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Introduction to Measure Theory Basic Definitions

Measure Theory

Our Setting

Assume a set €, called
Subsets A of Q2 are called

Idea: Measure the {size | probability | volume | length} of events!

Let w € Q be the outcome of an experiment.
Then A is an event if w € A can be decided.
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Fields and o—fields

Definition (Field)
A class of subsets § of € is a field iff
O NecF.
O AcF = A€ 3.
®A,....A,eF = UL A€eF

where n € N
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Fields and o—fields

Definition (Field)
A class of subsets § of € is a field iff
O NecF.
O AcF = A€ 3.
®A,....A,eF = UL A€eF
where n € N
Definition (o—Field)

T is a o—field iff it is closed under countable union:

o8]
A Ag,--eF = | JAied

=1
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Fields and o—fields

Definition (Field)
A class of subsets § of € is a field iff
O NecF.
O AcF = A€ 3.
®A,....A,eF = UL A€eF
where n € N
Definition (o—Field)

T is a o—field iff it is closed under countable union:

o8]
A Ag,--eF = | JAied

=1

Let C < 2. ¢(C) denotes the containing C.

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006

3/1



Example: The Borel o—field

Define right—semiclosed intervals to be

e (a,b] where —o0 < a <b < +oo and
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Example: The Borel o—field

Define right—semiclosed intervals to be
e (a,b] where —o0 < a <b < +oo and

e (a,+00) where —o0 < a < +00.
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Introduction to Measure Theory Basic Definitions

Example: The Borel o—field

Define right—semiclosed intervals to be
e (a,b] where —o0 < a <b < +oo and
e (a,+00) where —o0 < a < +00.
Finite Disjoint Unions

Define the class of finite disjoint unions of right—-semiclosed intervals:

So(R):={Hwlaw---wl,|neN}.
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Example: The Borel o—field

Define right—semiclosed intervals to be
e (a,b] where —o0 < a <b < +oo and
e (a,+00) where —o0 < a < +00.
Finite Disjoint Unions

Define the class of finite disjoint unions of right—-semiclosed intervals:
So(R):={Hwlaw---wl,|neN}.

Verify the properties of a field:
® R = (—o0, +o) € Fo(R).
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Introduction to Measure Theory Basic Definitions

Example: The Borel o—field

Define right—semiclosed intervals to be
e (a,b] where —o0 < a <b < +oo and
e (a,+00) where —o0 < a < +00.
Finite Disjoint Unions

Define the class of finite disjoint unions of right—-semiclosed intervals:
So(R):={Hwlaw---wl,|neN}.
Verify the properties of a field:

® R = (—o0,+0) € Fo(R).
@Lw - wl,egdR) = ([1w- - wl,) €Fo(R).
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Example: The Borel o—field

Define to be
e (a,b] where —o0 < a <b < +oo and
e (a,+00) where —o0 < a < +00.

Finite Disjoint Unions
Define the class of of right—semiclosed intervals:

So(R):={Hwlaw---wl,|neN}.

Verify the properties of a field:
® R = (—,+o0) € Fo(R).
@Lw - wl,egdR) = ([1w- - wl,) €Fo(R).

©IfLw---wl,eFo(R)and Jy w---wJ, €Fo(R)
then (L1 w---wly)u(Jiw---wJy) € Fo(R).
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Example: The Borel o—field

Define right—semiclosed intervals to be
e (a,b] where —o0 < a <b < +oo and
e (a,+00) where —o0 < a < +00.

Finite Disjoint Unions
Define the class of finite disjoint unions of right—-semiclosed intervals:

So(R):={Hwlaw---wl,|neN}.

Verify the properties of a field:
® R = (—o0, +o) € Fo(R).

@Lw - wl,egdR) = ([1w- - wl,) €Fo(R).
©1F 1w wl,eFo(R) and Jy - & Jpego(R) IR
then (L1 w---wly)u(Jiw---wJy) € Fo(R).
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Example: The Borel o—field

Borel o—field

Let £ = {(a,b] | a,be R and a < b} and

let o(€) denote the smallest o—field containing £.
Then B(R) = o(&) is the Borel o—field.
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Example: The Borel o—field

Borel o—field

Let £ = {(a,b] | a,be R and a < b} and

let o(€) denote the containing £.
Then B(R) = o(&) is the

Example

B(R) has many generators:
e Fo(R), the set of finite disjoint unions of right—semiclosed intervals,
e &' ={[a,b] |a,be R and a < b},
o &"={(—0,b] |be R}, ...
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Example: The Borel o—field

Borel o—field

Let £ = {(a,b] | a,be R and a < b} and

let o(€) denote the containing £.

Then B(R) = o(€) is the

Example

B(R) has many generators:
e Fo(R), the set of finite disjoint unions of right—semiclosed intervals,
e &' ={[a,b] |a,be R and a < b},
o &"={(—0,b] |be R}, ...

Construct o—field by forming countable unions and complements
of intervals in all possible ways.
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Introduction to Measure Theory Measures

Measures

Intuition
Measure the “size” of sets in o—field §.
Notions of length, volume or probability.
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Introduction to Measure Theory Measures

Measures

Intuition
Measure the “size” of sets in o—field §.
Notions of length, volume or probability.

Definition (Measure)
Let § be a o—field over subsets of 2. A measure is a function
p:g — Rso where R := R U {—o0, +0}

which is countably additive:

o0 o0
M(U AZ-) = Z 1w(A;) for disjoint sets A; € §.
i=1 i=1
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Introduction to Measure Theory Measures

Measures

Intuition
Measure the “size” of sets in o—field §.
Notions of length, volume or probability.

Definition (Measure)

Let § be a o—field over subsets of 2. A measure is a function
p:g — Rso where R := R U {—o0, +0}

which is countably additive:

M(U AZ-) = Z 1w(A;) for disjoint sets A; € §.

Remark: If 41(©2) =1, u is a probability measure.
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Example: A Measure on B(R)

The size of intervals
Given interval (a,b], a < b€ R. Define its “length” as follows:

/L((I,b] =b—a
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Introduction to Measure Theory Measures

Example: A Measure on B(R)

The size of intervals
Given interval (a,b], a < b€ R. Define its “length” as follows:

M(avb] =b—a

Sizes on the field Fo(RR)

On the set of of right—semiclosed intervals:
Let 1 w---w I, € Fo(R). Extend u to Fo(R) by defining

n
i w - wlp) = EM(L’)
=1
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Introduction to Measure Theory Measures

Example: A Measure on B(R)

The size of intervals
Given interval (a,b], a < b€ R. Define its “length” as follows:

M(avb] =b—a

Sizes on the field Fo(RR)

On the set of of right—semiclosed intervals:
Let 1 w---w I, € Fo(R). Extend u to Fo(R) by defining

n
i w - wlp) = EM(L’)
=1
But: What about u(A) for AeB(R)?
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Introduction to Measure Theory Measures

Extension of Measures

Motivation

Define countably additive set function i on a field Fy
Then extend it to the o—field by magic.
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Extension of Measures

Motivation
Define countably additive set function i on a field Fp.
Then extend it to the o—field by magic.

Theorem (Carathéodory Extension Theorem)

Let §o be a field over subsets of a set () and let . be a measure on Fy.
If i is o—finite, i.e.

[0 0]
Q= U A; where A; € o and u(A;) < oo,
i=1

then p has a unique extension to o(Jo).

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 8/1



Extension of Measures

Motivation
Define countably additive set function i on a field Fp.
Then extend it to the o—field

Theorem (Carathéodory Extension Theorem)
Let §o be a field over subsets of a set () and let . be a measure on Fy.
If i is o—finite, i.e.
0
Q= U A; where A; € o and u(A;) < oo,
i=1
then p has a unique extension to o(Jo).

Avoid the o—field whenever possible!
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There's Still a Catch in it: Countable Additivity!

Example
Up to now, we defined the “length” 1 on subclasses of B(IR):
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There's Still a Catch in it: Countable Additivity!

Example
Up to now, we defined the “length” 1 on subclasses of B(IR):
® 1(a,b] = b— a for right—semiclosed intervals

O uhwlhw---wl,) = 2?21 p(I;) for finite disjoint unions
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There's Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” 1 on subclasses of B(IR):
® 1(a,b] = b— a for right—semiclosed intervals
O uhwlhw---wl,) = 2?21 p(I;) for finite disjoint unions
© But: For the extension from §y(R) to B(R) by Carathéodory:

where A1, A2, - € Fo(R), U7, Aj € Fo and the A; disjoint.
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There's Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” 1 on subclasses of B(IR):
® 1(a,b] = b— a for right—semiclosed intervals
O uhwlhw---wl,) = Z;”:l p(I;) for finite disjoint unions
© But: For the extension from §y(R) to B(R) by Carathéodory:

where A1, A2, - € Fo(R), U7, Aj € Fo and the A; disjoint.

Theorem
Let F : R — R be a distrib. function. Let p(a,b] := F(b) — F(a).

There is a unique extension of 11 to a Lebesgue—Stieltjes measure on R.

Countable additivity of  follows by defining F'(z) := x.
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Introduction to Measure Theory Lebesgue Integration

Lebesgue’s Intuition

Lebesgue about his integral
“One might say that Riemann’s approach is comparable to a messy merchant
who counts coins in the order they come to his hand whereas we act like a
prudent merchant who says:

® | have A1 coins a one crown, that is A7 - 1 crowns,

® A5 coins a two crowns, that is As - 2 crowns and

® A3 coins a five crowns, that is A3 -5 crowns.

Therefore | have Ay -1+ Az -2+ A3 -5 crowns.

Both approaches — no matter how rich the merchant might be — lead to the
same result since he only has to count a finite number of coins.
But for us who must add infinitely many indivisibles, the difference between

the approaches is essential.”

H.Lebesgue, 1926
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Introduction to Measure Theory Lebesgue Integration

Measurability

Definition (Measurability)

Let 21,25 be sets with associated o—fields §1 and §s.
h : Q1 — Q9 is measurable iff

hl(A) e F for each A € §»

Notation: A : (91,31) — (92,32).
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Measurability

Definition (Measurability)

Let 21,25 be sets with associated o—fields §1 and §s.
h : Q1 — Q9 is measurable iff

hl(A) e F for each A € §»

Notation: A : (91,31) — (Qg,gg).
Some remarks:
e his Borel measurable if h: (,F) — (R,B(R)).
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Introduction to Measure Theory Lebesgue Integration

Measurability

Definition (Measurability)

Let 21,25 be sets with associated o—fields §1 and §s.
h : Q1 — Q9 is measurable iff

hl(A) e F for each A € §»
Notation: A : (91,51) — (Qg,gg).
Some remarks:

e his Borel measurable if h: (,F) — (R,B(R)).

o In probability theory, h is called a random variable.
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Simple Functions

Definition (Simple Functions)
Let h: Q — R. his simple iff
@ h is measurable and

® takes on only finitely many values.
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Simple Functions

Definition (Simple Functions)
Let h: Q — R. his simple iff
@ h is measurable and

® takes on only finitely many values.

If his a function, it can be represented as
hw) = Y Ta, (@)
i=1

where A; € § are pairwisely disjoint.
1 ifwe Ai

I4. denotes the indicator function I, (w):= { o
g ¢ 0 otherwise
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Simple Functions

Definition (Simple Functions)
Let h: Q — R. his simple iff
@ h is measurable and

® takes on only finitely many values.

If his a function, it can be represented as
hw) = Y Ta, (@)
i=1

where A; € § are pairwisely disjoint.

I4, denotes the indicator function I, (w):= {1 ifwe d;

0 otherwise

Choose A; as the preimage of x;!
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Lebesgue Integral

Definition (Lebesgue Integral for Simple Functions)
Let (€2, F, 1) be a measure space, h : Q — R simple:

n
h(w) := Z x; - 14, (W) where the A; are disjoint sets in §.
i=1
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Introduction to Measure Theory Lebesgue Integration

Lebesgue Integral

Definition (Lebesgue Integral for Simple Functions)
Let (€2, F, 1) be a measure space, h : Q — R simple:

n

h(w) := Z x; - 14, (W) where the A; are disjoint sets in §.

i=1

The Lebesgue—integral of h is defined as

f hdp = @i p(A).
Q i=1

Intuition: Multiply each x; with the measure of its preimage A;.
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Example: Lebesgue Integral

h(w)

x1
z2

x3

T4

p(Ay) =
—




Example: Lebesgue Integral

Q

So b dp = 21p(Ar) + zop(A2) + w30(As3)
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Example: Riemann (Darboux) Integral

€2

€3

X4
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Introduction to Measure Theory Lebesgue Integration

Lebesgue Integral on Nonnegative Functions

Definition
If h is nonnegative Borel measurable, then

fhdu::sup{f sd,u|3issimp|eand0<s<h}.
Q Q

Theorem

A nonnegative Borel measurable function h is the limit of an increasing
sequence of nonnegative simple functions h,,.
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Example: Lebesgue Integral
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Example: Lebesgue Integral
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Example: Lebesgue Integral

)
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Finite Product Spaces

Definition (Product Space)
Let (£2;,5;) be a measurable space, j =1,...,n. Then
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Finite Product Spaces

Definition (Product Space)

Let (£2;,5;) be a measurable space, j =1,...,n. Then
e =01 x---xQ
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Finite Product Spaces

Definition (Product Space)
Let (£2;,5;) be a measurable space, j =1,...,n. Then
e =0 x---xQ,

e A=A; x Ay x --- x A, is a measurable rectangle if A; € §;.

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs
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Introduction to Measure Theory Measures on Product Spaces

Finite Product Spaces

Definition (Product Space)

Let (£2;,5;) be a measurable space, j =1,...,n. Then
e =01 x---xQ

e A=A; x Ay x --- x A, is a measurable rectangle if A; € §;.

e The set of measurable rectangles is denoted

T1 X §2 X -+ X Fn.
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Finite Product Spaces

Definition (Product Space)
Let (£2;,5;) be a measurable space, j =1,...,n. Then
e =01 x---xQ
e A=A x Ay x---x A, isa if A; e

The set of measurable rectangles is denoted

T1 X §2 X -+ X Fn.

e The § is the smallest o—field containing all
measurable rectangles:

§i=o(F1 xFox e x T
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Measures on Finite Product Spaces

To start with: Only products of two o—fields!

Preparation
Let (21,81, 11) be a measure space, p; o—finite on §7.
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Preparation
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Further let §o be a o—field over subsets of (5.

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 22 /1



Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two o—fields!

Preparation

Let (21,81, 11) be a measure space, p; o—finite on §7.
Further let §o be a o—field over subsets of (5.
Assume that we have a function

plwy, ) 1 F2 > R

which is
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Let (21,81, 11) be a measure space, p; o—finite on §7.
Further let §o be a o—field over subsets of (5.
Assume that we have a function

plwi, ) F2 > R
which is

@ a measure on §a,
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two o—fields!

Preparation

Let (21,81, 11) be a measure space, p; o—finite on §7.
Further let §o be a o—field over subsets of (5.
Assume that we have a function

plwi, ) F2 > R
which is

@ a measure on §a,

® Borel measurable in w; and
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two o—fields!

Preparation

Let (21,81, 11) be a measure space, p; o—finite on §7.
Further let §o be a o—field over subsets of (5.
Assume that we have a function

p(wi,) : §2 = R
which is
@ a measure on §a,
® Borel measurable in w; and
® uniformly o—finite:
Qo =, By, where p(wi, By,) < ky, for all wy and fixed &, € R.
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Measures on Finite Product Spaces

Theorem (Product Measure Theorem)
Given (€21, 81, ), (2,82) and p(ws,-) as before.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given (21,81, 1), (Q2,82) and p(w1,-) as before.
There is a unique measure i, on § such that on §1 x Fa:

j(A x B) = L p(wr, B) jia(dun).

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 23 /1



Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given (21,81, 1), (Q2,82) and p(w1,-) as before.
There is a unique measure i, on § such that on §1 x Fa:

p(A % B) = [ pler. B ma(dn).
p is defined (now on the entire o—field) as follows:
w(F) ::j pw(wi, Fwi)) pa(dwy), for all '€ §
Q1

where F'(wy) := {wsa | (w1,w2) € F'}.
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Introduction to Measure Theory Measures on Product Spaces

Lebesgue Integrals on Finite Product Spaces

Theorem (Fubini's Theorem)
Let f:(Q,5) — (R,B(R)). If f is nonnegative, then
flwr,we) p(wr, dws)
Qo

exists and defines a Borel measurable function.
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Introduction to Measure Theory Measures on Product Spaces

Lebesgue Integrals on Finite Product Spaces

Theorem (Fubini's Theorem)
Let f:(Q,5) — (R,B(R)). If f is nonnegative, then
flwr,we) p(wr, dws)
Qo

exists and defines a Borel measurable function. Also

J fdp= J ( f(wi,w2) M(wladwz))m(dwl)-
Q Q1 “JQo
Justification of iterated integration!
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Extension to Larger Product Spaces

Now, consider products of more than two o—fields!

Preparation
Let §; be a o—field of subsets of 2;, j =1,...,n.
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two o—fields!

Preparation

Let §; be a o—field of subsets of 2;, j =1,...,n.
Let 1 be a o—finite measure on §
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two o—fields!

Preparation

Let §; be a o—field of subsets of 2;, j =1,...,n.
Let ¢; be a o—finite measure on §; and
assume that (w1, ...,wj) we have a function

plwi,wa, ..., wj,+) g1 — R

which is
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two o—fields!
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Let §; be a o—field of subsets of 2;, j =1,...,n.
Let ¢; be a o—finite measure on §; and
assume that (w1, ...,wj) we have a function
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which is

@ a measure on §;41 and
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two o—fields!

Preparation

Let §; be a o—field of subsets of 2;, j =1,...,n.
Let ¢; be a o—finite measure on §; and
assume that (w1, ...,wj) we have a function

plwr,wa, .oy wj, o) 1§41 = R
which is
@ a measure on §;41 and

@® is measurable, i.e. for all fixed C' € §j41:

,u(wl,...,wj,C’) : (Ql X e X Qj,U(Sl X X 3])) - (Rv%(]ﬁ))

© uniformly o—finite.
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Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

There is a unique measure i, on § such that on §1 X -+ X Fp:

(AL % e x Ay) = L 111 (deon) L (wn, diss)

f /L(Wla"'awn—%dwn—l)f Wi, - - w1, dwy,).
Anfl A"
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Introduction to Measure Theory Measures on Product Spaces

Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

There is a unique measure i on § such that on §1 x

- X 8n:
ply o Ag) = [ o) [ pen,doo)
Ay Ao
f u(wh---,wn_mdwn_l)f (Wi, .oy Wo1, dwy).
Anfl A"
Let f:(Q,3) > (R,B(R)). If f >0, then

L fdp= Ll p (dwn) J pwi, dws)

f flwt, .. oywn) wiy ..oy Wi—1, dwy,).
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let (£2;,5;) be a measurable space, j =1,2,....
Let Q = X;Ozl Q. If B" < Qq x -+ x Q,, define

B, :={we Q| (w,ws,...,w,) € B"}.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let (£2;,5;) be a measurable space, j =1,2,....
Let Q = X;Ozl Q. If B" < Qq x -+ x Q,, define

B, :={we Q| (w,ws,...,w,) € B"}.

B, is called cylinder with base B™.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let (£2;,5;) be a measurable space, j =1,2,....
Let Q = X;Ozl Q. If B" < Qq x -+ x Q,, define

B, :={we Q| (w,ws,...,w,) € B"}.

B, is called cylinder with base B™.

e B, is measurable if B" € 0(§F1 x « -+ X §p)-
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let (£2;,5;) be a measurable space, j =1,2,....
Let Q = X;Ozl Q. If B" < Qq x -+ x Q,, define

B, :={we Q| (w,ws,...,w,) € B"}.

B, is called cylinder with base B™.
e B, is measurable if B" € 0(§F1 x « -+ X §p)-

e B, is arectangle if B" = A; x --- x A, and A; < Q;
B, is a measurable rectangle if A; € §;.

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

lonescu—Tulcea Theorem

Let P, be a probability measure on § and for each (wi,...,wj), j €N,
assume a measurable probability measure P(wy,...,w;,-) on §jq1.

Let P, be defined on o(F1 x -+ x Fn):

P, (F) = Py (dwn) P(wl,dwz)-“f Ip(wi,...,wn) Pwi,...,wn—1,dwn).
N Qs Qn
Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

lonescu—Tulcea Theorem

Let P, be a on §1 and (wi,...,wj), jeN,

assume a measurable probability measure P(wy,...,w;,-) on §jq1.

Let P, be defined on o(F1 x -+ x Fn):

P, (F) = Py (dwn) P(wl,dwg)-“f Ip(wi,...,wn) Pwi,...,wn—1,dwn).
[oN Qs Qn

There is a unique prob. measure PP on o (Xj-ozl &') such that for all n:

PlweQ| (wi,...,w,) € B"} = P,(B")
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

lonescu—Tulcea Theorem

Let P, be a on §1 and (wi,...,wj), jeN,

assume a measurable probability measure P(wy,...,w;,-) on §jq1.

Let P, be defined on o(F1 x -+ x Fn):

P, (F) = Py (dwn) P(wl,dwg)-“f Ip(wi,...,wn) Pwi,...,wn—1,dwn).
[oN Qs Qn

There is a unique prob. measure PP on o (Xj-ozl &') such that for all n:

PlweQ| (wi,...,w,) € B"} = P,(B")

The measure of a cylinder equals the measure of its finite base.
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Continuous Time Markov Decision Processes

Definition
A CTMDRP is a tuple C = (S, , R, AP, L) with finite set of states S,
labeled according to AP and L. Further

° is the set of possible actions and

e R:S x x § — R is a transition rate matrix,
parameterized with actions.
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Continuous Time Markov Decision Processes

Definition
A CTMDRP is a tuple C = (S, , R, AP, L) with finite set of states S,
labeled according to AP and L. Further

° is the set of possible actions and

e R:S x x § — R is a transition rate matrix,
parameterized with actions.

Example
Being in state s € S, a,0.1

@ choose enabled action from Act(s) . a,0.5

® sojourn time in s: 1 — e~ E(s:0)t

© next state probability: RE(%S)

where E(s,a) =Y .sR(s,a,5).

a,0.5
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Paths in a CTMDP

Definition (Paths)
Let C = (S, Act, R, AP, L). Finite paths are denoted

ao,to al,ty az,to An—1,tn—1
™= 35S0 S1 S92 s Sn-
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CTMDP Definitions

Paths in a CTMDP

Definition (Paths)
Let C = (S, Act, R, AP, L). Finite paths are denoted

ao,to a1,t1 az,t2
™= 35S0 S1 S92

an—1,tn—1

n-

Sets of paths are denoted as usual:

e 6}
Paths™ := 8 x (Act x R x §)" and Paths™ := U Paths™
1=0
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CTMDP Definitions

Paths in a CTMDP

Definition (Paths)
Let C = (S, Act, R, AP, L). Finite paths are denoted

ao,to ai,ty az,t2
™= 35S0 S1 S92

an—1,tn—1

n-

Sets of paths are denoted as usual:

e 6}
Paths™ := 8 x (Act x R x §)" and Paths™ := U Paths™
i=0

Some notation

o |m|:=nand wl:=s,
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CTMDP Definitions

Paths in a CTMDP

Definition (Paths)
Let C = (S, Act, R, AP, L). Finite paths are denoted

ao,to ai,ty az,t2
™= 35S0 S1 S92

an—1,tn—1

n-

Sets of paths are denoted as usual:

e 6}
Paths™ := 8 x (Act x R x §)" and Paths™ := U Paths™
1=0

Some notation

o |m|:=nand wl:=s,
o mfi.g] = s 2N Ai=1bi-1

sj for 0 <i < j < |n|.
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CTMDP Definitions

Paths in a CTMDP

Definition (Paths)
Let C = (S, Act, R, AP, L). Finite paths are denoted

ao,to ai,ty az,t2 Gn—1,tn—1
™= 35S0 S1 S92 s

n-

Sets of paths are denoted as usual:
e 6}
Paths™ := 8 x (Act x R x §)" and Paths™ := U Paths™
=0

Some notation
o |m|:=nand wl:=s,

a;,t; aj—1,t5—1
——_— e Ty

o 7[i..j] :=s; sj for 0 <i < j < |n|.

e 7@t is the state occupied in 7 at time ¢.

e §(m,n) = t, denotes the time spent in the n—th state.
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Paths in a CTMDP

Example

@t = 5<7T,min{k eN ‘
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Paths in a CTMDP

Example
ot S w2 t3 oo W s
ILIO [ |a1 I{12 T ag I{14 Ill5 1
TQt = S0
k
mQt := 5<7T,min{k eN ‘ Z t; > t}) d(m,n) ==ty
Z'_

=0
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Paths in a CTMDP

Example
ot S w2 t3 o W s
IG.O [ Illl I{12 T ag ay |a‘5 1
TQt = 3¢ TQf = 54
k
mQt := 5<7T,min{k eN ‘ Z t; > t}) d(m,n) ==ty
Z'_

=0

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs

November 9th, 2006

31/1



Paths in a CTMDP

Example

S4
1 to I t1 P2 3 I t4

T T T T
- [ . a2L - TM

TQt = 3¢ =ty 7Qt = sy

@t = 5<7T,min{k eN ‘ Zk: t; > t})
i=0
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Paths in a CTMDP

Definition (Infinite Paths)
The set of infinite paths is

Paths® := 8 x (Act x R x 8§)“.

The definitions are extended to Paths® if appropriate.
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Whatever you like: a, b, c

In CTMDP, the next action is chosen
— Nondeterminism must be resolved to assign probabllltles

Classes of schedulers
A scheduler resolves the nondeterminism in a CTMDP.
According to the information available, distinguish:

@ information about the history:
stationary markovian, markovian deterministic, history dependent

® timed or time—abstract

The decision taken can either be
@ deterministic
® randomized
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Example: Scheduler Classes

Assume C = (S, Act, R, AP,L).

@ Stationary Markovian deterministic scheduler:
Consider SMD-scheduler that always chooses action b:

D:S—>Act:s—b

C and D induce a CTMC as follows:
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Example: Scheduler Classes

Assume C = (S, Act, R, AP,L).

@ Stationary Markovian deterministic scheduler:
Consider SMD-scheduler that always chooses action b:

D:S—>Act:s—b

C and D induce a CTMC as follows:

4
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Example: Scheduler Classes

Assume C = (S, Act, R, AP,L).

@ Stationary Markovian deterministic scheduler:
Consider SMD-scheduler that always chooses action b:

D:S—>Act:s—b

C and D induce a CTMC as follows:

. 0.5 C)
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Example: Scheduler Classes

Assume C = (S, Act, R, AP,L).
@ Stationary Markovian deterministic scheduler: *

Consider SMD-scheduler that always chooses action b:

D:S—>Act:s—b

C and D induce a CTMC as follows:

4 0.5 (57) 15 @

5
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Example: Scheduler Classes

Assume C = (S, Act, R, AP,L).
@ Stationary Markovian deterministic scheduler: *

Consider SMD-scheduler that always chooses action b:

D:S—>Act:s—b

C and D induce a CTMC as follows:

@B

5 0.5
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Example: Markovian Randomized Scheduler

Assume C = (S, Act, R, AP, L).
® Markovian randomized scheduler:
I ifSE{So,Sl}

where

D:N x S — Distr(Act) : (n,s) — { .
Yn if s =352

1-27" ifex=a
2°™ ifx=»5

'yn:Act—>[0,l]:x>—>{
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Example: Markovian Randomized Scheduler

Assume C = (S, Act, R, AP, L).
® Markovian randomized scheduler:
I ifSE{So,Sl}

where

D:N x S — Distr(Act) : (n,s) — { .
Yn if s =352

1-27" ifex=a
2°™ ifx=»5

'yn:Act—>[0,l]:x>—>{

*

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 3% /1



Example: Markovian Randomized Scheduler

Assume C = (S, Act, R, AP, L).
® Markovian randomized scheduler:

I, ifse {So7 51} where

D:N x S — Distr(Act) : (n,s) — { .
Yn if s =352

1-27" ifex=a

n : Act 0,1] :
i Act > | ]IH{zn ifr=b

. 0.5 .
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Example: Markovian Randomized Scheduler

Assume C = (S, Act, R, AP, L).
® Markovian randomized scheduler:
I ifSE{So,Sl}

where

D:N x S — Distr(Act) : (n,s) — { .
Yn if s =352

1-27" ifex=a
2°™ ifx=»5

'yn:Act—>[0,l]:x>—>{
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Example: Markovian Randomized Scheduler

Assume C = (S, Act, R, AP, L).
® Markovian randomized scheduler:

I, ifse {So7 51} where

D:N x S — Distr(Act) : (n,s) — { .
Yn if s =352

1-27" ifex=a
2°™ ifx=»5

'yn:Act—>[0,l]:x>—>{
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Example: Markovian Randomized Scheduler

Assume C = (S, Act, R, AP, L).
® Markovian randomized scheduler:

D:N x S — Distr(Act) : (n,s) — {Ib if s € {s0, 51} where

Yn if s =352

1-27" ifex=a

n : Act 0,1] :
i Act > | ]IH{2" ifr=b

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs
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Example: The General Setting

CTMDP C and scheduler D do not induce a finite (or
countable) CTMC!

Example

Consider a timed-history dependent scheduler.
The states of its induced CTMC consist of the set of timed paths which is

uncountable.
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CTMDP Semantics

Semantics: Combined Transitions

Given w € Paths™, the probability to continue by ﬂla—’t> s depends on
e R(m|,a,s), the exponential distribution of CTMDP and

e D(7,a), the scheduler's decision.
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CTMDP Semantics

Semantics: Combined Transitions

Given w € Paths™, the probability to continue by ﬂla—’t> s depends on
e R(m|,a,s), the exponential distribution of CTMDP and

e D(7,a), the scheduler's decision.

Definition (Combined Transition)
Let @ = Act x R x S. Then (a,t,s) € Q2 is a combined transition.
e Fact X B(R) x §s is the class of and
o ¥ := J(SACt x B(R) x 33) is the over combined transitions.
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CTMDP Semantics

Semantics: Combined Transitions

Given w € Paths™, the probability to continue by ﬂla—’t> s depends on
e R(m|,a,s), the exponential distribution of CTMDP and

e D(7,a), the scheduler's decision.

Definition (Combined Transition)
Let @ = Act x R x S. Then (a,t,s) € Q2 is a combined transition.

e Fact X B(R) x §s is the class of and
° Fi= a(%ACt x B(R) x 33) is the over combined transitions.
Example

T is the class of measurable sets of combined transitions;
M € § is a set of combined transitions.
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CTMDP Semantics

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n, represented as a Cartesian product

SOXAOXIOXSIX"'XAn—lXIn—lXSn
— < _

My My_1
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CTMDP Semantics

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n, represented as a Cartesian product

SOXAOXIOXSIX"'XAn—lXIn—lXSn
— < _

My My_1

is called
e path rectangle iff Sy € S and M; < Q.
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CTMDP Semantics

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n, represented as a Cartesian product

SOXAOXIOXSIX"'XAn—lXIn—lXSn
— < ~ _
Mo My 1

is called
e path rectangle iff Sy € S and M; < Q.
e measurable path rectangle iff Sy € §s and M; € §.
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CTMDP Semantics

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles
A set of path of length n, represented as a Cartesian product

SOXAOXIOXSIX"'XAn—lXIn—lXSn
— < _

My My_1

is called

e path rectangle iff Sy € S and M; < Q.

e measurable path rectangle iff Sy € §s and M; € §.
Set of measurable path rectangles: §s x §"
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CTMDP Semantics

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles
A set of path of length n, represented as a Cartesian product

SOXAOXIOXSIX"'XAn—lXIn—lXSn
— < _

MO ]\[:,1
is called
° iff Sg € S and M; < Q.
° iff SO € 33 and ]\/[,; S 3

Set of measurable path rectangles: s x §"

Lemma
The class of finite disjoint unions of measurable rectangles is a field.
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CTMDP Semantics

Semantics: The Product o—Field

Finite Product o—Field over Measurable Path Rectangles
The smallest o—field generated by measurable path rectangles:

S Paths™ i= U(&s X 3”) for n > 0.
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CTMDP Semantics

Semantics: The Product o—Field

Finite Product o—Field over Measurable Path Rectangles
The smallest o—field generated by measurable path rectangles:

S Paths™ i= U(&s X 3”) for n > 0.

Example
Let S = {s0, 51}, Act = {a, b}.

o {so} x {a,b} x (0,0.2] U[1.2,2] x {s¢,s1} is a measurable rectangle.

3 a,0.1 a,0.1001 b,\2
Elements. S0 S0, S0 > 50, 89 —— S1, etc.
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CTMDP Semantics

Semantics: The Product o—Field

Finite Product o—Field over Measurable Path Rectangles
The smallest o—field generated by measurable path rectangles:

S Paths™ i= U(&s X 3”) for n > 0.

Example
Let S = {s0, 51}, Act = {a, b}.

o {so} x {a,b} x (0,0.2] U[1.2,2] x {s¢,s1} is a measurable rectangle.

3 a,0.1 a,0.1001 b,\2
Elements. S0 S0, S0 > 50, 89 —— S1, etc.

o ({s1hxdadx (0,0.2]x {2} ({51} < {a,b} x 0.3, 1] {s3}) € Fpoanet

btl

,0.1
Elements: s; 2% o, 51 —35 65, 5,

a,0.2 ”-L»,
> S2, S1 > 53, ete.
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CTMDP Semantics

Semantics: Cylinders and Infinite Paths |

Cylinder Set Construction
Let C™ € Paths™ be a set of finite paths. Its induced cylinder is

Cy, := {m € Paths® | v[0..n] € C"}

C™ is the cylinder base of C,,.
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CTMDP Semantics

Semantics: Cylinders and Infinite Paths |

Cylinder Set Construction
Let C™ € Paths™ be a set of finite paths. Its induced cylinder is

Cy, := {m € Paths® | v[0..n] € C"}

C™ is the cylinder base of C,,.
C,, is a measurable cylinder iff C™ € Fpatnsm.
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CTMDP Semantics

Semantics: Cylinders and Infinite Paths |

Cylinder Set Construction
Let C™ € Paths™ be a set of finite paths. Its induced cylinder is

Cy, := {m € Paths® | v[0..n] € C"}

C™ is the cylinder base of C,,.
C,, is a measurable cylinder iff C™ € Fpatnsm.

Properties of Cylinders

e Any cylinder C' can be represented by a finite cylinder base.
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CTMDP Semantics

Semantics: Cylinders and Infinite Paths |

Cylinder Set Construction
Let C™ € Paths™ be a set of finite paths. Its induced cylinder is

Cy, := {m € Paths® | v[0..n] € C"}

C™ is the cylinder base of C,,.
C,, is a measurable cylinder iff C™ € Fpatnsm.

Properties of Cylinders

e Any cylinder C' can be represented by a finite cylinder base.
e lfm<nand C™ =C" x Q" ™, then C,, = C),.
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CTMDP Semantics

Semantics: Cylinders and Infinite Paths Il

Definition (o—Field generated by Measurable Cylinders)

The minimal o—field generated by measurable cylinders is defined by
S Paths® = U(&S X 300) or equivalently

©
gPaths“’ = J( {Cn | C"e gPaths"})-
1=0

Finally: (Paths®,§ pans~) is our measurable space.
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CTMDP Semantics

Semantics: Combined Transition Probability

Product Measure on Combined Transitions
For history m € Paths™, three types of measure spaces are involved:

® (Act, Fact, D(7))
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CTMDP Semantics

Semantics: Combined Transition Probability

Product Measure on Combined Transitions
For history m € Paths™, three types of measure spaces are involved:

@ (Act, Fact, D())
(2] (]R>o,%(]R>o) Ila) Where
pia's distribution: F(z) = §J E(m |, a) E(nla)t g
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CTMDP Semantics

Semantics: Combined Transition Probability

Product Measure on Combined Transitions
For history m € Paths™, three types of measure spaces are involved:

@ (Act, Fact, D())
(2] (]R>o,%(]R>o) Ila) Where
pia's distribution: F(z) = §J E(m |, a) E(nla)t g

® (S.Ts,P(rl,a)).
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CTMDP Semantics

Semantics: Combined Transition Probability

Product Measure on Combined Transitions
For history m € Paths™, three types of measure spaces are involved:

@ (Act, Fact, D())
(2] (]R>o,%(]R>o) Ila) Where
pia's distribution: F(z) = §J E(m |, a) E(nla)t g

® (S.Ts,P(rl,a)).

Definition (A Measure on Subsets of )
Let m € Paths*. Then

pp(m,-) : §—[0,1] :
indicator

—
M — D(?T,dd)f Mg (dt) L Iy(a,t,s) P(rwl,a,ds).

Act Rx>o
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CTMDP Semantics

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)
Let m € Paths*. Let AxIxS" e §, I an interval. Then

yp(m, Ax1xS') = 3 Dix, a}) - P(r,a, ) - f E(r},a) - e Pty
acA

Intuition
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CTMDP Semantics

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)
Let m € Paths*. Let AxIxS" e §, I an interval. Then

pp(m, AxIxS') = 3 D(r, {a}) - P(r ,a, ) - f E(r},a) - e Pty
acA

Intuition

D(m, {a}): probability to leave 7| via action a

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 43 /1



CTMDP Semantics

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)
Let m € Paths*. Let AxIxS" e §, I an interval. Then

pp(m, AxIxS") = Y D(m,{a}) - P(r |, a5 f E(rl,a)- e Bt
acA I

Intuition

e D(m,{a}): probability to leave 7| via action a

e P(7 ], a,5"): probability for a—successor in S’
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CTMDP Semantics

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)
Let m € Paths*. Let AxIxS" e §, I an interval. Then

pp(m, AxIxS") Zp A{a}) P(ﬂ,.u.b”‘;'J E(rl,a)-e E(nl,a)t gy
aeA I

Intuition

D(m,{a}): probability to leave 7 | via action a
e P(r],a,9): probab|l|ty for a—successor in S’
o §,E(r],a) e Ehatdt: probability to leave | within I.
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CTMDP Semantics

Semantics: Combined Transition Probability

Lemma (Measurability of pp)
For fixed M € § and finite path—length n:

pp (-, M) : (Paths”™, S pamsn) — (R, B(R))

Measurability necessary for Lebesgue—integration.
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CTMDP Semantics
Semantics: Probability Measures on § puss*
Definition (Probability Measures on § pains+)

Let (S, Act,R,AP,L) be a CTMDP, « an initial distribution and D a
THR scheduler.
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CTMDP Semantics

Semantics: Probability Measures on § puss*

Definition (Probability Measures on § pasns+)

Let (S, Act,R,AP,L) be a CTMDP, « an initial distribution and D a
THR scheduler. Define inductively

Prgp :8s — [0,1] 1S — Z a(s)

ses
Prg,’p : S pathsm — [0, 1] :

—
HH_[ Privs(d )f I (mom) pp(r,dm).
’ Q
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CTMDP Semantics

Semantics: Probability Measures on § puss*

Definition (Probability Measures on § pasns+)

Let (S, Act,R,AP,L) be a CTMDP, « an initial distribution and D a
THR scheduler. Define inductively

Prgp :8s — [0,1] :5 — Z a(s)

SeS
Prg,’p : S Paths™ — [07 1] :

—
HH_[ Privs(d )f I (mom) pp(r,dm).
’ Q

Remarks:
e m € () ranges over combined transitions.
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CTMDP Semantics

Semantics: Probability Measures on § puss*

Definition (Probability Measures on § pasns+)

Let (S, Act,R,AP,L) be a CTMDP, « an initial distribution and D a
THR scheduler. Define inductively

Prgp :8s — [0,1] 1S — Z a(s)

SES
Prg,’p : S pathsm — [0, 1] :
n—1
M- Privp (dn) \ I (mom) pp(r,dm).

Remarks:

e m € () ranges over combined transitions.

o If 1= and m = (a,t,s), then

om = LAY
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CTMDP Semantics

Intuition: Probability of Rectangles

Example (Probability of Rectangles)
For measurable rectangle [l x M € §pains», We obtain

Prip(1l x M) = fﬁ pp (7, M) Privp (dr)
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CTMDP Semantics

Intuition: Probability of Rectangles

Example (Probability of Rectangles)
For measurable rectangle [l x M € §pains», We obtain

Prip(1l x M) = f pp (7, M) Privp (dr)
11
where

up(m, M) = D(ﬁ,da)J

na(df) f Ty(at,s) P(r |, a,ds).
Act Rx>o SSY—n—

indicator
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CTMDP Semantics

Intuition: Probability of Rectangles

Example (Probability of Rectangles)
For measurable rectangle [l x M € §pains», We obtain

Prip(1l x M) = fﬁ pp (7, M) Privp (dr)

where
ol 00) = [ Dda) [ ) [ Lu(ats) PO ads),
Act Rx>o SSY—n—
indicator
Intuition:

o [1 € §pynsn—1 is @ measurable set of paths,
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CTMDP Semantics

Intuition: Probability of Rectangles

Example (Probability of Rectangles)
For measurable rectangle [l x M € §pains», We obtain

Pri (11 x M) :f pp (7, M) Privp (dr)

where
ol 00) = [ Dda) [ ) [ Lu(ats) PO ads),
Act Rx>o SSY—n—
Intuition:

o [1 € §pynsn—1 is @ measurable set of paths,
o M € § is a set of combined transitions (e.g. M = AxIxS").
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CTMDP Semantics

Semantics: Probability of Measurable Cylinders

A Probability Measure on § pains«

Any measurable cylinder C' can be represented as
C = {m € Paths” | w[0..n] € C"} for some n = 0 and C™ € Fpathsn-

Define the probability measure on measurable cylinders:

Prg p : S pathse — [0,1] : Cp = Prg p(C™)
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CTMDP Semantics

Semantics: Probability of Measurable Cylinders
A Probability Measure on § pains«
Any measurable cylinder C' can be represented as
C = {m € Paths” | w[0..n] € C"} for some n = 0 and C™ € Fpathsn-
Define the probability measure on measurable cylinders:
Prg p : S pathse — [0,1] : Cp = Prg p(C™)

Theorem (lonescu—Tulcea)

Prg p is well-defined and unique.
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CTMDP Semantics

Semantics: Probability of Measurable Cylinders
A Probability Measure on § pains«
Any measurable cylinder C' can be represented as

C = {m € Paths” | w[0..n] € C"} for some n = 0 and C™ € Fpathsn-

Define the probability measure on measurable cylinders:

Prg p : S pathse — [0,1] : Cp = Prg p(C™)

Theorem (lonescu—Tulcea)

Prg p is well-defined and unique.

Finally: (Paths“’,spathsw, Prg,p) is the desired probability space.

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 47 /1



The Logic nCSL

nondeterministic Continuous Stochastic Logic (nCSL).
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Zeno Behaviour

Definition (Zeno Path)
Let C = (S, Act,R,AP,L) be a CTMDP and

ag,to ai,ty az,t2
T=8) — §] —— §9 ——

7 is a zeno path iff the sequence > t; is convergent.
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Zeno Behaviour

Definition (Zeno Path)
Let C = (S, Act,R,AP,L) be a CTMDP and

ag,to a1ty a2,t2
T=8) —— 8§ —— Sy ——
mis a iff the sequence > " t; is convergent.

Lemma (Converging Paths Lemma)

The probability measure of the set of converging paths is zero.
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Zeno Behaviour

Definition (Zeno Path)
Let C = (S, Act,R,AP,L) be a CTMDP and

ao,to ai,ty az,t2
T=8) — §] —— §9 ——

mis a iff the sequence > " t; is convergent.

Lemma (Converging Paths Lemma)

The probability measure of the set of converging paths is zero.

Example (What is it good for?)
For any 7 € Paths® and t € Rxq, 7@t is well-defined.
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Syntex
Syntax of nCSL

Two kinds of property specifications:
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Syntex
Syntax of nCSL

Two kinds of property specifications:

Example (Transient State Measures)

Given an initial distribution, what is the possibility to reach an error state
within the first ¢ time units?
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Syntex
Syntax of nCSL

Two kinds of property specifications:

Example (Transient State Measures)

Given an initial distribution, what is the possibility to reach an error state
within the first ¢ time units?

Example (Long Run Average Behaviour)

Average time spent in a blocking state.
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Syntex
Syntax of nCSL

Definition (nCSL Formulae)

For a € AP, pe [0,1] and Ce {<, <, >, >}, nCSL state—formulas are
built according to the following context—free grammar:

Ou=a| -0 |DAD|IPp LD
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Syntex
Syntax of nCSL

Definition (nCSL Formulae)

For a € AP, pe [0,1] and Ce {<, <, >, >}, nCSL state—formulas are
built according to the following context—free grammar:

Ou=a| -0 |DAD|IPp LD
For I < R a nonempty interval, nCSL path—formulas are defined by

= Xo|oUld
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL |

Definition (Semantics of State Formulae)
Let C = (S, Act, R, AP, L). Define

skEa<ael(s)
sE-® < notsk=9®
sSEPAV— sE=DPands =T
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Path Formulae

Definition (Semantics of Path Formulae)

For time—interval I € R and state formulas ® and W, define:

X0 = [l E® A d(r,0) el

TEOUT = tel. (7Qt =V A (V€ [0,t). 7Qt = ®)).
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Transient State Measures

Definition (Transient State Formulae)

For probability bound p € [0, 1], comparison operator E and path formula
, the transient state semantics is given by

s 3o <= 3D € THR. Prp {m € Paths* |7 = o} Sp
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Transient State Measures

Definition (Transient State Formulae)

For probability bound p € [0, 1], comparison operator E and path formula
, the transient state semantics is given by

s 3o <= 3D € THR. Prp {m € Paths* |7 = o} Sp

Lemma (Measurability of Satisfying Paths)
For arbitrary path formula p:

{m € Paths” | m = ¢} € Fpaths-
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour |

Preliminaries
For CTMDP C = (S, Act, R, AP, L), state s and state-formula ®:

What is the average amount of time spent in ®—states?
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour |

Preliminaries
For CTMDP C = (S, Act, R, AP, L), state s and state-formula ®:

What is the average amount of time spent in ®—states?

Definition (state indicator)
Let S < S andt e Rxg. Then

1 ifr@Qte S

hsy : Paths® — {0,1} : m —
St 0.1} {0 otherwise
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour |

Preliminaries
For CTMDP C = (S, Act, R, AP, L), state s and state-formula ®:

What is the average amount of time spent in ®—states?

Definition (state indicator)
Let S < S andt e Rxg. Then

1 ifr@Qte S

hsy : Paths® — {0,1} : m —
St 0.1} {0 otherwise

Intuition: Does 7 occupy a state from S at time—point ¢?

Lemma
The function hg; is measurable relative to (Paths®,§ pahs= ).
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour Il

Deduction of Long Run Average Behaviour

The fraction of time spent in S—states on path 7 € Paths®“:

1 t
gst : Paths” — [0,1] : 7 — ;j hgy(m) dt'.
0
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour Il

Deduction of Long Run Average Behaviour
The fraction of time spent in S—states on path 7 € Paths®“:

1 t
gst : Paths” — [0,1] : 7 — ;j hgy(m) dt'.
0

Lemma
gs,t is measurable in (Paths”,§ pans~) and a random variable.
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour Il

Deduction of Long Run Average Behaviour
The fraction of time spent in S—states on path 7 € Paths®“:

1 t
gst : Paths” — [0,1] : 7 — ;j hgy(m) dt'.
0

Lemma
gs,t is measurable in (Paths”,§ pans~) and a random variable.

Definition (Expectation)
Take the expectation gg; over m € Paths®:

Elgsy) = f 95.4(m) Pr p(dr).
Paths®
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour Il

Definition (Long Run Average Formulae)

For fraction p € [0, 1], comparison operator E and state formula ®,
the long—run average semantics is defined by:

1 t
s L& <= VD e THR. lim (; f hSat(fb),t’(W)dt,) dPrg,p Ep
Paths® 0

t—o0
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour Il

Definition (Long Run Average Formulae)

For fraction p € [0, 1], comparison operator E and state formula ®,
the long—run average semantics is defined by:

t—o0

1 t
s L& <= VD e THR. lim (; f hSat(fb),t’(W)dt,) dPrg,p Ep
Paths® 0

Example
For CTMDP C with initial state s where r € AP labels all . The property

“99% of the time, the system directly reacts on input”
can be checked by the following nCSL—formula:
_ | >0.99,.

5 |
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Ongoing Work

@ Complete measurability issues in nCSL-semantics

Measurability of U! subformulas.

@ Are all nCSL—formulas preserved under strong bisimulation?
Provide the proof.

©® Which nCSL—restrictions are preserved under strong simulation?

Define strong simulation on CTMDP, find appropriate restriction of nCSL

Martin NeuhauBer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 58 /1



Future Work

Thank you for your attention!
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