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Continuous-Time Markov Decision Processes: An Example

Imagine you have to come home by 6 pm.
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Continuous-Time Markov Decision Processes: An Example

Imagine you have to come home by 6 pm.

e On your way, you stop at a - traffic light.
e When it turns green, you have two choices:
e turn left: 1min; traffic jam probability %
e turn right: 5min; traffic jam probability %.
e Expected delay in a traffic jam: 30min.
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Continuous-Time Markov Decision Processes: An Example

Imagine you have to come home by 6 pm.

e On your way, you stop at a - traffic light.

e When it turns green, you have two choices:
e turn left: 1min; traffic jam probability %
e turn right: 5min; traffic jam probability %.
e Expected delay in a traffic jam: 30min.

o Best strategy to meet your family's deadline?
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Aim: Maximize the probability to come home in ¢ time units.
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Why Continuous-Time Markov Decision Processes?

@® CTMDPs are an important model in
e stochastic control theory [Qiu et al]
e stochastic scheduling [Feinberg et al., Puterman]
® CTMDPs provide the semantic basis for
e non-well-specified stochastic activity networks  [Sanders et al.]
e generalised stochastic Petri nets with confusion [Chiola et al]
e Markovian process algebras [Hermanns et al., Hillston et al.]
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Why Continuous-Time Markov Decision Processes?

® CTMDPs are an important model in
e stochastic control theory [Qiu et al]
e stochastic scheduling [Feinberg et al., Puterman]

® CTMDPs provide the semantic basis for
e non-well-specified stochastic activity networks  [Sanders et al.]
e generalised stochastic Petri nets with confusion [Chiola et al]
e Markovian process algebras [Hermanns et al., Hillston et al.]

In this talk:
® Introduction of CTMDPs.
® Schedulers that resolve the nondeterminism.
© Probability measures.
@ Delaying nondeterminism.
® Results and future work.
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Continuous Time Markov Decision Process

A tuple (S, Act,R,v) is a CTMDP if S is a finite set of states and
o Act ={a,3,7,...} is a finite set of actions and
e R:S8 x Act x § — Ry is a transition rate matrix such that
e R(s,a,s’) = ) is the rate of a negative exponential distribution

N
fx(t)—{/\.e ife=0 and E[X]:%

0 otherwise

such that Act(s) = {a € Act | 3’ € S. R(s,,8’) >0} # 0 for all s € S.
e E(s,a) =), c.sR(s,a,s') is the exit rate of s under a.
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Continuous Time Markov Decision Process

A tuple (S, Act,R,v) is a CTMDP if S is a finite set of states and
o Act ={a,3,7,...} is a finite set of actions and
e R:S8 x Act x § — Ry is a transition rate matrix such that
e R(s,a,s’) = ) is the rate of a negative exponential distribution
e ift>0
Fx(t) = { € = and E[X] = %

0 otherwise

such that Act(s) = {a € Act | 3’ € S. R(s,,8’) >0} # 0 for all s € S.
e E(s,a) =), c.sR(s,a,s') is the exit rate of s under a.

Example

©® Nondeterministically choose 3 € Act([l).
® Race between §-transitions in [83

e Mean delay: m =4.

e Probability to move to s4 : % = %,
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Trajectories in CTMDPs

«@p,to An—1,tn—1

@ Finite paths of length n € N are denoted 7 = s Sp-

o 71| = sy, is the last state of 7.
o Paths™ is the set of paths of length n and

@® Paths® is the set of infinite paths.
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[DICE TG  Preliminaries

Trajectories in CTMDPs

. . ,t n—1,tn—
@ Finite paths of length n € N are denoted 7 = 55 —2=%, ... Znobint

o 71| = sy, is the last state of 7.
o Paths™ is the set of paths of length n and

@® Paths® is the set of infinite paths.

n-

™

s - ”mtn
\ y ~ 4
- - -

A combined transition m = (ay,, tn, Snt1):
e (v, is the action in state 7Tl (chosen externally),
e t, is the transition’s firing time and

® 5,1 the transition's successor state.

Q= Act xR>o xS is the set of all combined transitions.
Delayed CTMDPs
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Introduction [ESERENNI

Constructing events in CTMDPs

Probability measures are defined on o-fields
@ § of sets of combined transitions:
Q:=Act xR>o xS B(R>) : Borel o-field for R>
F =0 (Tact X B(R>0) X Fs)
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Introduction [ESERENNI

Constructing events in CTMDPs

Probability measures are defined on o-fields
@ § of sets of combined transitions:
Q:=Act xR>o xS B(R>) : Borel o-field for R>
§ = 0(Fact x B(Rx0) x s)
@ T paths» of sets of paths of length n:

S Pathsm =0 ({So X My X --- X My, | Sy € s, M; € §})

Neuh3uBer, Stoelinga, Katoen (RWTH Aachen) Delayed CTMDPs FOSSACS 2009 6 /18



Introduction [ESERENNI

Constructing events in CTMDPs

Probability measures are defined on o-fields
@ § of sets of combined transitions:
Q:=Act xR>o xS B(R>o) : Borel o-field for R>q
F:=0(Fact X B(R>0) x Fs)
@ T paths» of sets of paths of length n:
S pathsm =0 ({So x My x --- x M, | So € §s, M; € §})
© T patnsw of sets of infinite paths:

Cylinder set construction:

o Any C" € Fparnsn defines a cylinder base (of finite length)
o (), :={m € Paths” | w[0..n] € C"} is a cylinder (extension to infinity).

The o-field §patnse is then
Paths® ..

o cn Cp
%Paths"-’ = O'(U {Cn | cm S S"Paths“})

n=0
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Resolving Nondeterminism by Schedulers
The probability of events

Resolving nondeterminism: Assume state s,, is hit after trajectory

«@o,to aq,ty asg,to Qap—1,tn—1
™ =S80 S1 S92 e Sn-

e Nondeterminism occurs in s, if [Act(sy)| > 1.
e A scheduler resolves it and uniquely induces a stochastic process.
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Resolving Nondeterminism by Schedulers
The probability of events

Resolving nondeterminism: Assume state s,, is hit after trajectory

«@o,to aq,ty asg,to Qap—1,tn—1
™ =S80 S1 S92 e Sn-

e Nondeterminism occurs in s, if [Act(sy)| > 1.
e A scheduler resolves it and uniquely induces a stochastic process.

A hierarchy of scheduler classes: |

GM

@ Generic measurable scheduler (GM):

D : Paths™ — Distr(Act)
® Total time positional scheduler (TTP):

D : S x R>¢ — Distr(Act) TTP
© Time abstract hop counting scheduler (TAHOP):

D : S8 x N — Distr(Act)
O Time abstract positional scheduler (TAP): 5 |

D : S — Distr(Act)
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Resolving Nondeterminism by Schedulers
The probability of a single step M C §

@ Enter state s,, along trajectory

a@p,to a1,ty Qap—1,tn—1
™= S0 S1 s Sn.-

® Continue in s,, with a transition N - ip,
(an7tn78n+1) eEM ) )

© Measure probability of sets M C §!
Example: M = {a,} x [0,1] X {sp41}.

Probability measure pup(w,-) : § — [0, 1] on sets of combined transitions:
e Choose an action, wait and jump to successor state.

up(mw, M) :== ‘D(WA(](»V,)/R

Act

nE(Wl,Q)(dt)/IM(a,t, s) P(nl,a,ds").
s

>0

e Note: Ng(r|,a) depends on scheduler D!
Therefore: Scheduler cannot incorporate the sojourn time in state 7.
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Resolving Nondeterminism by Schedulers
A generic probability measure on sets of paths

@ Initial distribution v: Probability to start in state s.
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Resolving Nondeterminism by Schedulers
A generic probability measure on sets of paths

@ Initial distribution v: Probability to start in state s.

® Pry p on sets of finite paths:
Let v € Distr(S) and D € TTP. Define inductively:

Pr) p(I) := Zu(s) and for n. > 0

sell

Pry p(I) := /P Pry7 (dr) /Q In(wom) pp(m,dm) .

aths™—1
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Resolving Nondeterminism by Schedulers
A generic probability measure on sets of paths

@ Initial distribution v: Probability to start in state s.

® Pry p on sets of finite paths:
Let v € Distr(S) and D € TTP. Define inductively:

Pr) p(I) := Zu(s) and for n. > 0

sell

Pry p(I) := /P Pry7 (dr) /Q In(wom) pp(m,dm) .

aths™—1

® Pry p on sets of infinite paths:

e A cylinder base is a measurable set C"" € Fpainsn
e (" defines cylinder C,, = {m € Paths* | [0..n] € C"}
e The probability of cylinder C), is that of its base C":

Pr¥.p(Cn) = Pri p(C"). o

This extends to § pathse by lonescu-Tulcea.
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Resolving Nondeterminism by Schedulers
Delaying the resolution of nondeterminism

e The semantics of a single step so far:
™

S e oty
\\/ \\/

@ Scheduler decides upon entering s, .
® Sojourn time in s, depends on choice!

/) D(W,da)/ nE(ﬂ,Q)(dt)/SIM(a,t,s/) P(rl,a,ds")

Act R>g
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Resolving Nondeterminism by Schedulers
Delaying the resolution of nondeterminism

e The semantics of a single step so far:
™

S e oty
\\/ \\/

@ Scheduler decides upon entering s, .
® Sojourn time in s, depends on choice!

/) /')(W,(Z(,\)/ nE(ﬂ,Q)(dt)/SIM(a,t,s/) P(rl,a,ds")

Act R>g

e |dea to delay resolution of nondeterminism:
Schedule only when the current state is left!
Therefore: Dissolve dependency between

e sojourn time in state s, and
e scheduler's choice when entering s,,.

/m(s">(dt)/ D(W.[,.(](l)/IM(Oé,t,S/) P(rl,a,ds")
Rsq J. Js

Act
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Resolving Nondeterminism by Schedulers
Delaying the resolution of nondeterminism

e The semantics of a single step so far:
™

S e oty
\\/ \\/

@ Scheduler decides upon entering s, .
® Sojourn time in s, depends on choice!

/) /')(W,(Z(,\)/ nE(ﬂ,Q)(dt)/SIM(a,t,s/) P(rl,a,ds")

Act R>g

e |dea to delay resolution of nondeterminism:

Schedule only when the current state is left! i
. 0.8
Therefore: Dissolve dependency between . P
e sojourn time in state s, and E o0
e scheduler's choice when entering s,,. g
9 0.2
D(m,t, ! ds’
/R:C])A(S")(dt)/w (m,t du)./SIM(a,t,s) P(rl,a,ds") 0 - ETa—
- time
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Local uniformity enables delayed scheduling
non-uniform CTMDP

A CTMDP C = (S, Act, R, v) is locally uniform
iff there exists A : § — R s.t.

Vs € S.Va € Act(s). M) = E(s, ).
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Local uniformity enables delayed scheduling
non-uniform CTMDP

A CTMDP C = (S, Act, R, v) is locally uniform
iff there exists A : § — R s.t.

Vs € S.Va € Act(s). M) = E(s, ).

Local uniformization yields unif (C) = (S, Act, R, v):
e S=SW{s*|scS,ac Act with E(s,a) < A(s)}

R(s,a,s) ifs,s €8
e R(s,a,s) = A(s) — E(s,a) ifse€Sands =s”
o R(t,a,s) ifs=t*ands’' €8

0 otherwise.

11 /18
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A hint towards correctness of local uniformization

non-uniform CTMDP
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A hint towards correctness of local uniformization

non-uniform CTMDP locally uniform CTMDP

Q, [y

B, uty
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A hint towards correctness of local uniformization

non-uniform CTMDP locally uniform CTMDP

Qv [y

B, uty

E(s,a) = uand E(s, 8) = u+ 7 E(s,a) = E(s,8) =+

Correctness: If a is chosen in s, reachability of state u; within [0, 1] is preserved:

t t t t—ty

i i 1 i

— dt) = —/ dty) + —/ dty —/ dts
A nu(dt) i+ /o Nt~ (dt1) ity Nut~ (dt1) A N (dt2)

where n, =x-e *tand p=> ;.
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A hint towards correctness of local uniformization

non-uniform CTMDP locally uniform CTMDP

Qv [y

B, uty

E(s,a) = uand E(s, 8) = u+ 7 E(s,a) = E(s,8) =+

Correctness: If a is chosen in s, reachability of state u; within [0, 1] is preserved:

t—ty

t t t
i i T i
— dt) = —/ dti) + —/ dt —/ dt
A nu(dt) i+ /o Nt~ (dt1) ity Nut~ (dt1) A N (dt2)
where n, =x-e *tand p=> ;.

But: No nondeterminism considered yet!
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Uniformization

A correspondence between paths in C and unif (C)

non-uniform CTMDP local uniformization

8.3

7', 1

The function merge : Paths(C) — Paths(C) collapses copy-states s®:

Bito B Bitg d,t1
0 — 8y — 82— 54

merge(T) = s —— S3 — S4.

The function extend : Paths(C) — § p,us(c) is the inverse of merge.
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Resolving nondeterminism in unif (C)

Any CTMDP C with GM scheduler D induces the measure Pry 5.
- How to mimic D’s behaviour on unif(C)

to obtain the same probability?
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Resolving nondeterminism in unif (C)

Any CTMDP C with GM scheduler D induces the measure Pry 5.
- How to mimic D’s behaviour on unif (C)
to obtain the same probability?

Definition (stutter scheduler)

Let D be a GM scheduler on C.
Define the stutter scheduler D on unif (C):

D) = {D(ﬂ') if 7| € S A merge(T) =,

{a—1} ifr| = s>

14 /18
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Resolving nondeterminism in unif (C)

Any CTMDP C with GM scheduler D induces the measure Pry 5.
- How to mimic D’s behaviour on unif(C)
to obtain the same probability?

Definition (stutter scheduler)

Let D be a GM scheduler on C.
Define the stutter scheduler D on unif (C):

D) = {D(ﬂ') if 7| € S A merge(T) =,

{a—1} ifr| = s>

Note: No choice in copy-state s

14 /18
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Soundness: From C to unif (C)

The construction of D preserves all measures.

Proof sketch:
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Soundness: From C to unif (C)

The construction of D preserves all measures.

Proof sketch:

@ Uniformization is measure-preserving for measurable rectangles C™:
Pry p(C™) = P_T;j(extend(cn))

® This extends to the field & papnsn = (Fs X Fact x B(R>0))" x §s.
© Further we prove that

¢ = {11 € §punsnce) | Prisp(Il) = Pryp(eatend(11)) |

is a monotone class .
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Soundness: From C to unif (C)

The construction of D preserves all measures.

Proof sketch:

@ Uniformization is measure-preserving for measurable rectangles C™:
Pry p(C™) = P_T;j(extend(C’n))

® This extends to the field & papnsn = (Fs X Fact x B(R>0))" x §s.
© Further we prove that

¢ = {11 € §punsnce) | Prisp(Il) = Pryp(eatend(11)) |

is a monotone class .

The claim follows by applying the Monotone Class Theorem.
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Completeness: From unif (C) to C.

Main results:
@ For scheduler classes & € {TTP, TAP}:

sup Pry 5 (I) = sup Pryp (extend(ID))
De®(C) ’ D'e&(C) ’

TTP

TAP
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Completeness: From unif (C) to C.

Main results:
@ For scheduler classes ® € {TTP, TAP, TTH, GM }:

sup Pryp(I)= sup Pry p (extend(IT))

Des(C) D'ed(C)
\ GM
Conjecture: GM and TTH are also complete.
TTH
TTP
TAP
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Completeness: From unif (C) to C.

Main results:
@ For scheduler classes ® € {TTP, TAP, TTH, GM }:

sup Pryp(I)= sup Pry p (extend(IT))

DEBG(C) D'es(C)
\ GM
Conjecture: GM and TTH are also complete.
TTH
@® For the classes & € {TAHOP, TAH, TP}: w5
sup Pryp(I) # sup Pry p (extend(IT))
DEBG(C) D'es(C)
\ TAP
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Completeness: From unif (C) to C.

Main results:
@ For scheduler classes ® € {TTP, TAP, TTH, GM }:

sup Pryp(I)= sup Pry p (extend(IT))

DEBG(C) D'es(C)
\ GM
Conjecture: GM and TTH are also complete.
TTH
@® For the classes & € {TAHOP, TAH, TP}: w5
sup Pryp(I) # sup Pry p (extend(IT))
DEBG(C) D'es(C)
\ TAP

® Our main concern: Timed reachability analysis :

e Previous results hold for arbitrary measures.
o Reachability of states in GG in time t:

sup  Pryp (()[O‘t]G> = sup Pr)p (O[O’t]G) .
DETTP(C) DeGM(C)
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The benefit of delaying nondeterminism

e Instead of early scheduling:

up(m, M) = D(’/TJ]()’,)/ nE(ﬂ,Q)(dt)/IM(a,t,sl) P(nl,a,ds'),
R s

Act >0

e local uniformity allows late scheduling:

up(m, M) :/ Masn)(dt) | D(m,t,da) /IM(oz,t,sl) P(rl,a,ds").
s

R>q J Act
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The benefit of delaying nondeterminism

e Instead of early scheduling:

up(m, M) = D(ﬂi(](»z)/ nE(ﬂ,Q)(dt)/IM(a,t,s') P(nl,a,ds'),
R s

Act

>0

e local uniformity allows late scheduling:

. M) = [ e, ()

R

e What's the benefit?
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The benefit of delaying nondeterminism

e Instead of early scheduling:

up(m, M) = | D(r, da)

Act

>0

e local uniformity allows late scheduling:

u(, M) = [ magep(@t) [ Dinitda)

R

e What's the benefit?

Neuh3uBer, Stoelinga, Katoen (RWTH Aachen)

Act

0.8 r

probability

0.2 ¢

Delayed CTMDPs

/ngwl,a)(dt)/IM(a,t,s') P(nl,a,ds'),
R s

/IM(a,t,s/) P(rl,a,ds").
Js

0.6
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15 20
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What is achieved:

We consider locally uniform CTMDPs and late schedulers:
@ They allow to delay the resolution of nondeterminism.

@® Late schedulers are strictly better than any early scheduler.
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What is achieved:

We consider locally uniform CTMDPs and late schedulers:
@ They allow to delay the resolution of nondeterminism.

@® Late schedulers are strictly better than any early scheduler.

We investigate a transformation which achieves local uniformity.
@ Local uniformization works for important scheduler classes.
® The transform is viable to late scheduling.

© Future work: Timed reachability analysis.
Late scheduling has proved to be algorithmically manageable!
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What is achieved:

We consider locally uniform CTMDPs and late schedulers:
@ They allow to delay the resolution of nondeterminism.

@® Late schedulers are strictly better than any early scheduler.

We investigate a transformation which achieves local uniformity.
@ Local uniformization works for important scheduler classes.
® The transform is viable to late scheduling.

© Future work: Timed reachability analysis.
Late scheduling has proved to be algorithmically manageable!

Thank you for your attention!
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