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Introduction to Measure Theory Basic Definitions

Measure Theory

Our Setting

Assume a set Ω, called sample space.
Subsets A of Ω are called events.
Idea: Measure the tsize | probability | volume | lengthu of events!

Intuition: Let ω P Ω be the outcome of an experiment.
Then A is an event if ω P A can be decided.
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Introduction to Measure Theory Basic Definitions

Fields and σ–fields

Definition (Field)

A class of subsets F of Ω is a field iff

1 Ω P F.

2 A P F ñ Ac P F.

3 A1, . . . , An P F ùñ �n
i=1 Ai P F

where n P N
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A class of subsets F of Ω is a field iff

1 Ω P F.

2 A P F ñ Ac P F.

3 A1, . . . , An P F ùñ �n
i=1 Ai P F

where n P N
Definition (σ–Field)

F is a σ–field iff it is closed under countable union:

A1, A2, � � � P F ñ 8¤
i=1

Ai P F
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Introduction to Measure Theory Basic Definitions

Fields and σ–fields

Definition (Field)

A class of subsets F of Ω is a field iff

1 Ω P F.

2 A P F ñ Ac P F.

3 A1, . . . , An P F ùñ �n
i=1 Ai P F

where n P N
Definition (σ–Field)

F is a σ–field iff it is closed under countable union:

A1, A2, � � � P F ñ 8¤
i=1

Ai P F

Let C � 2Ω. σpCq denotes the smallest σ–field containing C.
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Introduction to Measure Theory Basic Definitions

Example: The Borel σ–field

Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and
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Example: The Borel σ–field

Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and

• pa,+8q where −8 ¤ a < +8.

Finite Disjoint Unions

Define the class of finite disjoint unions of right–semiclosed intervals:

F0pRq := tI1 Z I2 Z � � � Z In | n P Nu .
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Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and

• pa,+8q where −8 ¤ a < +8.

Finite Disjoint Unions

Define the class of finite disjoint unions of right–semiclosed intervals:

F0pRq := tI1 Z I2 Z � � � Z In | n P Nu .
Verify the properties of a field:

1 R = p−8,+8q P F0pRq.
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• pa,+8q where −8 ¤ a < +8.

Finite Disjoint Unions

Define the class of finite disjoint unions of right–semiclosed intervals:

F0pRq := tI1 Z I2 Z � � � Z In | n P Nu .
Verify the properties of a field:

1 R = p−8,+8q P F0pRq.
2 I1 Z � � � Z In P F0pRq ñ pI1 Z � � � Z Inqc P F0pRq.
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Example: The Borel σ–field

Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and

• pa,+8q where −8 ¤ a < +8.

Finite Disjoint Unions

Define the class of finite disjoint unions of right–semiclosed intervals:

F0pRq := tI1 Z I2 Z � � � Z In | n P Nu .
Verify the properties of a field:

1 R = p−8,+8q P F0pRq.
2 I1 Z � � � Z In P F0pRq ñ pI1 Z � � � Z Inqc P F0pRq.
3 If I1 Z � � � Z In P F0pRq and J1 Z � � � Z Jn P F0pRq

then pI1 Z � � � Z Inq Y pJ1 Z � � � Z Jnq P F0pRq.
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Introduction to Measure Theory Basic Definitions

Example: The Borel σ–field

Define right–semiclosed intervals to be

• pa, bs where −8 ¤ a < b < +8 and

• pa,+8q where −8 ¤ a < +8.

Finite Disjoint Unions

Define the class of finite disjoint unions of right–semiclosed intervals:

F0pRq := tI1 Z I2 Z � � � Z In | n P Nu .
Verify the properties of a field:

1 R = p−8,+8q P F0pRq.
2 I1 Z � � � Z In P F0pRq ñ pI1 Z � � � Z Inqc P F0pRq.
3 If I1 Z � � � Z In P F0pRq and J1 Z � � � Z Jn P F0pRq

then pI1 Z � � � Z Inq Y pJ1 Z � � � Z Jnq P F0pRq. F0pRq is a field.
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Introduction to Measure Theory Basic Definitions

Example: The Borel σ–field

Borel σ–field
Let E = tpa, bs | a, b P R and a < bu and
let σpEq denote the smallest σ–field containing E .
Then BpRq = σpEq is the Borel σ–field.
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Example: The Borel σ–field

Borel σ–field
Let E = tpa, bs | a, b P R and a < bu and
let σpEq denote the smallest σ–field containing E .
Then BpRq = σpEq is the Borel σ–field.

Example

BpRq has many generators:

• F0pRq, the set of finite disjoint unions of right–semiclosed intervals,

• E 1 = tra, bs | a, b P R and a < bu,
• E2 = tp−8, bs | b P Ru, . . .
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Example: The Borel σ–field

Borel σ–field
Let E = tpa, bs | a, b P R and a < bu and
let σpEq denote the smallest σ–field containing E .
Then BpRq = σpEq is the Borel σ–field.

Example

BpRq has many generators:

• F0pRq, the set of finite disjoint unions of right–semiclosed intervals,

• E 1 = tra, bs | a, b P R and a < bu,
• E2 = tp−8, bs | b P Ru, . . .

Intuition: Construct σ–field by forming countable unions and complements
of intervals in all possible ways.
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Introduction to Measure Theory Measures

Measures

Intuition
Measure the “size” of sets in σ–field F.
Notions of length, volume or probability.
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Measures

Intuition
Measure the “size” of sets in σ–field F.
Notions of length, volume or probability.

Definition (Measure)

Let F be a σ–field over subsets of Ω. A measure is a function

µ : FÑ R̄¥0 where R̄ := RY t−8,+8u
which is countably additive:

µ
� 8¤
i=1

Ai

�
=

8̧
i=1

µpAiq for disjoint sets Ai P F.
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Measures

Intuition
Measure the “size” of sets in σ–field F.
Notions of length, volume or probability.

Definition (Measure)

Let F be a σ–field over subsets of Ω. A measure is a function

µ : FÑ R̄¥0 where R̄ := RY t−8,+8u
which is countably additive:

µ
� 8¤
i=1

Ai

�
=

8̧
i=1

µpAiq for disjoint sets Ai P F.

Remark: If µpΩq = 1, µ is a probability measure.
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Introduction to Measure Theory Measures

Example: A Measure on BpRq
The size of intervals
Given interval pa, bs, a < b P R. Define its “length” as follows:

µpa, bs = b − a
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Example: A Measure on BpRq
The size of intervals
Given interval pa, bs, a < b P R. Define its “length” as follows:

µpa, bs = b − a

Sizes on the field F0pRq
On the set of finite disjoint unions of right–semiclosed intervals:
Let I1 Z � � � Z In P F0pRq. Extend µ to F0pRq by defining

µpI1 Z � � � Z Inq =

ņ

i=1

µpIiq
Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 7 / 1



Introduction to Measure Theory Measures

Example: A Measure on BpRq
The size of intervals
Given interval pa, bs, a < b P R. Define its “length” as follows:

µpa, bs = b − a

Sizes on the field F0pRq
On the set of finite disjoint unions of right–semiclosed intervals:
Let I1 Z � � � Z In P F0pRq. Extend µ to F0pRq by defining

µpI1 Z � � � Z Inq =

ņ

i=1

µpIiq
But: What about µpAq for arbitrary A P BpRq?
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Introduction to Measure Theory Measures

Extension of Measures

Motivation
Define countably additive set function µ on a field F0.
Then extend it to the σ–field by magic.
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Extension of Measures

Motivation
Define countably additive set function µ on a field F0.
Then extend it to the σ–field by magic.

Theorem (Carathéodory Extension Theorem)

Let F0 be a field over subsets of a set Ω and let µ be a measure on F0.
If µ is σ–finite, i.e.

Ω =

8¤
i=1

Ai where Ai P F0 and µpAiq < 8,

then µ has a unique extension to σpF0q.
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Introduction to Measure Theory Measures

Extension of Measures

Motivation
Define countably additive set function µ on a field F0.
Then extend it to the σ–field by magic.

Theorem (Carathéodory Extension Theorem)

Let F0 be a field over subsets of a set Ω and let µ be a measure on F0.
If µ is σ–finite, i.e.

Ω =

8¤
i=1

Ai where Ai P F0 and µpAiq < 8,

then µ has a unique extension to σpF0q.
In practice: Avoid the σ–field whenever possible!
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Introduction to Measure Theory Measures

There’s Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” µ on subclasses of BpRq:
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j=1 µpIjq for finite disjoint unions
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There’s Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” µ on subclasses of BpRq:
1 µpa, bs = b − a for right–semiclosed intervals

2 µpI1 Z I2 Z � � � Z Inq =
°n

j=1 µpIjq for finite disjoint unions

3 But: For the extension from F0pRq to BpRq by Carathéodory:

µp 8¤
j=1

Ajq =

8̧
j=1

µpAjq
where A1, A2, � � � P F0pRq, �8j=1

Aj P F0 and the Aj disjoint.

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 9 / 1



Introduction to Measure Theory Measures

There’s Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” µ on subclasses of BpRq:
1 µpa, bs = b − a for right–semiclosed intervals

2 µpI1 Z I2 Z � � � Z Inq =
°n

j=1 µpIjq for finite disjoint unions

3 But: For the extension from F0pRq to BpRq by Carathéodory:

µp 8¤
j=1

Ajq =

8̧
j=1

µpAjq
where A1, A2, � � � P F0pRq, �8j=1

Aj P F0 and the Aj disjoint.

Theorem
Let F : RÑ R be a distrib. function. Let µpa, bs := F pbq− F paq.
There is a unique extension of µ to a Lebesgue–Stieltjes measure on R.

Thus: Countable additivity of µ follows by defining F pxq := x.
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Introduction to Measure Theory Lebesgue Integration

Lebesgue’s Intuition

Lebesgue about his integral
“One might say that Riemann’s approach is comparable to a messy merchant
who counts coins in the order they come to his hand whereas we act like a
prudent merchant who says:

• I have A1 coins à one crown, that is A1 � 1 crowns,

• A2 coins à two crowns, that is A2 � 2 crowns and

• A3 coins à five crowns, that is A3 � 5 crowns.

Therefore I have A1 � 1 + A2 � 2 + A3 � 5 crowns.

Both approaches – no matter how rich the merchant might be – lead to the
same result since he only has to count a finite number of coins.
But for us who must add infinitely many indivisibles, the difference between
the approaches is essential.”

H.Lebesgue, 1926
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Introduction to Measure Theory Lebesgue Integration

Measurability

Definition (Measurability)

Let Ω1,Ω2 be sets with associated σ–fields F1 and F2.
h : Ω1 Ñ Ω2 is measurable iff

h−1pAq P F1 for each A P F2

Notation: h : pΩ1,F1q Ñ pΩ2,F2q.
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Let Ω1,Ω2 be sets with associated σ–fields F1 and F2.
h : Ω1 Ñ Ω2 is measurable iff

h−1pAq P F1 for each A P F2

Notation: h : pΩ1,F1q Ñ pΩ2,F2q.
Some remarks:

• h is Borel measurable if h : pΩ,Fq Ñ pR̄,BpR̄qq.
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Introduction to Measure Theory Lebesgue Integration

Measurability

Definition (Measurability)

Let Ω1,Ω2 be sets with associated σ–fields F1 and F2.
h : Ω1 Ñ Ω2 is measurable iff

h−1pAq P F1 for each A P F2

Notation: h : pΩ1,F1q Ñ pΩ2,F2q.
Some remarks:

• h is Borel measurable if h : pΩ,Fq Ñ pR̄,BpR̄qq.
• In probability theory, h is called a random variable.
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Introduction to Measure Theory Lebesgue Integration

Simple Functions

Definition (Simple Functions)

Let h : Ω Ñ R̄. h is simple iff

1 h is measurable and

2 takes on only finitely many values.
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Introduction to Measure Theory Lebesgue Integration

Simple Functions

Definition (Simple Functions)

Let h : Ω Ñ R̄. h is simple iff

1 h is measurable and

2 takes on only finitely many values.

If h is a simple function, it can be represented as

hpωq :=

ņ

i=1

xi � IAi
pωq

where Ai P F are pairwisely disjoint.

IAi
denotes the indicator function IAi

pωq :=

#
1 if ω P Ai

0 otherwise
.

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 12 / 1



Introduction to Measure Theory Lebesgue Integration

Simple Functions

Definition (Simple Functions)

Let h : Ω Ñ R̄. h is simple iff

1 h is measurable and

2 takes on only finitely many values.

If h is a simple function, it can be represented as

hpωq :=

ņ

i=1

xi � IAi
pωq

where Ai P F are pairwisely disjoint.

IAi
denotes the indicator function IAi

pωq :=

#
1 if ω P Ai

0 otherwise
.

Intuition: Choose Ai as the preimage of xi!
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Introduction to Measure Theory Lebesgue Integration

Lebesgue Integral

Definition (Lebesgue Integral for Simple Functions)

Let pΩ,F, µq be a measure space, h : ΩÑ R̄ simple:

hpωq :=

ņ

i=1

xi � IAi
pωq where the Ai are disjoint sets in F.
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Introduction to Measure Theory Lebesgue Integration

Lebesgue Integral

Definition (Lebesgue Integral for Simple Functions)

Let pΩ,F, µq be a measure space, h : ΩÑ R̄ simple:

hpωq :=

ņ

i=1

xi � IAi
pωq where the Ai are disjoint sets in F.

The Lebesgue–integral of h is defined as»
Ω

h dµ :=

ņ

i=1

xi � µpAiq.
Intuition: Multiply each xi with the measure of its preimage Ai.
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Introduction to Measure Theory Lebesgue Integration

Example: Lebesgue Integral

µpA3q = µpµpA1q = µp
µpA2q = µp
µpA4q = µp qqqq

x3

x2

x1

x4

hpωq
hpωq=x1 hpωq=x3 hpωq=x4

hpωq=x1hpωq=x3 =x2

Ω
hpωq
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Introduction to Measure Theory Lebesgue Integration

Example: Lebesgue Integral

x3

x2

x1

x4

hpωq
Ω³

Ω
h dµ = x1µpA1q + x2µpA2q + x3µpA3q
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Introduction to Measure Theory Lebesgue Integration

Example: Riemann (Darboux) Integral

x3

x2

x1

x4

hpωq
Ω

dx
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Introduction to Measure Theory Lebesgue Integration

Lebesgue Integral on Nonnegative Functions

Definition
If h is nonnegative Borel measurable, then»

Ω

h dµ := sup

"»
Ω

s dµ | s is simple and 0 ¤ s ¤ h

*
.

Theorem
A nonnegative Borel measurable function h is the limit of an increasing
sequence of nonnegative simple functions hn.
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Example: Lebesgue Integral

hpωq
R

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 18 / 1



Introduction to Measure Theory Lebesgue Integration

Example: Lebesgue Integral

hpωq
R
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Example: Lebesgue Integral

hpωq
R
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Introduction to Measure Theory Measures on Product Spaces

Finite Product Spaces

Definition (Product Space)

Let pΩj,Fjq be a measurable space, j = 1, . . . , n. Then
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Finite Product Spaces

Definition (Product Space)

Let pΩj,Fjq be a measurable space, j = 1, . . . , n. Then
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• A = A1 �A2 � � � � �An is a measurable rectangle if Aj P Fj.

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 21 / 1



Introduction to Measure Theory Measures on Product Spaces

Finite Product Spaces

Definition (Product Space)

Let pΩj,Fjq be a measurable space, j = 1, . . . , n. Then

• Ω = Ω1 � � � � � Ωn

• A = A1 �A2 � � � � �An is a measurable rectangle if Aj P Fj.

• The set of measurable rectangles is denoted
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Introduction to Measure Theory Measures on Product Spaces

Finite Product Spaces

Definition (Product Space)

Let pΩj,Fjq be a measurable space, j = 1, . . . , n. Then

• Ω = Ω1 � � � � � Ωn

• A = A1 �A2 � � � � �An is a measurable rectangle if Aj P Fj.

• The set of measurable rectangles is denoted

F1 � F2 � � � � � Fn.

• The product σ–field F is the smallest σ–field containing all
measurable rectangles:

F := σ
�
F1 � F2 � � � � � Fn
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two σ–fields!

Preparation

Let pΩ1,F1, µ1q be a measure space, µ1 σ–finite on F1.
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Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 22 / 1



Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two σ–fields!

Preparation

Let pΩ1,F1, µ1q be a measure space, µ1 σ–finite on F1.
Further let F2 be a σ–field over subsets of Ω2.
Assume that for each ω1 P Ω1 we have a function

µpω1, �q : F2 Ñ R̄
which is
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Further let F2 be a σ–field over subsets of Ω2.
Assume that for each ω1 P Ω1 we have a function

µpω1, �q : F2 Ñ R̄
which is

1 a measure on F2,

2 Borel measurable in ω1 and
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

To start with: Only products of two σ–fields!

Preparation

Let pΩ1,F1, µ1q be a measure space, µ1 σ–finite on F1.
Further let F2 be a σ–field over subsets of Ω2.
Assume that for each ω1 P Ω1 we have a function

µpω1, �q : F2 Ñ R̄
which is

1 a measure on F2,

2 Borel measurable in ω1 and

3 uniformly σ–finite:
Ω2 =

�8
n=1 Bn where µpω1, Bnq ¤ kn for all ω1 and fixed kn P R.

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 22 / 1



Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given pΩ1,F1, µ1q, pΩ2,F2q and µpω1, �q as before.
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Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given pΩ1,F1, µ1q, pΩ2,F2q and µpω1, �q as before.
There is a unique measure µ on F such that on F1 � F2:

µpA�Bq =

»
A

µpω1, Bq µ1pdω1q.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given pΩ1,F1, µ1q, pΩ2,F2q and µpω1, �q as before.
There is a unique measure µ on F such that on F1 � F2:

µpA�Bq =

»
A

µpω1, Bq µ1pdω1q.
µ is defined (now on the entire σ–field) as follows:

µpF q :=

»
Ω1

µpω1, F pω1qq µ1pdω1q, for all F P F

where F pω1q := tω2 | pω1, ω2q P F u.
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Introduction to Measure Theory Measures on Product Spaces

Lebesgue Integrals on Finite Product Spaces

Theorem (Fubini’s Theorem)

Let f : pΩ,Fq Ñ pR̄,BpR̄qq. If f is nonnegative, then»
Ω2

fpω1, ω2q µpω1, dω2q
exists and defines a Borel measurable function.
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Introduction to Measure Theory Measures on Product Spaces

Lebesgue Integrals on Finite Product Spaces

Theorem (Fubini’s Theorem)

Let f : pΩ,Fq Ñ pR̄,BpR̄qq. If f is nonnegative, then»
Ω2

fpω1, ω2q µpω1, dω2q
exists and defines a Borel measurable function. Also»

Ω

f dµ =

»
Ω1

�»
Ω2

fpω1, ω2q µpω1, dω2q	µ1pdω1q.
Justification of iterated integration!
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two σ–fields!

Preparation

Let Fj be a σ–field of subsets of Ωj, j = 1, . . . , n.
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Now, consider products of more than two σ–fields!

Preparation

Let Fj be a σ–field of subsets of Ωj, j = 1, . . . , n.
Let µ1 be a σ–finite measure on F1 and
assume that for each pω1, . . . , ωjq we have a function

µpω1, ω2, . . . , ωj, �q : Fj+1 Ñ R̄
which is

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 25 / 1



Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two σ–fields!

Preparation

Let Fj be a σ–field of subsets of Ωj, j = 1, . . . , n.
Let µ1 be a σ–finite measure on F1 and
assume that for each pω1, . . . , ωjq we have a function

µpω1, ω2, . . . , ωj, �q : Fj+1 Ñ R̄
which is
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Introduction to Measure Theory Measures on Product Spaces

Extension to Larger Product Spaces

Now, consider products of more than two σ–fields!

Preparation

Let Fj be a σ–field of subsets of Ωj, j = 1, . . . , n.
Let µ1 be a σ–finite measure on F1 and
assume that for each pω1, . . . , ωjq we have a function

µpω1, ω2, . . . , ωj, �q : Fj+1 Ñ R̄
which is

1 a measure on Fj+1 and

2 is measurable, i.e. for all fixed C P Fj+1:

µpω1, . . . , ωj, Cq :
�
Ω1 � � � � � Ωj, σpF1 � � � � � Fjq�Ñ �R̄,BpR̄q�

3 uniformly σ–finite.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

There is a unique measure µ on F such that on F1 � � � � � Fn:

µpA1 � � � � �Anq =

»
A1

µ1pdω1q »
A2

µpω1, dω2q� � � »
An−1

µpω1, . . . , ωn−2, dωn−1q »
An

µpω1, . . . , ωn−1, dωnq.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

There is a unique measure µ on F such that on F1 � � � � � Fn:

µpA1 � � � � �Anq =

»
A1

µ1pdω1q »
A2

µpω1, dω2q� � � »
An−1

µpω1, . . . , ωn−2, dωn−1q »
An

µpω1, . . . , ωn−1, dωnq.
Let f : pΩ,Fq Ñ pR̄,BpR̄qq. If f ¥ 0, then»

Ω

f dµ =

»
Ω1

µ1pdω1q »
Ω2

µpω1, dω2q� � � »
Ωn

fpω1, . . . , ωnq µpω1, . . . , ωn−1, dωnq.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let pΩj,Fjq be a measurable space, j = 1, 2, . . . .
Let Ω =

�8
j=1 Ωj . If Bn � Ω1 � � � � � Ωn, define

Bn := tω P Ω | pω1, ω2, . . . , ωnq P Bnu .
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Let Ω =

�8
j=1 Ωj . If Bn � Ω1 � � � � � Ωn, define

Bn := tω P Ω | pω1, ω2, . . . , ωnq P Bnu .
Bn is called cylinder with base Bn.
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Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let pΩj,Fjq be a measurable space, j = 1, 2, . . . .
Let Ω =

�8
j=1 Ωj . If Bn � Ω1 � � � � � Ωn, define

Bn := tω P Ω | pω1, ω2, . . . , ωnq P Bnu .
Bn is called cylinder with base Bn.

• Bn is measurable if Bn P σpF1 � � � � � Fnq.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let pΩj,Fjq be a measurable space, j = 1, 2, . . . .
Let Ω =

�8
j=1 Ωj . If Bn � Ω1 � � � � � Ωn, define

Bn := tω P Ω | pω1, ω2, . . . , ωnq P Bnu .
Bn is called cylinder with base Bn.

• Bn is measurable if Bn P σpF1 � � � � � Fnq.
• Bn is a rectangle if Bn = A1 � � � � �An and Aj � Ωj;

Bn is a measurable rectangle if Aj P Fj.
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Ionescu–Tulcea Theorem
Let P1 be a probability measure on F1 and for each pω1, . . . , ωjq, j P N,
assume a measurable probability measure P pω1, . . . , ωj, �q on Fj+1.

Let Pn be defined on σpF1 � � � � � Fnq:
PnpF q =

»
Ω1

P1pdω1q »
Ω2

P pω1, dω2q � � � »
Ωn

IF pω1, . . . , ωnq P pω1, . . . , ωn−1, dωnq.
Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 28 / 1



Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Ionescu–Tulcea Theorem
Let P1 be a probability measure on F1 and for each pω1, . . . , ωjq, j P N,
assume a measurable probability measure P pω1, . . . , ωj, �q on Fj+1.

Let Pn be defined on σpF1 � � � � � Fnq:
PnpF q =

»
Ω1

P1pdω1q »
Ω2

P pω1, dω2q � � � »
Ωn

IF pω1, . . . , ωnq P pω1, . . . , ωn−1, dωnq.
There is a unique prob. measure P on σ

��8
j=1 Fj

	
such that for all n:

P tω P Ω | pω1, . . . , ωnq P Bnu = PnpBnq
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Introduction to Measure Theory Measures on Product Spaces

Measures on Infinite Product Spaces

Ionescu–Tulcea Theorem
Let P1 be a probability measure on F1 and for each pω1, . . . , ωjq, j P N,
assume a measurable probability measure P pω1, . . . , ωj, �q on Fj+1.

Let Pn be defined on σpF1 � � � � � Fnq:
PnpF q =

»
Ω1

P1pdω1q »
Ω2

P pω1, dω2q � � � »
Ωn

IF pω1, . . . , ωnq P pω1, . . . , ωn−1, dωnq.
There is a unique prob. measure P on σ

��8
j=1 Fj

	
such that for all n:

P tω P Ω | pω1, . . . , ωnq P Bnu = PnpBnq
Intuition: The measure of a cylinder equals the measure of its finite base.
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CTMDP Definitions

Continuous Time Markov Decision Processes

Definition
A CTMDP is a tuple C = pS,Act,R,AP,Lq with finite set of states S,
labeled according to AP and L. Further

• Act is the set of possible actions and

• R : S �Act� S Ñ R is a transition rate matrix,
parameterized with actions.
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CTMDP Definitions

Continuous Time Markov Decision Processes

Definition
A CTMDP is a tuple C = pS,Act,R,AP,Lq with finite set of states S,
labeled according to AP and L. Further

• Act is the set of possible actions and

• R : S �Act� S Ñ R is a transition rate matrix,
parameterized with actions.

Example
Being in state s P S,

1 choose enabled action from Actpsq
2 sojourn time in s: 1 − e−Eps,aqt
3 next state probability: Rps,a,s1q

Eps,aq
where Eps, aq :=

°
s1PS Rps, a, s1q. s0 s1

s2

s3

a, 0.5

b, 15 a, 0.1

b, 5

a, 0.1

a, 0.5
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CTMDP Definitions

Paths in a CTMDP

Definition (Paths)

Let C = pS,Act,R,AP,Lq. Finite paths are denoted

π = s0

a0,t0ÝÝÝÑ s1

a1,t1ÝÝÝÑ s2

a2,t2ÝÝÝÑ � � � an−1,tn−1ÝÝÝÝÝÝÑ sn.
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Paths in a CTMDP

Definition (Paths)

Let C = pS,Act,R,AP,Lq. Finite paths are denoted

π = s0

a0,t0ÝÝÝÑ s1

a1,t1ÝÝÝÑ s2

a2,t2ÝÝÝÑ � � � an−1,tn−1ÝÝÝÝÝÝÑ sn.

Sets of paths are denoted as usual:

Paths
n := S � pAct�R� Sqn and Paths

Æ :=

8¤
i=0

Paths
n
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Paths in a CTMDP

Definition (Paths)

Let C = pS,Act,R,AP,Lq. Finite paths are denoted

π = s0

a0,t0ÝÝÝÑ s1

a1,t1ÝÝÝÑ s2

a2,t2ÝÝÝÑ � � � an−1,tn−1ÝÝÝÝÝÝÑ sn.

Sets of paths are denoted as usual:

Paths
n := S � pAct�R� Sqn and Paths

Æ :=

8¤
i=0

Paths
n

Some notation

• |π| := n and πÓ:= sn
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Paths in a CTMDP

Definition (Paths)

Let C = pS,Act,R,AP,Lq. Finite paths are denoted

π = s0

a0,t0ÝÝÝÑ s1

a1,t1ÝÝÝÑ s2

a2,t2ÝÝÝÑ � � � an−1,tn−1ÝÝÝÝÝÝÑ sn.

Sets of paths are denoted as usual:

Paths
n := S � pAct�R� Sqn and Paths

Æ :=

8¤
i=0

Paths
n

Some notation

• |π| := n and πÓ:= sn

• πri..js := si
ai,tiÝÝÑ � � � aj−1,tj−1ÝÝÝÝÝÝÑ sj for 0 ¤ i < j ¤ |π|.
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CTMDP Definitions

Paths in a CTMDP

Definition (Paths)

Let C = pS,Act,R,AP,Lq. Finite paths are denoted

π = s0

a0,t0ÝÝÝÑ s1

a1,t1ÝÝÝÑ s2

a2,t2ÝÝÝÑ � � � an−1,tn−1ÝÝÝÝÝÝÑ sn.

Sets of paths are denoted as usual:

Paths
n := S � pAct�R� Sqn and Paths

Æ :=

8¤
i=0

Paths
n

Some notation

• |π| := n and πÓ:= sn

• πri..js := si
ai,tiÝÝÑ � � � aj−1,tj−1ÝÝÝÝÝÝÑ sj for 0 ¤ i < j ¤ |π|.

• π@t is the state occupied in π at time t.

• δpπ, nq = tn denotes the time spent in the n–th state.
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CTMDP Definitions

Paths in a CTMDP

Example

s0 s1 s3s2 s4 s5 s6
t0 t1 t2 t3 t4 t5

a1a0 a2 a3 a4 a5

π@t = s0 π@t = s4

π@t := δ
�
π,min

 
k P N ��� ķ

i=0

ti ¡ t
(	

δpπ, nq := tn
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i=0

ti ¡ t
(	

δpπ, nq := tn
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Paths in a CTMDP

Example

s0 s1 s3s2 s4 s5 s6
t0 t1 t2 t3 t4 t5

a1a0 a2 a3 a4 a5

π@t = s0 π@t = s4δpπ, 2q = t2

π@t := δ
�
π,min

 
k P N ��� ķ

i=0

ti ¡ t
(	

δpπ, nq := tn
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CTMDP Definitions

Paths in a CTMDP

Definition (Infinite Paths)

The set of infinite paths is

Paths
ω := S � pAct�R� Sqω .

The definitions are extended to Paths
ω if appropriate.
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CTMDP Definitions

Whatever you like: a, b, c

In CTMDP, the next action is chosen nondeterministically.ãÑ Nondeterminism must be resolved to assign probabilities.

Classes of schedulers
A scheduler resolves the nondeterminism in a CTMDP .
According to the information available, distinguish:

1 information about the history:
stationary markovian, markovian deterministic, history dependent

2 timed or time–abstract

The decision taken can either be

1 deterministic

2 randomized
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CTMDP Definitions

Example: Scheduler Classes

Assume C = pS,Act,R,AP,Lq.
1 Stationary Markovian deterministic scheduler:

Consider SMD–scheduler that always chooses action b:

D : S Ñ Act : s ÞÑ b

C and D induce a CTMC as follows:

s0

s1

s2

s3

b, 0.5

b, 15

b, 0.5
b, 5 a, 0.1

a, 0.5
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Assume C = pS,Act,R,AP,Lq.
1 Stationary Markovian deterministic scheduler:

Consider SMD–scheduler that always chooses action b:

D : S Ñ Act : s ÞÑ b

C and D induce a CTMC as follows:

s0 s1
0.5

s0

s1

s2

s3

b, 0.5

b, 15

b, 0.5
b, 5 a, 0.1

a, 0.5
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Consider SMD–scheduler that always chooses action b:

D : S Ñ Act : s ÞÑ b

C and D induce a CTMC as follows:

s0 s1
0.5 s2

s3

15

5

s0

s1
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Example: Scheduler Classes

Assume C = pS,Act,R,AP,Lq.
1 Stationary Markovian deterministic scheduler:

Consider SMD–scheduler that always chooses action b:

D : S Ñ Act : s ÞÑ b

C and D induce a CTMC as follows:

s0 s1
0.5 s2

s3

15

5 0.5

s0

s1

s2

s3

b, 0.5

b, 15

b, 0.5
b, 5 a, 0.1

a, 0.5
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CTMDP Definitions

Example: Markovian Randomized Scheduler

Assume C = pS,Act,R,AP,Lq.
2 Markovian randomized scheduler:

D : N� S Ñ DistrpActq : pn, sq ÞÑ #
Ib if s P ts0, s1u
γn if s = s2

where

γn : Act Ñ r0, 1s : x ÞÑ #
1 − 2−n if x = a

2−n if x = b

s0

s1

s2

s3

b, 0.5

b, 15

b, 0.5
b, 5 a, 0.1

a, 0.5
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CTMDP Definitions

Example: Markovian Randomized Scheduler

Assume C = pS,Act,R,AP,Lq.
2 Markovian randomized scheduler:

D : N� S Ñ DistrpActq : pn, sq ÞÑ #
Ib if s P ts0, s1u
γn if s = s2

where

γn : Act Ñ r0, 1s : x ÞÑ #
1 − 2−n if x = a

2−n if x = b

s0

s1

s2

s3

b, 0.5

b, 15

b, 0.5
b, 5 a, 0.1

a, 0.5

s0, 0
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Example: Markovian Randomized Scheduler

Assume C = pS,Act,R,AP,Lq.
2 Markovian randomized scheduler:

D : N� S Ñ DistrpActq : pn, sq ÞÑ #
Ib if s P ts0, s1u
γn if s = s2

where

γn : Act Ñ r0, 1s : x ÞÑ #
1 − 2−n if x = a

2−n if x = b

s0

s1

s2

s3

b, 0.5

b, 15

b, 0.5
b, 5 a, 0.1

a, 0.5

s0, 0 s1, 1
0.5
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Example: Markovian Randomized Scheduler

Assume C = pS,Act,R,AP,Lq.
2 Markovian randomized scheduler:

D : N� S Ñ DistrpActq : pn, sq ÞÑ #
Ib if s P ts0, s1u
γn if s = s2

where

γn : Act Ñ r0, 1s : x ÞÑ #
1 − 2−n if x = a

2−n if x = b

s0

s1

s2

s3

b, 0.5

b, 15

b, 0.5
b, 5 a, 0.1

a, 0.5

s0, 0 s1, 1
0.5

s3, 2

s2, 2

15

5
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CTMDP Definitions

Example: Markovian Randomized Scheduler

Assume C = pS,Act,R,AP,Lq.
2 Markovian randomized scheduler:

D : N� S Ñ DistrpActq : pn, sq ÞÑ #
Ib if s P ts0, s1u
γn if s = s2

where

γn : Act Ñ r0, 1s : x ÞÑ #
1 − 2−n if x = a

2−n if x = b

s0

s1

s2

s3

b, 0.5

b, 15

b, 0.5
b, 5 a, 0.1

a, 0.5

s0, 0 s1, 1
0.5

s3, 2

s2, 2

15

5

s3, 3

s2, 31

4
� 0.5

3

4
� 0.5

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 35 / 1



CTMDP Definitions

Example: Markovian Randomized Scheduler

Assume C = pS,Act,R,AP,Lq.
2 Markovian randomized scheduler:

D : N� S Ñ DistrpActq : pn, sq ÞÑ #
Ib if s P ts0, s1u
γn if s = s2

where

γn : Act Ñ r0, 1s : x ÞÑ #
1 − 2−n if x = a

2−n if x = b

s0

s1

s2

s3

b, 0.5

b, 15

b, 0.5
b, 5 a, 0.1

a, 0.5

s0, 0 s1, 1
0.5

s3, 2

s2, 2

15

5

s3, 3

s2, 31

4
� 0.5

3

4
� 0.5

s3, 4

� � �� � �1

8
� 0.5

7

8
� 0.5

1

16
� 0.5
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CTMDP Definitions

Example: The General Setting

In general: CTMDP C and scheduler D do not induce a finite (or
countable) CTMC!

Example

Consider a timed–history dependent scheduler.
The states of its induced CTMC consist of the set of timed paths which is
uncountable.
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CTMDP Semantics

Semantics: Combined Transitions

Given π P Paths
Æ, the probability to continue by πÓ a,tÝÑ s depends on

• RpπÓ, a, sq, the exponential distribution of CTMDP and

• Dpπ, aq, the scheduler’s decision.
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CTMDP Semantics

Semantics: Combined Transitions

Given π P Paths
Æ, the probability to continue by πÓ a,tÝÑ s depends on

• RpπÓ, a, sq, the exponential distribution of CTMDP and

• Dpπ, aq, the scheduler’s decision.

Definition (Combined Transition)

Let Ω = Act�R� S. Then pa, t, sq P Ω is a combined transition.

• FAct �BpRq � FS is the class of measurable rectangles and

• F := σ
�
FAct �BpRq � FS

	
is the σ–field over combined transitions.
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CTMDP Semantics

Semantics: Combined Transitions

Given π P Paths
Æ, the probability to continue by πÓ a,tÝÑ s depends on

• RpπÓ, a, sq, the exponential distribution of CTMDP and

• Dpπ, aq, the scheduler’s decision.

Definition (Combined Transition)

Let Ω = Act�R� S. Then pa, t, sq P Ω is a combined transition.

• FAct �BpRq � FS is the class of measurable rectangles and

• F := σ
�
FAct �BpRq � FS

	
is the σ–field over combined transitions.

Example

F is the class of measurable sets of combined transitions;
M P F is a set of combined transitions.
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CTMDP Semantics

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n, represented as a Cartesian product

S0 �A0 � I0 � S1loooooomoooooon
M0

� � � � �An−1 � In−1 � Snloooooooooomoooooooooon
Mn−1
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CTMDP Semantics

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n, represented as a Cartesian product

S0 �A0 � I0 � S1loooooomoooooon
M0

� � � � �An−1 � In−1 � Snloooooooooomoooooooooon
Mn−1

is called

• path rectangle iff S0 � S and Mi � Ω.
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CTMDP Semantics

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n, represented as a Cartesian product

S0 �A0 � I0 � S1loooooomoooooon
M0

� � � � �An−1 � In−1 � Snloooooooooomoooooooooon
Mn−1

is called

• path rectangle iff S0 � S and Mi � Ω.

• measurable path rectangle iff S0 P FS and Mi P F.
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CTMDP Semantics

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n, represented as a Cartesian product

S0 �A0 � I0 � S1loooooomoooooon
M0

� � � � �An−1 � In−1 � Snloooooooooomoooooooooon
Mn−1

is called

• path rectangle iff S0 � S and Mi � Ω.

• measurable path rectangle iff S0 P FS and Mi P F.

Set of measurable path rectangles: FS � Fn
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CTMDP Semantics

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n, represented as a Cartesian product

S0 �A0 � I0 � S1loooooomoooooon
M0

� � � � �An−1 � In−1 � Snloooooooooomoooooooooon
Mn−1

is called

• path rectangle iff S0 � S and Mi � Ω.

• measurable path rectangle iff S0 P FS and Mi P F.

Set of measurable path rectangles: FS � Fn

Lemma
The class of finite disjoint unions of measurable rectangles is a field.
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CTMDP Semantics

Semantics: The Product σ–Field

Finite Product σ–Field over Measurable Path Rectangles

The smallest σ–field generated by measurable path rectangles:

FPaths
n := σ

�
FS � Fn

	
for n ¥ 0.
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CTMDP Semantics

Semantics: The Product σ–Field

Finite Product σ–Field over Measurable Path Rectangles

The smallest σ–field generated by measurable path rectangles:

FPaths
n := σ

�
FS � Fn

	
for n ¥ 0.

Example

Let S = ts0, s1u, Act = ta, bu.
• ts0u � ta, bu � p0, 0.2s Y r1.2, 2s � ts0, s1u is a measurable rectangle.

Elements: s0

a,0.1ÝÝÝÑ s0, s0

a,0.1001ÝÝÝÝÝÝÑ s0, s0

b,
?

2ÝÝÝÑ s1, etc.
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CTMDP Semantics

Semantics: The Product σ–Field

Finite Product σ–Field over Measurable Path Rectangles

The smallest σ–field generated by measurable path rectangles:

FPaths
n := σ

�
FS � Fn

	
for n ¥ 0.

Example

Let S = ts0, s1u, Act = ta, bu.
• ts0u � ta, bu � p0, 0.2s Y r1.2, 2s � ts0, s1u is a measurable rectangle.

Elements: s0

a,0.1ÝÝÝÑ s0, s0

a,0.1001ÝÝÝÝÝÝÑ s0, s0

b,
?

2ÝÝÝÑ s1, etc.

•
�ts1u�tau�p0, 0.2s�ts2u	Y�ts1u�ta, bu�r0.3, 1s�ts3u	 P F

Paths
1

Elements: s1

a,0.1ÝÝÝÑ s2, s1

b, 1

3ÝÝÑ s3, s1

a,0.2ÝÝÝÑ s2, s1

a, 1

3ÝÝÝÑ s3, etc.
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CTMDP Semantics

Semantics: Cylinders and Infinite Paths I

Cylinder Set Construction

Let Cn � Paths
n be a set of finite paths. Its induced cylinder is

Cn := tπ P Paths
ω | πr0..ns P Cnu

Cn is the cylinder base of Cn.
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CTMDP Semantics

Semantics: Cylinders and Infinite Paths I

Cylinder Set Construction

Let Cn � Paths
n be a set of finite paths. Its induced cylinder is

Cn := tπ P Paths
ω | πr0..ns P Cnu

Cn is the cylinder base of Cn.
Cn is a measurable cylinder iff Cn P FPaths

n .
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CTMDP Semantics

Semantics: Cylinders and Infinite Paths I

Cylinder Set Construction

Let Cn � Paths
n be a set of finite paths. Its induced cylinder is

Cn := tπ P Paths
ω | πr0..ns P Cnu

Cn is the cylinder base of Cn.
Cn is a measurable cylinder iff Cn P FPaths

n .

Properties of Cylinders

• Any cylinder C can be represented by a finite cylinder base.
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CTMDP Semantics

Semantics: Cylinders and Infinite Paths I

Cylinder Set Construction

Let Cn � Paths
n be a set of finite paths. Its induced cylinder is

Cn := tπ P Paths
ω | πr0..ns P Cnu

Cn is the cylinder base of Cn.
Cn is a measurable cylinder iff Cn P FPaths

n .

Properties of Cylinders

• Any cylinder C can be represented by a finite cylinder base.

• If m < n and Cm = Cn � Ωn−m, then Cm = Cn.
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CTMDP Semantics

Semantics: Cylinders and Infinite Paths II

Definition (σ–Field generated by Measurable Cylinders)

The minimal σ–field generated by measurable cylinders is defined by

FPaths
ω := σ

�
FS � F8	 or equivalently

FPaths
ω := σ

� 8¤
i=0

tCn | Cn P FPaths
nu	.

Finally: pPaths
ω,FPaths

ωq is our measurable space.
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CTMDP Semantics

Semantics: Combined Transition Probability

Product Measure on Combined Transitions
For history π P Paths

Æ, three types of measure spaces are involved:

1 pAct,FAct,Dpπqq
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CTMDP Semantics

Semantics: Combined Transition Probability

Product Measure on Combined Transitions
For history π P Paths

Æ, three types of measure spaces are involved:

1 pAct,FAct,Dpπqq
2 pR¥0,BpR¥0q, µaq where

µa’s distribution: F pxq =
³x
0

EpπÓ, aq � e−EpπÓ,aqtdt
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CTMDP Semantics

Semantics: Combined Transition Probability

Product Measure on Combined Transitions
For history π P Paths

Æ, three types of measure spaces are involved:

1 pAct,FAct,Dpπqq
2 pR¥0,BpR¥0q, µaq where

µa’s distribution: F pxq =
³x
0

EpπÓ, aq � e−EpπÓ,aqtdt

3 pS,FS ,PpπÓ,aqq.
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CTMDP Semantics

Semantics: Combined Transition Probability

Product Measure on Combined Transitions
For history π P Paths

Æ, three types of measure spaces are involved:

1 pAct,FAct,Dpπqq
2 pR¥0,BpR¥0q, µaq where

µa’s distribution: F pxq =
³x
0

EpπÓ, aq � e−EpπÓ,aqtdt

3 pS,FS ,PpπÓ,aqq.
Definition (A Measure on Subsets of Ω)

Let π P Paths
Æ. Then

µDpπ, �q : FÑ r0, 1s :

M ÞÑ »
Act

Dpπ, daq »R¥0

ηapdtq »
S

indicatorhkkkkikkkkj
IMpa, t, sq PpπÓ, a, dsq.
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CTMDP Semantics

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)

Let π P Paths
Æ. Let A�I�S1 P F, I an interval. Then

µDpπ,A�I�S1q =
a̧PADpπ, tauq �PpπÓ, a, S1q � »

I

EpπÓ, aq � e−EpπÓ,aqtdt

Intuition
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CTMDP Semantics

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)

Let π P Paths
Æ. Let A�I�S1 P F, I an interval. Then

µDpπ,A�I�S1q =
a̧PADpπ, tauq �PpπÓ, a, S1q � »

I

EpπÓ, aq � e−EpπÓ,aqtdt

Intuition

• Dpπ, tauq: probability to leave πÓ via action a
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CTMDP Semantics

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)

Let π P Paths
Æ. Let A�I�S1 P F, I an interval. Then

µDpπ,A�I�S1q =
a̧PADpπ, tauq �PpπÓ, a, S1q � »

I

EpπÓ, aq � e−EpπÓ,aqtdt

Intuition

• Dpπ, tauq: probability to leave πÓ via action a

• PpπÓ, a, S1q: probability for a–successor in S1
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CTMDP Semantics

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)

Let π P Paths
Æ. Let A�I�S1 P F, I an interval. Then

µDpπ,A�I�S1q =
a̧PADpπ, tauq �PpπÓ, a, S1q � »

I

EpπÓ, aq � e−EpπÓ,aqtdt

Intuition

• Dpπ, tauq: probability to leave πÓ via action a

• PpπÓ, a, S1q: probability for a–successor in S1
•
³
I
EpπÓ, aq � e−EpπÓ,aqtdt: probability to leave πÓ within I.
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CTMDP Semantics

Semantics: Combined Transition Probability

Lemma (Measurability of µD)

For fixed M P F and finite path–length n:

µDp�,M q : pPaths
n,FPaths

nq Ñ pR,BpRqq
Measurability necessary for Lebesgue–integration.
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CTMDP Semantics

Semantics: Probability Measures on FPaths
Æ

Definition (Probability Measures on FPaths
Æ)

Let pS,Act,R,AP,Lq be a CTMDP, α an initial distribution and D a
THR scheduler.
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CTMDP Semantics

Semantics: Probability Measures on FPaths
Æ

Definition (Probability Measures on FPaths
Æ)

Let pS,Act,R,AP,Lq be a CTMDP, α an initial distribution and D a
THR scheduler. Define inductively

Pr
0
α,D : FS Ñ r0, 1s :S ÞÑ

şPS αpsq
Pr

n
α,D : FPaths

n Ñ r0, 1s :

Π ÞÑ »
Paths

n−1

Pr
n−1
α,D pdπq »

Ω

indicatorhkkkkikkkkj
IΠpπ �mq µDpπ, dmq.
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CTMDP Semantics

Semantics: Probability Measures on FPaths
Æ

Definition (Probability Measures on FPaths
Æ)

Let pS,Act,R,AP,Lq be a CTMDP, α an initial distribution and D a
THR scheduler. Define inductively

Pr
0
α,D : FS Ñ r0, 1s :S ÞÑ

şPS αpsq
Pr

n
α,D : FPaths

n Ñ r0, 1s :

Π ÞÑ »
Paths

n−1

Pr
n−1
α,D pdπq »

Ω

indicatorhkkkkikkkkj
IΠpπ �mq µDpπ, dmq.

Remarks:

• m P Ω ranges over combined transitions.
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CTMDP Semantics

Semantics: Probability Measures on FPaths
Æ

Definition (Probability Measures on FPaths
Æ)

Let pS,Act,R,AP,Lq be a CTMDP, α an initial distribution and D a
THR scheduler. Define inductively

Pr
0
α,D : FS Ñ r0, 1s :S ÞÑ

şPS αpsq
Pr

n
α,D : FPaths

n Ñ r0, 1s :

Π ÞÑ »
Paths

n−1

Pr
n−1
α,D pdπq »

Ω

indicatorhkkkkikkkkj
IΠpπ �mq µDpπ, dmq.

Remarks:

• m P Ω ranges over combined transitions.

• If π = s0

a0,t0ÝÝÝÑ s1

a1,t1ÝÝÝÑ � � � an−1,tn−1ÝÝÝÝÝÝÑ sn and m = pa, t, sq, then

π �m := s0

a0,t0ÝÝÝÑ � � � an−1,tn−1ÝÝÝÝÝÝÑ sn
a,tÝÑ s.
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CTMDP Semantics

Intuition: Probability of Rectangles

Example (Probability of Rectangles)

For measurable rectangle Π�M P FPaths
n , we obtain

Pr
n
α,DpΠ�Mq =

»
Π

µDpπ,M q Pr
n−1
α,D pdπq
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CTMDP Semantics

Intuition: Probability of Rectangles

Example (Probability of Rectangles)

For measurable rectangle Π�M P FPaths
n , we obtain

Pr
n
α,DpΠ�Mq =

»
Π

µDpπ,M q Pr
n−1
α,D pdπq

where

µDpπ,M q =

»
Act

Dpπ, daq »R¥0

ηapdtq »
S

IMpa, t, sqloooomoooon
indicator

PpπÓ, a, dsq.
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CTMDP Semantics

Intuition: Probability of Rectangles

Example (Probability of Rectangles)

For measurable rectangle Π�M P FPaths
n , we obtain

Pr
n
α,DpΠ�Mq =

»
Π

µDpπ,M q Pr
n−1
α,D pdπq

where

µDpπ,M q =

»
Act

Dpπ, daq »R¥0

ηapdtq »
S

IMpa, t, sqloooomoooon
indicator

PpπÓ, a, dsq.
Intuition:

• Π P F
Paths

n−1 is a measurable set of paths,
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CTMDP Semantics

Intuition: Probability of Rectangles

Example (Probability of Rectangles)

For measurable rectangle Π�M P FPaths
n , we obtain

Pr
n
α,DpΠ�Mq =

»
Π

µDpπ,M q Pr
n−1
α,D pdπq

where

µDpπ,M q =

»
Act

Dpπ, daq »R¥0

ηapdtq »
S

IMpa, t, sqloooomoooon
indicator

PpπÓ, a, dsq.
Intuition:

• Π P F
Paths

n−1 is a measurable set of paths,

• M P F is a set of combined transitions (e.g. M = A�I�S1).
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CTMDP Semantics

Semantics: Probability of Measurable Cylinders

A Probability Measure on FPaths
ω

Any measurable cylinder C can be represented as

C = tπ P Paths
ω | πr0..ns P Cnu for some n ¥ 0 and Cn P FPaths

n .

Define the probability measure on measurable cylinders:

Pr
ω
α,D : FPaths

ω Ñ r0, 1s : Cn ÞÑ Pr
n
α,DpCnq
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CTMDP Semantics

Semantics: Probability of Measurable Cylinders

A Probability Measure on FPaths
ω

Any measurable cylinder C can be represented as

C = tπ P Paths
ω | πr0..ns P Cnu for some n ¥ 0 and Cn P FPaths

n .

Define the probability measure on measurable cylinders:

Pr
ω
α,D : FPaths

ω Ñ r0, 1s : Cn ÞÑ Pr
n
α,DpCnq

Theorem (Ionescu–Tulcea)

Pr
ω
α,D is well–defined and unique.
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CTMDP Semantics

Semantics: Probability of Measurable Cylinders

A Probability Measure on FPaths
ω

Any measurable cylinder C can be represented as

C = tπ P Paths
ω | πr0..ns P Cnu for some n ¥ 0 and Cn P FPaths

n .

Define the probability measure on measurable cylinders:

Pr
ω
α,D : FPaths

ω Ñ r0, 1s : Cn ÞÑ Pr
n
α,DpCnq

Theorem (Ionescu–Tulcea)

Pr
ω
α,D is well–defined and unique.

Finally:
�
Paths

ω,FPaths
ω ,Pr

ω
α,D

�
is the desired probability space.
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A Logical Characterization for CTMDP

The Logic nCSL

nondeterministic Continuous Stochastic Logic (nCSL).
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A Logical Characterization for CTMDP

Zeno Behaviour

Definition (Zeno Path)

Let C = pS,Act,R,AP,Lq be a CTMDP and

π = s0

a0,t0ÝÝÝÑ s1

a1,t1ÝÝÝÑ s2

a2,t2ÝÝÝÑ � � � .

π is a zeno path iff the sequence
°n

i=0 ti is convergent.
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A Logical Characterization for CTMDP

Zeno Behaviour

Definition (Zeno Path)

Let C = pS,Act,R,AP,Lq be a CTMDP and

π = s0

a0,t0ÝÝÝÑ s1

a1,t1ÝÝÝÑ s2

a2,t2ÝÝÝÑ � � � .

π is a zeno path iff the sequence
°n

i=0 ti is convergent.

Lemma (Converging Paths Lemma)

The probability measure of the set of converging paths is zero.
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A Logical Characterization for CTMDP

Zeno Behaviour

Definition (Zeno Path)

Let C = pS,Act,R,AP,Lq be a CTMDP and

π = s0

a0,t0ÝÝÝÑ s1

a1,t1ÝÝÝÑ s2

a2,t2ÝÝÝÑ � � � .

π is a zeno path iff the sequence
°n

i=0 ti is convergent.

Lemma (Converging Paths Lemma)

The probability measure of the set of converging paths is zero.

Example (What is it good for?)

For any π P Paths
ω and t P R¥0, π@t is well–defined.
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A Logical Characterization for CTMDP Syntax

Syntax of nCSL

Two kinds of property specifications:

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 50 / 1



A Logical Characterization for CTMDP Syntax

Syntax of nCSL

Two kinds of property specifications:

Example (Transient State Measures)

Given an initial distribution, what is the possibility to reach an error state
within the first t time units?
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A Logical Characterization for CTMDP Syntax

Syntax of nCSL

Two kinds of property specifications:

Example (Transient State Measures)

Given an initial distribution, what is the possibility to reach an error state
within the first t time units?

Example (Long Run Average Behaviour)

Average time spent in a blocking state.
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A Logical Characterization for CTMDP Syntax

Syntax of nCSL

Definition (nCSL Formulae)

For a P AP, p P r0, 1s and �P t<,¤,¥,¡u, nCSL state–formulas are
built according to the following context–free grammar:

Φ ::= a |  Φ | Φ^ Φ | D�pϕ| L�pΦ

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 51 / 1



A Logical Characterization for CTMDP Syntax

Syntax of nCSL

Definition (nCSL Formulae)

For a P AP, p P r0, 1s and �P t<,¤,¥,¡u, nCSL state–formulas are
built according to the following context–free grammar:

Φ ::= a |  Φ | Φ^ Φ | D�pϕ| L�pΦ

For I � R a nonempty interval, nCSL path–formulas are defined by

ϕ ::= XIΦ | ΦUIΦ
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL I

Definition (Semantics of State Formulae)

Let C = pS,Act,R,AP,Lq. Define

s |ù aðñ a P Lpsq
s |ù  Φ ðñ not s |ù Φ

s |ù Φ^Ψðñ s |ù Φ and s |ù Ψ
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Path Formulae

Definition (Semantics of Path Formulae)

For time–interval I � R and state formulas Φ and Ψ, define:

π |ù XIΦðñ πr1s |ù Φ^ δpπ, 0q P I

π |ù ΦUIΨðñ Dt P I.
�
π@t |ù Ψ^ ��t1 P r0, tq. π@t1 |ù Φ

��
.
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Transient State Measures

Definition (Transient State Formulae)

For probability bound p P r0, 1s, comparison operator � and path formula
ϕ, the transient state semantics is given by

s |ù D�pϕ ðñ DD P THR. Pr
ω
α,Ds

tπ P Paths
ω | π |ù ϕu � p
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Transient State Measures

Definition (Transient State Formulae)

For probability bound p P r0, 1s, comparison operator � and path formula
ϕ, the transient state semantics is given by

s |ù D�pϕ ðñ DD P THR. Pr
ω
α,Ds

tπ P Paths
ω | π |ù ϕu � p

Lemma (Measurability of Satisfying Paths)

For arbitrary path formula ϕ:tπ P Paths
ω | π |ù ϕu P FPaths

ω .
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour I

Preliminaries
For CTMDP C = pS,Act,R,AP,Lq, state s and state–formula Φ:

What is the average amount of time spent in Φ–states?
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour I

Preliminaries
For CTMDP C = pS,Act,R,AP,Lq, state s and state–formula Φ:

What is the average amount of time spent in Φ–states?

Definition (state indicator)

Let S � S and t P R¥0. Then

hS,t : Paths
ω Ñ t0, 1u : π ÞÑ #

1 if π@t P S

0 otherwise

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 55 / 1



A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour I

Preliminaries
For CTMDP C = pS,Act,R,AP,Lq, state s and state–formula Φ:

What is the average amount of time spent in Φ–states?

Definition (state indicator)

Let S � S and t P R¥0. Then

hS,t : Paths
ω Ñ t0, 1u : π ÞÑ #

1 if π@t P S

0 otherwise

Intuition: Does π occupy a state from S at time–point t?

Lemma
The function hS,t is measurable relative to pPaths

ω,FPaths
ωq.
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour II

Deduction of Long Run Average Behaviour

The fraction of time spent in S–states on path π P Paths
ω:

gS,t : Paths
ω Ñ r0, 1s : π ÞÑ 1

t

» t

0

hS,t1pπq dt1.

Martin Neuhäußer (MOVES) From Measure Theory to CTMDPs November 9th, 2006 56 / 1



A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour II

Deduction of Long Run Average Behaviour

The fraction of time spent in S–states on path π P Paths
ω:

gS,t : Paths
ω Ñ r0, 1s : π ÞÑ 1

t

» t

0

hS,t1pπq dt1.
Lemma
gS,t is measurable in pPaths

ω,FPaths
ωq and a random variable.
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour II

Deduction of Long Run Average Behaviour

The fraction of time spent in S–states on path π P Paths
ω:

gS,t : Paths
ω Ñ r0, 1s : π ÞÑ 1

t

» t

0

hS,t1pπq dt1.
Lemma
gS,t is measurable in pPaths

ω,FPaths
ωq and a random variable.

Definition (Expectation)

Take the expectation gS,t over π P Paths
ω:

EpgS,tq =

»
Paths

ω
gS,tpπq Pr

ω
α,Dpdπq.
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour III

Definition (Long Run Average Formulae)

For fraction p P r0, 1s, comparison operator � and state formula Φ,
the long–run average semantics is defined by:

s |ù L
�p

Φ ðñ �D P THR. lim
tÑ8 »

Pathsω

�
1

t

» t

0

hSatpΦq,t1pπqdt
1


dPr
ω
αs,Dloooooooooooooooooooooooooomoooooooooooooooooooooooooon

expectation!

� p
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A Logical Characterization for CTMDP Semantics

Semantics of nCSL: Long Run Average Behaviour III

Definition (Long Run Average Formulae)

For fraction p P r0, 1s, comparison operator � and state formula Φ,
the long–run average semantics is defined by:

s |ù L
�p

Φ ðñ �D P THR. lim
tÑ8 »

Pathsω

�
1

t

» t

0

hSatpΦq,t1pπqdt
1


dPr
ω
αs,Dloooooooooooooooooooooooooomoooooooooooooooooooooooooon

expectation!

� p

Example

For CTMDP C with initial state s where r P AP labels all reactive states. The property

“99% of the time, the system directly reacts on input”

can be checked by the following nCSL–formula:

s |ù L¡0.99r
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Future Work

Ongoing Work

1 Complete measurability issues in nCSL–semantics
Measurability of UI subformulas.

2 Are all nCSL–formulas preserved under strong bisimulation?
Provide the proof.

3 Which nCSL–restrictions are preserved under strong simulation?
Define strong simulation on CTMDP, find appropriate restriction of nCSL
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Future Work

Thank you for your attention!
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