \xrightarrow{\beta, t_0} s_0^\beta \xrightarrow{\beta, t'_0} s_2 \xrightarrow{\delta, t_1} s_4$$

$$merge(\overline{\pi}) = s_0 \xrightarrow{\beta, t_0 + t'_0} s_2 \xrightarrow{\delta, t_1} s_4.$$

The function $extend : Paths(\mathcal{C}) \rightarrow \mathfrak{F}_{Paths(\overline{\mathcal{C}})}$ is the inverse of $merge$.

Resolving nondeterminism in $unif(\mathcal{C})$

Any CTMDP \mathcal{C} with GM scheduler D induces the measure $Pr_{\nu, D}^\omega$.

Question:

How to mimic D 's behaviour on $unif(\mathcal{C})$
to obtain the same probability?

Resolving nondeterminism in $unif(\mathcal{C})$

Any CTMDP \mathcal{C} with GM scheduler D induces the measure $Pr_{\nu, D}^\omega$.

Question:

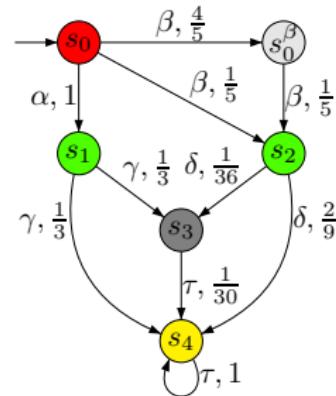
How to mimic D 's behaviour on $unif(\mathcal{C})$
to obtain the same probability?

Definition (stutter scheduler)

Let D be a GM scheduler on \mathcal{C} .

Define the stutter scheduler \overline{D} on $unif(\mathcal{C})$:

$$\overline{D}(\overline{\pi}) := \begin{cases} D(\pi) & \text{if } \overline{\pi} \downarrow \in \mathcal{S} \wedge \text{merge}(\overline{\pi}) = \pi, \\ \{\alpha \mapsto 1\} & \text{if } \pi \downarrow = s^\alpha. \end{cases}$$



Resolving nondeterminism in $unif(\mathcal{C})$

Any CTMDP \mathcal{C} with GM scheduler D induces the measure $Pr_{\nu, D}^\omega$.

Question:

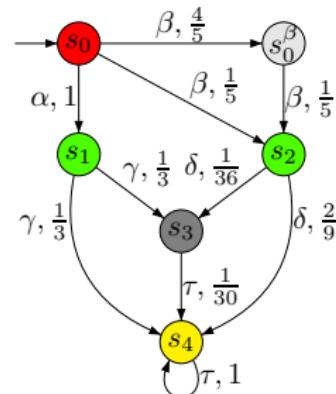
How to mimic D 's behaviour on $unif(\mathcal{C})$
to obtain the same probability?

Definition (stutter scheduler)

Let D be a GM scheduler on \mathcal{C} .

Define the stutter scheduler \overline{D} on $unif(\mathcal{C})$:

$$\overline{D}(\overline{\pi}) := \begin{cases} D(\pi) & \text{if } \overline{\pi} \downarrow \in \mathcal{S} \wedge \text{merge}(\overline{\pi}) = \pi, \\ \{\alpha \mapsto 1\} & \text{if } \pi \downarrow = s^\alpha. \end{cases}$$



Note: No choice in copy-state s_0^β

Soundness: From \mathcal{C} to $unif(\mathcal{C})$

The construction of \overline{D} preserves all measures.

Proof sketch:

• \overline{D} is measure-preserving for atomic measures $\mu_{\mathcal{C}}$

$$P_{\overline{D},\mu}^{\mathcal{C}^*}(\mathcal{C}^*) = P_{\overline{D},\mu}^{\mathcal{C}^*}(\text{atom}(\mathcal{C}^*))$$

• This extends to the full \mathcal{C} measure $= (\mathbb{R} \times \mathbb{R}_{\geq 0} \times \mathbb{R} / \mathbb{Z})^{\mathcal{C}} \times \mathbb{R}_{\geq 0}$
 \Rightarrow Further we prove that

$$\mathbb{E} = \{ \mu \in \mathcal{C} \text{ measure} \mid P_{\overline{D},\mu}^{\mathcal{C}^*}(\mathcal{C}^*) = P_{\overline{D},\mu}^{\mathcal{C}^*}(\text{atom}(\mathcal{C}^*)) \}$$

• \mathbb{E} is a measure space

Soundness: From \mathcal{C} to $unif(\mathcal{C})$

The construction of \overline{D} preserves all measures.

Proof sketch:

① Uniformization is measure-preserving for measurable rectangles C^n :

$$Pr_{\nu, D}^n(C^n) = \overline{Pr}_{\overline{\nu}, \overline{D}}^\omega(\text{extend}(C_n))$$

② This extends to the field $\mathfrak{G}_{Paths^n} = (\mathfrak{F}_S \times \mathfrak{F}_{Act} \times \mathfrak{B}(\mathbb{R}_{\geq 0}))^n \times \mathfrak{F}_S$.
 ③ Further we prove that

$$\mathfrak{C} = \left\{ \Pi \in \mathfrak{F}_{Paths^n}(\mathcal{C}) \mid Pr_{\nu, D}^n(\Pi) = \overline{Pr}_{\overline{\nu}, \overline{D}}^\omega(\text{extend}(\Pi)) \right\}$$

is a monotone class.

Soundness: From \mathcal{C} to $unif(\mathcal{C})$

The construction of \overline{D} preserves all measures.

Proof sketch:

① Uniformization is measure-preserving for measurable rectangles C^n :

$$Pr_{\nu, D}^n(C^n) = \overline{Pr}_{\overline{\nu}, \overline{D}}^\omega(\text{extend}(C_n))$$

② This extends to the field $\mathfrak{G}_{Paths^n} = (\mathfrak{F}_S \times \mathfrak{F}_{Act} \times \mathfrak{B}(\mathbb{R}_{\geq 0}))^n \times \mathfrak{F}_S$.
 ③ Further we prove that

$$\mathfrak{C} = \left\{ \Pi \in \mathfrak{F}_{Paths^n}(\mathcal{C}) \mid Pr_{\nu, D}^n(\Pi) = \overline{Pr}_{\overline{\nu}, \overline{D}}^\omega(\text{extend}(\Pi)) \right\}$$

is a monotone class.

The claim follows by applying the **Monotone Class Theorem**.

Completeness: From $unif(\mathcal{C})$ to \mathcal{C} .

Main results:

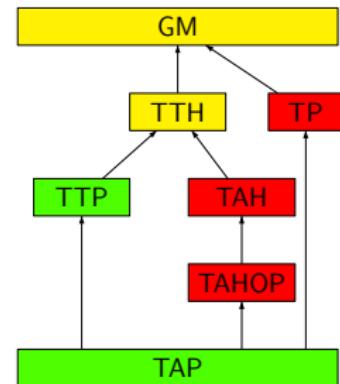
- 1 For scheduler classes $\mathfrak{G} \in \{TTP, TAP\}$:

$$\sup_{D \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D}^{\omega} (\Pi) = \sup_{D' \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D'}^{\omega} (\text{extend}(\Pi))$$

- For the classes $\{TTP, TAP\}$ the following holds
- $\sup_{D \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D}^{\omega} (\Pi) = \sup_{D' \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D'}^{\omega} (\text{extend}(\Pi))$
- $\text{extend}(\Pi) \in \mathfrak{G}(\mathcal{C})$

- Our main conclusion

- Theorem 3.1 holds for arbitrary markings
- Completeness of $unif(\mathcal{C})$ to \mathcal{C}



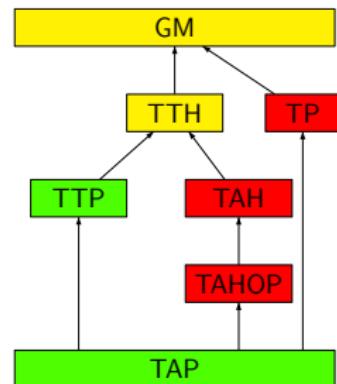
Completeness: From $unif(\mathcal{C})$ to \mathcal{C} .

Main results:

- For scheduler classes $\mathfrak{G} \in \{TTP, TAP, TTH, GM\}$:

$$\sup_{D \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D}^{\omega} (\Pi) = \sup_{D' \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D'}^{\omega} (\text{extend}(\Pi))$$

Conjecture: GM and TTH are also complete.



Our main contribution

- Theorem: $unif(\mathcal{C})$ is uniformly complete
- Completeness of $unif(\mathcal{C})$ to \mathcal{C}

Completeness: From $unif(\mathcal{C})$ to \mathcal{C} .

Main results:

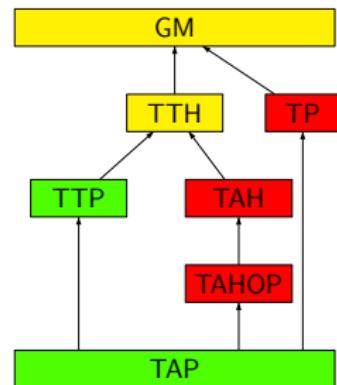
1 For scheduler classes $\mathfrak{G} \in \{TTP, TAP, TTH, GM\}$:

$$\sup_{D \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D}^{\omega} (\Pi) = \sup_{D' \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D'}^{\omega} (\text{extend}(\Pi))$$

Conjecture: GM and TTH are also complete.

2 For the classes $\mathfrak{G} \in \{TAHOP, TAH, TP\}$:

$$\sup_{D \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D}^{\omega} (\Pi) \neq \sup_{D' \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D'}^{\omega} (\text{extend}(\Pi))$$



→ TTP is not complete

→ TTH is not complete
→ TAHOP is not complete

Completeness: From $unif(\mathcal{C})$ to \mathcal{C} .

Main results:

1 For scheduler classes $\mathfrak{G} \in \{TTP, TAP, TTH, GM\}$:

$$\sup_{D \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D}^{\omega} (\Pi) = \sup_{D' \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D'}^{\omega} (\text{extend}(\Pi))$$

Conjecture: GM and TTH are also complete.

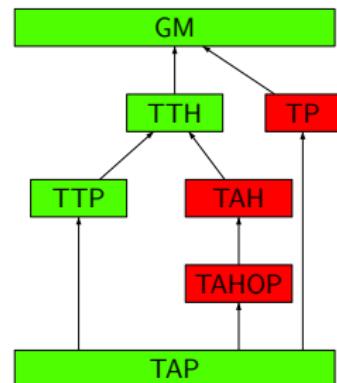
2 For the classes $\mathfrak{G} \in \{TAHOP, TAH, TP\}$:

$$\sup_{D \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D}^{\omega} (\Pi) \neq \sup_{D' \in \mathfrak{G}(\mathcal{C})} Pr_{\nu, D'}^{\omega} (\text{extend}(\Pi))$$

3 Our main concern: **Timed reachability analysis** :

- Previous results hold for arbitrary measures.
- Reachability of states in G in time t :

$$\sup_{D \in TTP(\mathcal{C})} Pr_{\nu, D}^{\omega} \left(\Diamond^{[0, t]} G \right) = \sup_{D \in GM(\mathcal{C})} Pr_{\nu, D}^{\omega} \left(\Diamond^{[0, t]} G \right).$$



The benefit of delaying nondeterminism

- Instead of **early scheduling**:

$$\mu_D(\pi, M) = \int_{Act} D(\pi, d\alpha) \int_{\mathbb{R}_{\geq 0}} \eta_{E(\pi \downarrow, \alpha)}(dt) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \ \mathbf{P}(\pi \downarrow, \alpha, ds'),$$

- local uniformity allows **late scheduling**:

$$\mu_D(\pi, M) = \int_{\mathbb{R}_{\geq 0}} \eta_{\lambda(s_n)}(dt) \int_{Act} D(\pi, t, d\alpha) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \ \mathbf{P}(\pi \downarrow, \alpha, ds').$$

→ What's the benefit?

The benefit of delaying nondeterminism

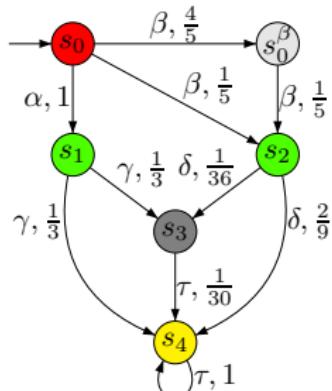
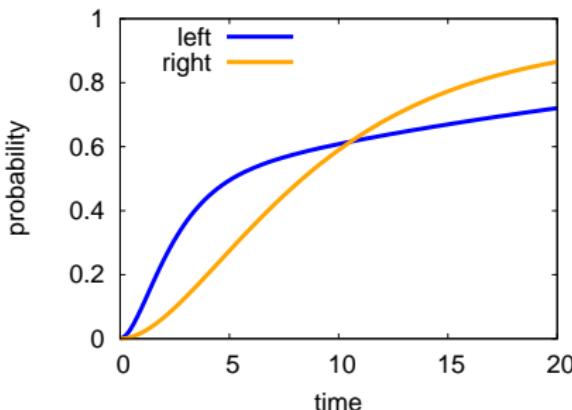
- Instead of **early scheduling**:

$$\mu_D(\pi, M) = \int_{Act} D(\pi, d\alpha) \int_{\mathbb{R}_{\geq 0}} \eta_{E(\pi \downarrow, \alpha)}(dt) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \ \mathbf{P}(\pi \downarrow, \alpha, ds'),$$

- local uniformity allows **late scheduling**:

$$\mu_D(\pi, M) = \int_{\mathbb{R}_{\geq 0}} \eta_{\lambda(s_n)}(dt) \int_{Act} D(\pi, t, d\alpha) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \ \mathbf{P}(\pi \downarrow, \alpha, ds').$$

- What's the benefit?



The benefit of delaying nondeterminism

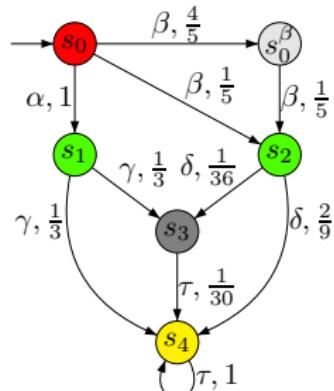
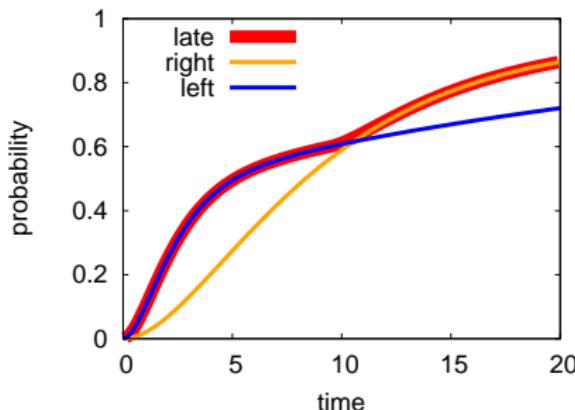
- Instead of **early scheduling**:

$$\mu_D(\pi, M) = \int_{Act} D(\pi, d\alpha) \int_{\mathbb{R}_{\geq 0}} \eta_{E(\pi \downarrow, \alpha)}(dt) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \ \mathbf{P}(\pi \downarrow, \alpha, ds'),$$

- local uniformity allows **late scheduling**:

$$\mu_D(\pi, M) = \int_{\mathbb{R}_{\geq 0}} \eta_{\lambda(s_n)}(dt) \int_{Act} D(\pi, t, d\alpha) \int_{\mathcal{S}} \mathbf{I}_M(\alpha, t, s') \ \mathbf{P}(\pi \downarrow, \alpha, ds').$$

- What's the benefit?



What is achieved:

We consider **locally uniform CTMDPs** and **late schedulers**:

- ① They allow to delay the resolution of nondeterminism.
- ② Late schedulers are strictly better than any early scheduler.

What is achieved:

We consider **locally uniform CTMDPs** and **late schedulers**:

- ① They allow to delay the resolution of nondeterminism.
- ② Late schedulers are strictly better than any early scheduler.

We investigate a **transformation** which achieves local uniformity.

- ① Local uniformization works for important scheduler classes.
- ② The transform is viable to late scheduling.
- ③ **Future work: Timed reachability analysis.**
Late scheduling has proved to be **algorithmically manageable!**

What is achieved:

We consider **locally uniform CTMDPs** and **late schedulers**:

- ① They allow to delay the resolution of nondeterminism.
- ② Late schedulers are strictly better than any early scheduler.

We investigate a **transformation** which achieves local uniformity.

- ① Local uniformization works for important scheduler classes.
- ② The transform is viable to late scheduling.
- ③ **Future work: Timed reachability analysis.**
Late scheduling has proved to be **algorithmically manageable!**

Thank you for your attention!