

From Measure Theory to CTMDPs

Martin Neuhäußer

Software Modeling and Verification Group, RWTH-Aachen

November 9th, 2006

Measure Theory

Our Setting

Assume a set Ω , called **sample space**.

Subsets A of Ω are called **events**.

Idea: Measure the {size | probability | volume | length} of events!

Intuition: Let $\omega \in \Omega$ be the outcome of an experiment.

Then A is an event if $\omega \in A$ can be decided.

Fields and σ -fields

Definition (Field)

A class of subsets \mathfrak{F} of Ω is a field iff

- ① $\Omega \in \mathfrak{F}$.
- ② $A \in \mathfrak{F} \Rightarrow A^c \in \mathfrak{F}$.
- ③ $A_1, \dots, A_n \in \mathfrak{F} \implies \bigcup_{i=1}^n A_i \in \mathfrak{F}$
where $n \in \mathbb{N}$

Fields and σ -fields

Definition (Field)

A class of subsets \mathfrak{F} of Ω is a field iff

- ① $\Omega \in \mathfrak{F}$.
- ② $A \in \mathfrak{F} \Rightarrow A^c \in \mathfrak{F}$.
- ③ $A_1, \dots, A_n \in \mathfrak{F} \implies \bigcup_{i=1}^n A_i \in \mathfrak{F}$
where $n \in \mathbb{N}$

Definition (σ -Field)

\mathfrak{F} is a **σ -field** iff it is closed under countable union:

$$A_1, A_2, \dots \in \mathfrak{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathfrak{F}$$

Fields and σ -fields

Definition (Field)

A class of subsets \mathfrak{F} of Ω is a field iff

- ① $\Omega \in \mathfrak{F}$.
- ② $A \in \mathfrak{F} \Rightarrow A^c \in \mathfrak{F}$.
- ③ $A_1, \dots, A_n \in \mathfrak{F} \implies \bigcup_{i=1}^n A_i \in \mathfrak{F}$
where $n \in \mathbb{N}$

Definition (σ -Field)

\mathfrak{F} is a **σ -field** iff it is closed under countable union:

$$A_1, A_2, \dots \in \mathfrak{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathfrak{F}$$

Let $\mathcal{C} \subseteq 2^\Omega$. $\sigma(\mathcal{C})$ denotes the **smallest σ -field** containing \mathcal{C} .

Example: The Borel σ -field

Define **right-semiclosed intervals** to be

- $(a, b]$ where $-\infty \leq a < b < +\infty$ and

Example: The Borel σ -field

Define **right-semiclosed intervals** to be

- $(a, b]$ where $-\infty \leq a < b < +\infty$ and
- $(a, +\infty)$ where $-\infty \leq a < +\infty$.

Example: The Borel σ -field

Define **right-semiclosed intervals** to be

- $(a, b]$ where $-\infty \leq a < b < +\infty$ and
- $(a, +\infty)$ where $-\infty \leq a < +\infty$.

Finite Disjoint Unions

Define the class of **finite disjoint unions** of right-semiclosed intervals:

$$\mathfrak{F}_0(\mathbb{R}) := \{I_1 \uplus I_2 \uplus \cdots \uplus I_n \mid n \in \mathbb{N}\}.$$

Example: The Borel σ -field

Define **right-semiclosed intervals** to be

- $(a, b]$ where $-\infty \leq a < b < +\infty$ and
- $(a, +\infty)$ where $-\infty \leq a < +\infty$.

Finite Disjoint Unions

Define the class of **finite disjoint unions** of right-semiclosed intervals:

$$\mathfrak{F}_0(\mathbb{R}) := \{I_1 \uplus I_2 \uplus \cdots \uplus I_n \mid n \in \mathbb{N}\}.$$

Verify the properties of a field:

① $\mathbb{R} = (-\infty, +\infty) \in \mathfrak{F}_0(\mathbb{R})$.

Example: The Borel σ -field

Define **right-semiclosed intervals** to be

- $(a, b]$ where $-\infty \leq a < b < +\infty$ and
- $(a, +\infty)$ where $-\infty \leq a < +\infty$.

Finite Disjoint Unions

Define the class of **finite disjoint unions** of right-semiclosed intervals:

$$\mathfrak{F}_0(\mathbb{R}) := \{I_1 \uplus I_2 \uplus \cdots \uplus I_n \mid n \in \mathbb{N}\}.$$

Verify the properties of a field:

- ① $\mathbb{R} = (-\infty, +\infty) \in \mathfrak{F}_0(\mathbb{R})$.
- ② $I_1 \uplus \cdots \uplus I_n \in \mathfrak{F}_0(\mathbb{R}) \Rightarrow (I_1 \uplus \cdots \uplus I_n)^c \in \mathfrak{F}_0(\mathbb{R})$.

Example: The Borel σ -field

Define **right-semiclosed intervals** to be

- $(a, b]$ where $-\infty \leq a < b < +\infty$ and
- $(a, +\infty)$ where $-\infty \leq a < +\infty$.

Finite Disjoint Unions

Define the class of **finite disjoint unions** of right-semiclosed intervals:

$$\mathfrak{F}_0(\mathbb{R}) := \{I_1 \uplus I_2 \uplus \cdots \uplus I_n \mid n \in \mathbb{N}\}.$$

Verify the properties of a field:

- ① $\mathbb{R} = (-\infty, +\infty) \in \mathfrak{F}_0(\mathbb{R})$.
- ② $I_1 \uplus \cdots \uplus I_n \in \mathfrak{F}_0(\mathbb{R}) \Rightarrow (I_1 \uplus \cdots \uplus I_n)^c \in \mathfrak{F}_0(\mathbb{R})$.
- ③ If $I_1 \uplus \cdots \uplus I_n \in \mathfrak{F}_0(\mathbb{R})$ and $J_1 \uplus \cdots \uplus J_n \in \mathfrak{F}_0(\mathbb{R})$
then $(I_1 \uplus \cdots \uplus I_n) \cup (J_1 \uplus \cdots \uplus J_n) \in \mathfrak{F}_0(\mathbb{R})$.

Example: The Borel σ -field

Define **right-semiclosed intervals** to be

- $(a, b]$ where $-\infty \leq a < b < +\infty$ and
- $(a, +\infty)$ where $-\infty \leq a < +\infty$.

Finite Disjoint Unions

Define the class of **finite disjoint unions** of right-semiclosed intervals:

$$\mathfrak{F}_0(\mathbb{R}) := \{I_1 \uplus I_2 \uplus \cdots \uplus I_n \mid n \in \mathbb{N}\}.$$

Verify the properties of a field:

- ① $\mathbb{R} = (-\infty, +\infty) \in \mathfrak{F}_0(\mathbb{R})$.
- ② $I_1 \uplus \cdots \uplus I_n \in \mathfrak{F}_0(\mathbb{R}) \Rightarrow (I_1 \uplus \cdots \uplus I_n)^c \in \mathfrak{F}_0(\mathbb{R})$.
- ③ If $I_1 \uplus \cdots \uplus I_n \in \mathfrak{F}_0(\mathbb{R})$ and $J_1 \uplus \cdots \uplus J_n \in \mathfrak{F}_0(\mathbb{R})$
then $(I_1 \uplus \cdots \uplus I_n) \cup (J_1 \uplus \cdots \uplus J_n) \in \mathfrak{F}_0(\mathbb{R})$.

$\mathfrak{F}_0(\mathbb{R})$ is a field.

Example: The Borel σ -field

Borel σ -field

Let $\mathcal{E} = \{(a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$ and

let $\sigma(\mathcal{E})$ denote the **smallest σ -field** containing \mathcal{E} .

Then $\mathfrak{B}(\mathbb{R}) = \sigma(\mathcal{E})$ is the **Borel σ -field**.

Example: The Borel σ -field

Borel σ -field

Let $\mathcal{E} = \{(a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$ and

let $\sigma(\mathcal{E})$ denote the **smallest σ -field** containing \mathcal{E} .

Then $\mathfrak{B}(\mathbb{R}) = \sigma(\mathcal{E})$ is the **Borel σ -field**.

Example

$\mathfrak{B}(\mathbb{R})$ has many generators:

- $\mathfrak{F}_0(\mathbb{R})$, the set of finite disjoint unions of right-semiclosed intervals,
- $\mathcal{E}' = \{[a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$,
- $\mathcal{E}'' = \{(-\infty, b] \mid b \in \mathbb{R}\}$, ...

Example: The Borel σ -field

Borel σ -field

Let $\mathcal{E} = \{(a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$ and

let $\sigma(\mathcal{E})$ denote the **smallest σ -field** containing \mathcal{E} .

Then $\mathfrak{B}(\mathbb{R}) = \sigma(\mathcal{E})$ is the **Borel σ -field**.

Example

$\mathfrak{B}(\mathbb{R})$ has many generators:

- $\mathfrak{F}_0(\mathbb{R})$, the set of finite disjoint unions of right-semiclosed intervals,
- $\mathcal{E}' = \{[a, b] \mid a, b \in \mathbb{R} \text{ and } a < b\}$,
- $\mathcal{E}'' = \{(-\infty, b] \mid b \in \mathbb{R}\}$, ...

Intuition: Construct σ -field by forming countable unions and complements of intervals in all possible ways.

Measures

Intuition

Measure the “size” of sets in σ –field \mathfrak{F} .

Notions of **length**, **volume** or **probability**.

Measures

Intuition

Measure the “size” of sets in σ –field \mathfrak{F} .

Notions of **length**, **volume** or **probability**.

Definition (Measure)

Let \mathfrak{F} be a σ –field over subsets of Ω . A **measure** is a function

$$\mu : \mathfrak{F} \rightarrow \bar{\mathbb{R}}_{\geq 0} \quad \text{where } \bar{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$$

which is **countably additive**:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i) \quad \text{for disjoint sets } A_i \in \mathfrak{F}.$$

Measures

Intuition

Measure the “size” of sets in σ –field \mathfrak{F} .

Notions of **length**, **volume** or **probability**.

Definition (Measure)

Let \mathfrak{F} be a σ –field over subsets of Ω . A **measure** is a function

$$\mu : \mathfrak{F} \rightarrow \bar{\mathbb{R}}_{\geq 0} \quad \text{where } \bar{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$$

which is **countably additive**:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i) \quad \text{for disjoint sets } A_i \in \mathfrak{F}.$$

Remark: If $\mu(\Omega) = 1$, μ is a **probability measure**.

Example: A Measure on $\mathfrak{B}(\mathbb{R})$

The size of intervals

Given interval $(a, b]$, $a < b \in \mathbb{R}$. Define its “length” as follows:

$$\mu(a, b] = b - a$$

Example: A Measure on $\mathfrak{B}(\mathbb{R})$

The size of intervals

Given interval $(a, b]$, $a < b \in \mathbb{R}$. Define its “length” as follows:

$$\mu(a, b] = b - a$$

Sizes on the field $\mathfrak{F}_0(\mathbb{R})$

On the set of **finite disjoint unions** of right–semiclosed intervals:

Let $I_1 \uplus \dots \uplus I_n \in \mathfrak{F}_0(\mathbb{R})$. Extend μ to $\mathfrak{F}_0(\mathbb{R})$ by defining

$$\mu(I_1 \uplus \dots \uplus I_n) = \sum_{i=1}^n \mu(I_i)$$

Example: A Measure on $\mathfrak{B}(\mathbb{R})$

The size of intervals

Given interval $(a, b]$, $a < b \in \mathbb{R}$. Define its “length” as follows:

$$\mu(a, b] = b - a$$

Sizes on the field $\mathfrak{F}_0(\mathbb{R})$

On the set of **finite disjoint unions** of right–semiclosed intervals:

Let $I_1 \uplus \dots \uplus I_n \in \mathfrak{F}_0(\mathbb{R})$. Extend μ to $\mathfrak{F}_0(\mathbb{R})$ by defining

$$\mu(I_1 \uplus \dots \uplus I_n) = \sum_{i=1}^n \mu(I_i)$$

But: What about $\mu(A)$ for **arbitrary** $A \in \mathfrak{B}(\mathbb{R})$?

Extension of Measures

Motivation

Define **countably additive** set function μ on a field \mathfrak{F}_0 .
Then extend it to the σ -field **by magic**.

Extension of Measures

Motivation

Define **countably additive** set function μ on a field \mathfrak{F}_0 .
Then extend it to the σ -field **by magic**.

Theorem (Carathéodory Extension Theorem)

Let \mathfrak{F}_0 be a field over subsets of a set Ω and let μ be a **measure** on \mathfrak{F}_0 .
If μ is σ -finite, i.e.

$$\Omega = \bigcup_{i=1}^{\infty} A_i \quad \text{where } A_i \in \mathfrak{F}_0 \text{ and } \mu(A_i) < \infty,$$

then μ has a **unique** extension to $\sigma(\mathfrak{F}_0)$.

Extension of Measures

Motivation

Define **countably additive** set function μ on a field \mathfrak{F}_0 .
Then extend it to the σ -field **by magic**.

Theorem (Carathéodory Extension Theorem)

Let \mathfrak{F}_0 be a field over subsets of a set Ω and let μ be a **measure** on \mathfrak{F}_0 .
If μ is σ -finite, i.e.

$$\Omega = \bigcup_{i=1}^{\infty} A_i \quad \text{where } A_i \in \mathfrak{F}_0 \text{ and } \mu(A_i) < \infty,$$

then μ has a **unique** extension to $\sigma(\mathfrak{F}_0)$.

In practice: Avoid the σ -field whenever possible!

There's Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” μ on subclasses of $\mathfrak{B}(\mathbb{R})$:

There's Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” μ on subclasses of $\mathfrak{B}(\mathbb{R})$:

- 1 $\mu(a, b] = b - a$ for right–semiclosed intervals

There's Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” μ on subclasses of $\mathfrak{B}(\mathbb{R})$:

- ① $\mu(a, b] = b - a$ for right–semiclosed intervals
- ② $\mu(I_1 \uplus I_2 \uplus \dots \uplus I_n) = \sum_{j=1}^n \mu(I_j)$ for finite disjoint unions

There's Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” μ on subclasses of $\mathfrak{B}(\mathbb{R})$:

- ① $\mu(a, b] = b - a$ for right–semiclosed intervals
- ② $\mu(I_1 \uplus I_2 \uplus \dots \uplus I_n) = \sum_{j=1}^n \mu(I_j)$ for finite disjoint unions
- ③ **But:** For the extension from $\mathfrak{F}_0(\mathbb{R})$ to $\mathfrak{B}(\mathbb{R})$ by Carathéodory:

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j)$$

where $A_1, A_2, \dots \in \mathfrak{F}_0(\mathbb{R})$, $\bigcup_{j=1}^{\infty} A_j \in \mathfrak{F}_0$ and the A_j disjoint.

There's Still a Catch in it: Countable Additivity!

Example

Up to now, we defined the “length” μ on subclasses of $\mathfrak{B}(\mathbb{R})$:

- ① $\mu(a, b] = b - a$ for right–semiclosed intervals
- ② $\mu(I_1 \uplus I_2 \uplus \cdots \uplus I_n) = \sum_{j=1}^n \mu(I_j)$ for finite disjoint unions
- ③ **But:** For the extension from $\mathfrak{F}_0(\mathbb{R})$ to $\mathfrak{B}(\mathbb{R})$ by Carathéodory:

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j)$$

where $A_1, A_2, \dots \in \mathfrak{F}_0(\mathbb{R})$, $\bigcup_{j=1}^{\infty} A_j \in \mathfrak{F}_0$ and the A_j disjoint.

Theorem

Let $F : \mathbb{R} \rightarrow \mathbb{R}$ be a distrib. function. Let $\mu(a, b] := F(b) - F(a)$.

There is a unique extension of μ to a Lebesgue–Stieltjes measure on \mathbb{R} .

Thus: Countable additivity of μ follows by defining $F(x) := x$.

Lebesgue's Intuition

Lebesgue about his integral

"One might say that Riemann's approach is comparable to a messy merchant who counts coins in the order they come to his hand whereas we act like a prudent merchant who says:

- I have A_1 coins à one crown, that is $A_1 \cdot 1$ crowns,
- A_2 coins à two crowns, that is $A_2 \cdot 2$ crowns and
- A_3 coins à five crowns, that is $A_3 \cdot 5$ crowns.

Therefore I have $A_1 \cdot 1 + A_2 \cdot 2 + A_3 \cdot 5$ crowns.

Both approaches – no matter how rich the merchant might be – lead to the same result since he only has to count a finite number of coins.
But for us who must add infinitely many indivisibles, the difference between the approaches is essential."

H. Lebesgue, 1926

Measurability

Definition (Measurability)

Let Ω_1, Ω_2 be sets with associated σ -fields \mathfrak{F}_1 and \mathfrak{F}_2 .

$h : \Omega_1 \rightarrow \Omega_2$ is **measurable** iff

$$h^{-1}(A) \in \mathfrak{F}_1 \quad \text{for each } A \in \mathfrak{F}_2$$

Notation: $h : (\Omega_1, \mathfrak{F}_1) \rightarrow (\Omega_2, \mathfrak{F}_2)$.

Measurability

Definition (Measurability)

Let Ω_1, Ω_2 be sets with associated σ -fields \mathfrak{F}_1 and \mathfrak{F}_2 .

$h : \Omega_1 \rightarrow \Omega_2$ is **measurable** iff

$$h^{-1}(A) \in \mathfrak{F}_1 \quad \text{for each } A \in \mathfrak{F}_2$$

Notation: $h : (\Omega_1, \mathfrak{F}_1) \rightarrow (\Omega_2, \mathfrak{F}_2)$.

Some remarks:

- h is **Borel measurable** if $h : (\Omega, \mathfrak{F}) \rightarrow (\bar{\mathbb{R}}, \mathfrak{B}(\bar{\mathbb{R}}))$.

Measurability

Definition (Measurability)

Let Ω_1, Ω_2 be sets with associated σ -fields \mathfrak{F}_1 and \mathfrak{F}_2 .

$h : \Omega_1 \rightarrow \Omega_2$ is **measurable** iff

$$h^{-1}(A) \in \mathfrak{F}_1 \quad \text{for each } A \in \mathfrak{F}_2$$

Notation: $h : (\Omega_1, \mathfrak{F}_1) \rightarrow (\Omega_2, \mathfrak{F}_2)$.

Some remarks:

- h is **Borel measurable** if $h : (\Omega, \mathfrak{F}) \rightarrow (\bar{\mathbb{R}}, \mathfrak{B}(\bar{\mathbb{R}}))$.
- In probability theory, h is called a **random variable**.

Simple Functions

Definition (Simple Functions)

Let $h : \Omega \rightarrow \bar{\mathbb{R}}$. h is **simple** iff

- ① h is measurable and
- ② takes on only finitely many values.

Simple Functions

Definition (Simple Functions)

Let $h : \Omega \rightarrow \bar{\mathbb{R}}$. h is **simple** iff

- ① h is measurable and
- ② takes on only finitely many values.

If h is a **simple** function, it can be represented as

$$h(\omega) := \sum_{i=1}^n x_i \cdot \mathbf{I}_{A_i}(\omega)$$

where $A_i \in \mathfrak{F}$ are pairwisely disjoint.

\mathbf{I}_{A_i} denotes the indicator function $\mathbf{I}_{A_i}(\omega) := \begin{cases} 1 & \text{if } \omega \in A_i \\ 0 & \text{otherwise} \end{cases}$.

Simple Functions

Definition (Simple Functions)

Let $h : \Omega \rightarrow \bar{\mathbb{R}}$. h is **simple** iff

- ① h is measurable and
- ② takes on only finitely many values.

If h is a **simple** function, it can be represented as

$$h(\omega) := \sum_{i=1}^n x_i \cdot \mathbf{I}_{A_i}(\omega)$$

where $A_i \in \mathfrak{F}$ are pairwisely disjoint.

\mathbf{I}_{A_i} denotes the indicator function $\mathbf{I}_{A_i}(\omega) := \begin{cases} 1 & \text{if } \omega \in A_i \\ 0 & \text{otherwise} \end{cases}$.

Intuition: Choose A_i as the **preimage** of x_i !

Lebesgue Integral

Definition (Lebesgue Integral for **Simple** Functions)

Let $(\Omega, \mathfrak{F}, \mu)$ be a measure space, $h : \Omega \rightarrow \bar{\mathbb{R}}$ simple:

$$h(\omega) := \sum_{i=1}^n x_i \cdot \mathbf{1}_{A_i}(\omega) \quad \text{where the } A_i \text{ are disjoint sets in } \mathfrak{F}.$$

Lebesgue Integral

Definition (Lebesgue Integral for **Simple** Functions)

Let $(\Omega, \mathfrak{F}, \mu)$ be a measure space, $h : \Omega \rightarrow \bar{\mathbb{R}}$ simple:

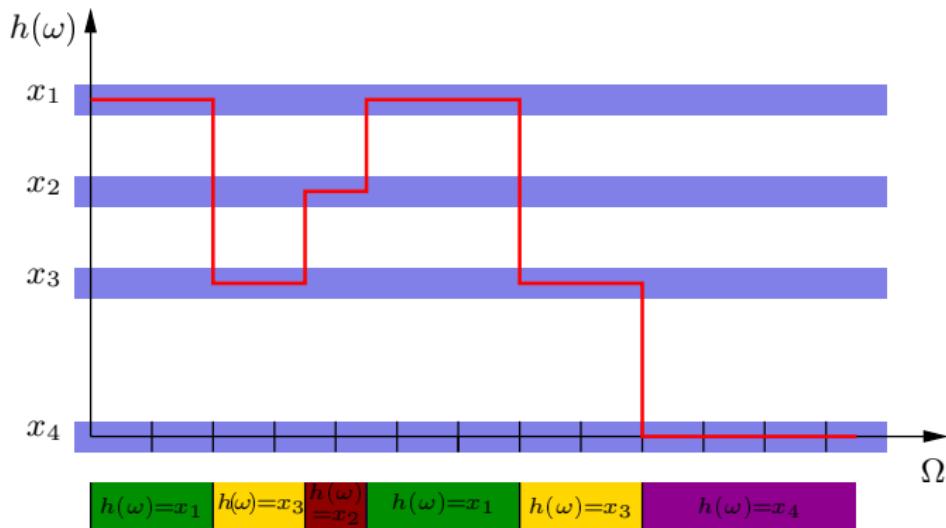
$$h(\omega) := \sum_{i=1}^n x_i \cdot \mathbf{1}_{A_i}(\omega) \quad \text{where the } A_i \text{ are disjoint sets in } \mathfrak{F}.$$

The **Lebesgue-integral** of h is defined as

$$\int_{\Omega} h \, d\mu := \sum_{i=1}^n x_i \cdot \mu(A_i).$$

Intuition: Multiply each x_i with the measure of its preimage A_i .

Example: Lebesgue Integral



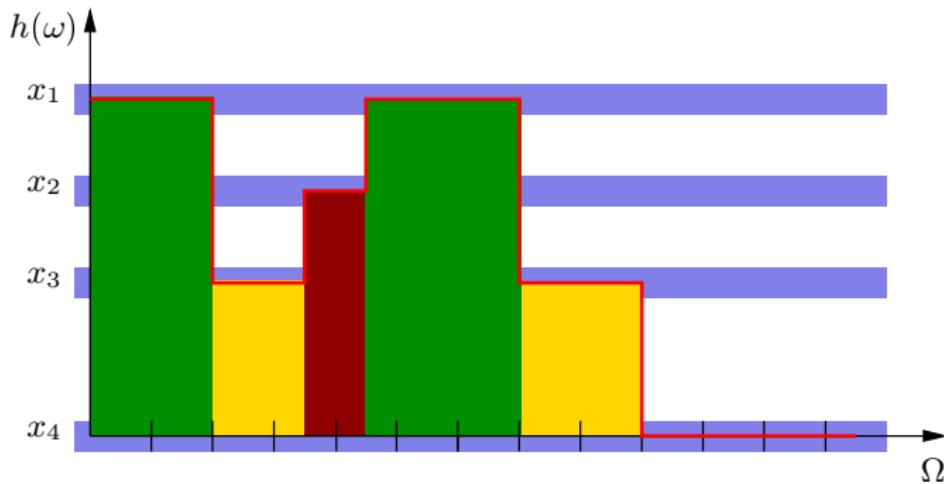
$$\mu(A_1) = \mu(\text{green rectangle})$$

$$\mu(A_3) = \mu(\text{yellow rectangle})$$

$$\mu(A_2) = \mu(\text{red rectangle})$$

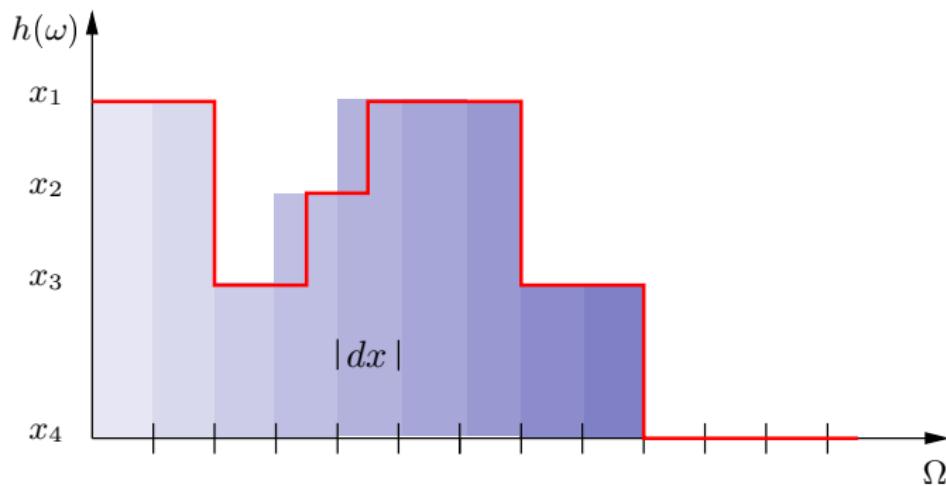
$$\mu(A_4) = \mu(\text{purple rectangle})$$

Example: Lebesgue Integral



$$\int_{\Omega} h \, d\mu = x_1\mu(A_1) + x_2\mu(A_2) + x_3\mu(A_3)$$

Example: Riemann (Darboux) Integral



Lebesgue Integral on Nonnegative Functions

Definition

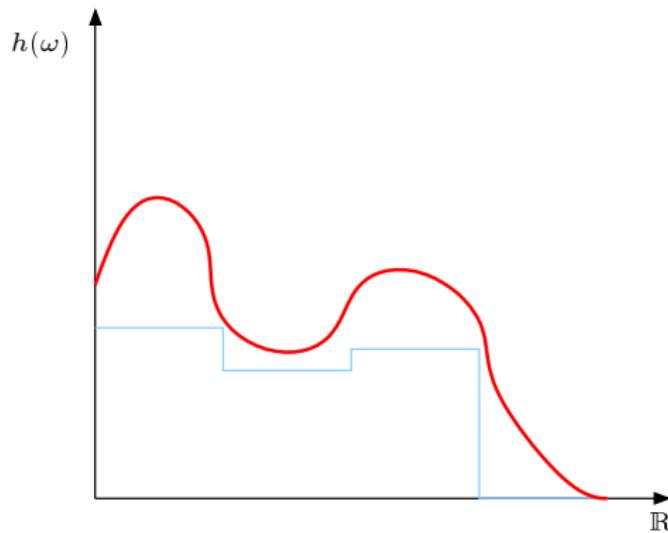
If h is **nonnegative Borel measurable**, then

$$\int_{\Omega} h \, d\mu := \sup \left\{ \int_{\Omega} s \, d\mu \mid s \text{ is simple and } 0 \leq s \leq h \right\}.$$

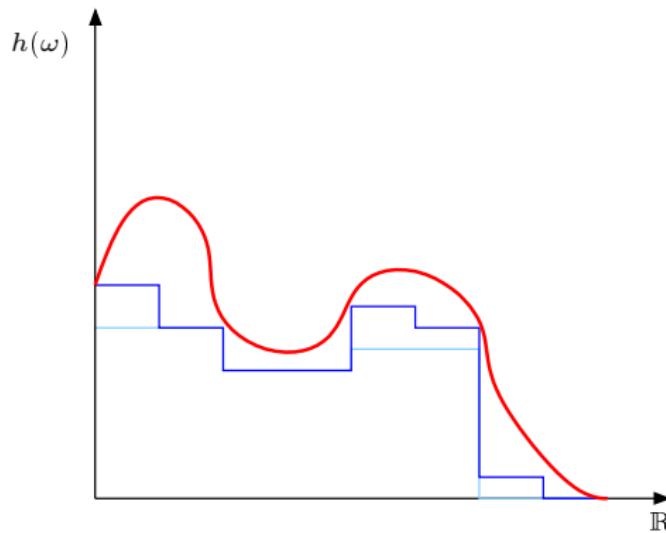
Theorem

A nonnegative Borel measurable function h is the limit of an increasing sequence of nonnegative simple functions h_n .

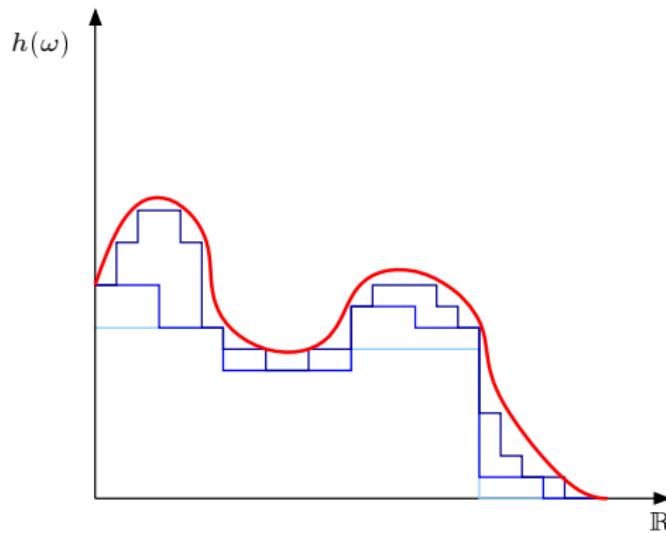
Example: Lebesgue Integral



Example: Lebesgue Integral



Example: Lebesgue Integral



Finite Product Spaces

Definition (Product Space)

Let $(\Omega_j, \mathfrak{F}_j)$ be a measurable space, $j = 1, \dots, n$. Then

Finite Product Spaces

Definition (Product Space)

Let $(\Omega_j, \mathfrak{F}_j)$ be a measurable space, $j = 1, \dots, n$. Then

- $\Omega = \Omega_1 \times \dots \times \Omega_n$

Finite Product Spaces

Definition (Product Space)

Let $(\Omega_j, \mathfrak{F}_j)$ be a measurable space, $j = 1, \dots, n$. Then

- $\Omega = \Omega_1 \times \dots \times \Omega_n$
- $A = A_1 \times A_2 \times \dots \times A_n$ is a **measurable rectangle** if $A_j \in \mathfrak{F}_j$.

Finite Product Spaces

Definition (Product Space)

Let $(\Omega_j, \mathfrak{F}_j)$ be a measurable space, $j = 1, \dots, n$. Then

- $\Omega = \Omega_1 \times \dots \times \Omega_n$
- $A = A_1 \times A_2 \times \dots \times A_n$ is a **measurable rectangle** if $A_j \in \mathfrak{F}_j$.
- The set of measurable rectangles is denoted

$$\mathfrak{F}_1 \times \mathfrak{F}_2 \times \dots \times \mathfrak{F}_n.$$

Finite Product Spaces

Definition (Product Space)

Let $(\Omega_j, \mathfrak{F}_j)$ be a measurable space, $j = 1, \dots, n$. Then

- $\Omega = \Omega_1 \times \dots \times \Omega_n$
- $A = A_1 \times A_2 \times \dots \times A_n$ is a **measurable rectangle** if $A_j \in \mathfrak{F}_j$.
- The set of measurable rectangles is denoted

$$\mathfrak{F}_1 \times \mathfrak{F}_2 \times \dots \times \mathfrak{F}_n.$$

- The **product σ -field** \mathfrak{F} is the smallest σ -field containing all measurable rectangles:

$$\mathfrak{F} := \sigma(\mathfrak{F}_1 \times \mathfrak{F}_2 \times \dots \times \mathfrak{F}_n)$$

Measures on Finite Product Spaces

To start with: Only products of **two σ -fields!**

Preparation

Let $(\Omega_1, \mathfrak{F}_1, \mu_1)$ be a measure space, μ_1 σ -finite on \mathfrak{F}_1 .

Measures on Finite Product Spaces

To start with: Only products of **two σ -fields!**

Preparation

Let $(\Omega_1, \mathfrak{F}_1, \mu_1)$ be a measure space, μ_1 σ -finite on \mathfrak{F}_1 .
Further let \mathfrak{F}_2 be a σ -field over subsets of Ω_2 .

Measures on Finite Product Spaces

To start with: Only products of **two σ -fields!**

Preparation

Let $(\Omega_1, \mathfrak{F}_1, \mu_1)$ be a measure space, μ_1 σ -finite on \mathfrak{F}_1 .

Further let \mathfrak{F}_2 be a σ -field over subsets of Ω_2 .

Assume that **for each** $\omega_1 \in \Omega_1$ we have a function

$$\mu(\omega_1, \cdot) : \mathfrak{F}_2 \rightarrow \bar{\mathbb{R}}$$

which is

Measures on Finite Product Spaces

To start with: Only products of **two σ -fields!**

Preparation

Let $(\Omega_1, \mathfrak{F}_1, \mu_1)$ be a measure space, μ_1 σ -finite on \mathfrak{F}_1 .

Further let \mathfrak{F}_2 be a σ -field over subsets of Ω_2 .

Assume that **for each** $\omega_1 \in \Omega_1$ we have a function

$$\mu(\omega_1, \cdot) : \mathfrak{F}_2 \rightarrow \bar{\mathbb{R}}$$

which is

- ① a measure on \mathfrak{F}_2 ,

Measures on Finite Product Spaces

To start with: Only products of **two σ -fields!**

Preparation

Let $(\Omega_1, \mathfrak{F}_1, \mu_1)$ be a measure space, μ_1 σ -finite on \mathfrak{F}_1 .

Further let \mathfrak{F}_2 be a σ -field over subsets of Ω_2 .

Assume that **for each** $\omega_1 \in \Omega_1$ we have a function

$$\mu(\omega_1, \cdot) : \mathfrak{F}_2 \rightarrow \bar{\mathbb{R}}$$

which is

- ① a measure on \mathfrak{F}_2 ,
- ② Borel measurable in ω_1 and

Measures on Finite Product Spaces

To start with: Only products of **two σ -fields!**

Preparation

Let $(\Omega_1, \mathfrak{F}_1, \mu_1)$ be a measure space, μ_1 σ -finite on \mathfrak{F}_1 .

Further let \mathfrak{F}_2 be a σ -field over subsets of Ω_2 .

Assume that **for each** $\omega_1 \in \Omega_1$ we have a function

$$\mu(\omega_1, \cdot) : \mathfrak{F}_2 \rightarrow \bar{\mathbb{R}}$$

which is

- ① a measure on \mathfrak{F}_2 ,
- ② Borel measurable in ω_1 and
- ③ uniformly σ -finite:

$$\Omega_2 = \bigcup_{n=1}^{\infty} B_n \text{ where } \mu(\omega_1, B_n) \leq k_n \text{ for all } \omega_1 \text{ and fixed } k_n \in \mathbb{R}.$$

Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given $(\Omega_1, \mathfrak{F}_1, \mu_1)$, $(\Omega_2, \mathfrak{F}_2)$ and $\mu(\omega_1, \cdot)$ as before.

Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given $(\Omega_1, \mathfrak{F}_1, \mu_1)$, $(\Omega_2, \mathfrak{F}_2)$ and $\mu(\omega_1, \cdot)$ as before.

There is a **unique** measure μ on \mathfrak{F} such that on $\mathfrak{F}_1 \times \mathfrak{F}_2$:

$$\mu(A \times B) = \int_A \mu(\omega_1, B) \mu_1(d\omega_1).$$

Measures on Finite Product Spaces

Theorem (Product Measure Theorem)

Given $(\Omega_1, \mathfrak{F}_1, \mu_1)$, $(\Omega_2, \mathfrak{F}_2)$ and $\mu(\omega_1, \cdot)$ as before.

There is a **unique** measure μ on \mathfrak{F} such that on $\mathfrak{F}_1 \times \mathfrak{F}_2$:

$$\mu(A \times B) = \int_A \mu(\omega_1, B) \mu_1(d\omega_1).$$

μ is defined (now on the entire σ -field) as follows:

$$\mu(\textcolor{orange}{F}) := \int_{\Omega_1} \mu(\omega_1, \textcolor{orange}{F}(\omega_1)) \mu_1(d\omega_1), \quad \text{for all } \textcolor{orange}{F} \in \mathfrak{F}$$

where $\textcolor{orange}{F}(\omega_1) := \{\omega_2 \mid (\omega_1, \omega_2) \in \textcolor{orange}{F}\}$.

Lebesgue Integrals on Finite Product Spaces

Theorem (Fubini's Theorem)

Let $f : (\Omega, \mathfrak{F}) \rightarrow (\bar{\mathbb{R}}, \mathfrak{B}(\bar{\mathbb{R}}))$. If f is **nonnegative**, then

$$\int_{\Omega_2} f(\omega_1, \omega_2) \mu(\omega_1, d\omega_2)$$

exists and defines a **Borel measurable** function.

Lebesgue Integrals on Finite Product Spaces

Theorem (Fubini's Theorem)

Let $f : (\Omega, \mathfrak{F}) \rightarrow (\bar{\mathbb{R}}, \mathfrak{B}(\bar{\mathbb{R}}))$. If f is **nonnegative**, then

$$\int_{\Omega_2} f(\omega_1, \omega_2) \mu(\omega_1, d\omega_2)$$

exists and defines a **Borel measurable** function. Also

$$\int_{\Omega} f \, d\mu = \int_{\Omega_1} \left(\int_{\Omega_2} f(\omega_1, \omega_2) \mu(\omega_1, d\omega_2) \right) \mu_1(d\omega_1).$$

Justification of iterated integration!

Extension to Larger Product Spaces

Now, consider products of **more than two** σ -fields!

Preparation

Let \mathfrak{F}_j be a σ -field of subsets of Ω_j , $j = 1, \dots, n$.

Extension to Larger Product Spaces

Now, consider products of **more than two** σ -fields!

Preparation

Let \mathfrak{F}_j be a σ -field of subsets of Ω_j , $j = 1, \dots, n$.

Let μ_1 be a σ -finite measure on \mathfrak{F}_1

Extension to Larger Product Spaces

Now, consider products of **more than two** σ -fields!

Preparation

Let \mathfrak{F}_j be a σ -field of subsets of Ω_j , $j = 1, \dots, n$.

Let μ_1 be a σ -finite measure on \mathfrak{F}_1 and

assume that **for each** $(\omega_1, \dots, \omega_j)$ we have a function

$$\mu(\omega_1, \omega_2, \dots, \omega_j, \cdot) : \mathfrak{F}_{j+1} \rightarrow \bar{\mathbb{R}}$$

which is

Extension to Larger Product Spaces

Now, consider products of **more than two** σ -fields!

Preparation

Let \mathfrak{F}_j be a σ -field of subsets of Ω_j , $j = 1, \dots, n$.

Let μ_1 be a σ -finite measure on \mathfrak{F}_1 and

assume that **for each** $(\omega_1, \dots, \omega_j)$ we have a function

$$\mu(\omega_1, \omega_2, \dots, \omega_j, \cdot) : \mathfrak{F}_{j+1} \rightarrow \bar{\mathbb{R}}$$

which is

- ① a measure on \mathfrak{F}_{j+1} and

Extension to Larger Product Spaces

Now, consider products of **more than two** σ -fields!

Preparation

Let \mathfrak{F}_j be a σ -field of subsets of Ω_j , $j = 1, \dots, n$.

Let μ_1 be a σ -finite measure on \mathfrak{F}_1 and

assume that **for each** $(\omega_1, \dots, \omega_j)$ we have a function

$$\mu(\omega_1, \omega_2, \dots, \omega_j, \cdot) : \mathfrak{F}_{j+1} \rightarrow \bar{\mathbb{R}}$$

which is

- ① a measure on \mathfrak{F}_{j+1} and
- ② is measurable, i.e. for all fixed $C \in \mathfrak{F}_{j+1}$:

$$\mu(\omega_1, \dots, \omega_j, C) : (\Omega_1 \times \dots \times \Omega_j, \sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_j)) \rightarrow (\bar{\mathbb{R}}, \mathcal{B}(\bar{\mathbb{R}}))$$

- ③ uniformly σ -finite.

Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

*There is a **unique** measure μ on \mathfrak{F} such that on $\mathfrak{F}_1 \times \cdots \times \mathfrak{F}_n$:*

$$\begin{aligned}\mu(A_1 \times \cdots \times A_n) &= \int_{A_1} \mu_1(d\omega_1) \int_{A_2} \mu(\omega_1, d\omega_2) \\ &\cdots \int_{A_{n-1}} \mu(\omega_1, \dots, \omega_{n-2}, d\omega_{n-1}) \int_{A_n} \mu(\omega_1, \dots, \omega_{n-1}, d\omega_n).\end{aligned}$$

Measures on Larger Product Spaces

Theorem (Product Measure Theorem)

*There is a **unique** measure μ on \mathfrak{F} such that on $\mathfrak{F}_1 \times \cdots \times \mathfrak{F}_n$:*

$$\begin{aligned}\mu(A_1 \times \cdots \times A_n) &= \int_{A_1} \mu_1(d\omega_1) \int_{A_2} \mu(\omega_1, d\omega_2) \\ &\quad \cdots \int_{A_{n-1}} \mu(\omega_1, \dots, \omega_{n-2}, d\omega_{n-1}) \int_{A_n} \mu(\omega_1, \dots, \omega_{n-1}, d\omega_n).\end{aligned}$$

Let $f : (\Omega, \mathfrak{F}) \rightarrow (\bar{\mathbb{R}}, \mathfrak{B}(\bar{\mathbb{R}}))$. If $f \geq 0$, then

$$\begin{aligned}\int_{\Omega} f \, d\mu &= \int_{\Omega_1} \mu_1(d\omega_1) \int_{\Omega_2} \mu(\omega_1, d\omega_2) \\ &\quad \cdots \int_{\Omega_n} f(\omega_1, \dots, \omega_n) \, \mu(\omega_1, \dots, \omega_{n-1}, d\omega_n).\end{aligned}$$

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let $(\Omega_j, \mathfrak{F}_j)$ be a measurable space, $j = 1, 2, \dots$.

Let $\Omega = \times_{j=1}^{\infty} \Omega_j$. If $B^n \subseteq \Omega_1 \times \dots \times \Omega_n$, define

$$B_n := \{\omega \in \Omega \mid (\omega_1, \omega_2, \dots, \omega_n) \in B^n\}.$$

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let $(\Omega_j, \mathfrak{F}_j)$ be a measurable space, $j = 1, 2, \dots$.

Let $\Omega = \times_{j=1}^{\infty} \Omega_j$. If $B^n \subseteq \Omega_1 \times \dots \times \Omega_n$, define

$$B_n := \{\omega \in \Omega \mid (\omega_1, \omega_2, \dots, \omega_n) \in B^n\}.$$

B_n is called **cylinder** with **base** B^n .

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let $(\Omega_j, \mathfrak{F}_j)$ be a measurable space, $j = 1, 2, \dots$.

Let $\Omega = \times_{j=1}^{\infty} \Omega_j$. If $B^n \subseteq \Omega_1 \times \dots \times \Omega_n$, define

$$B_n := \{\omega \in \Omega \mid (\omega_1, \omega_2, \dots, \omega_n) \in B^n\}.$$

B_n is called **cylinder** with **base** B^n .

- B_n is **measurable** if $B^n \in \sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_n)$.

Measures on Infinite Product Spaces

Definition (Cylinder Set)

Let $(\Omega_j, \mathfrak{F}_j)$ be a measurable space, $j = 1, 2, \dots$.

Let $\Omega = \times_{j=1}^{\infty} \Omega_j$. If $B^n \subseteq \Omega_1 \times \dots \times \Omega_n$, define

$$B_n := \{\omega \in \Omega \mid (\omega_1, \omega_2, \dots, \omega_n) \in B^n\}.$$

B_n is called **cylinder** with **base** B^n .

- B_n is **measurable** if $B^n \in \sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_n)$.
- B_n is a **rectangle** if $B^n = A_1 \times \dots \times A_n$ and $A_j \subseteq \Omega_j$;
 B_n is a **measurable rectangle** if $A_j \in \mathfrak{F}_j$.

Measures on Infinite Product Spaces

Ionescu–Tulcea Theorem

Let P_1 be a **probability measure** on \mathfrak{F}_1 and **for each** $(\omega_1, \dots, \omega_j)$, $j \in \mathbb{N}$, assume a measurable probability measure $P(\omega_1, \dots, \omega_j, \cdot)$ on \mathfrak{F}_{j+1} .

Let P_n be defined on $\sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_n)$:

$$P_n(F) = \int_{\Omega_1} P_1(d\omega_1) \int_{\Omega_2} P(\omega_1, d\omega_2) \cdots \int_{\Omega_n} \mathbf{1}_F(\omega_1, \dots, \omega_n) P(\omega_1, \dots, \omega_{n-1}, d\omega_n).$$

Measures on Infinite Product Spaces

Ionescu–Tulcea Theorem

Let P_1 be a **probability measure** on \mathfrak{F}_1 and **for each** $(\omega_1, \dots, \omega_j)$, $j \in \mathbb{N}$, assume a measurable probability measure $P(\omega_1, \dots, \omega_j, \cdot)$ on \mathfrak{F}_{j+1} .

Let P_n be defined on $\sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_n)$:

$$P_n(F) = \int_{\Omega_1} P_1(d\omega_1) \int_{\Omega_2} P(\omega_1, d\omega_2) \cdots \int_{\Omega_n} \mathbf{1}_F(\omega_1, \dots, \omega_n) P(\omega_1, \dots, \omega_{n-1}, d\omega_n).$$

There is a **unique** prob. measure P on $\sigma\left(\bigtimes_{j=1}^{\infty} \mathfrak{F}_j\right)$ such that for all n :

$$P\{\omega \in \Omega \mid (\omega_1, \dots, \omega_n) \in B^n\} = P_n(B^n)$$

Measures on Infinite Product Spaces

Ionescu–Tulcea Theorem

Let P_1 be a **probability measure** on \mathfrak{F}_1 and **for each** $(\omega_1, \dots, \omega_j)$, $j \in \mathbb{N}$, assume a measurable probability measure $P(\omega_1, \dots, \omega_j, \cdot)$ on \mathfrak{F}_{j+1} .

Let P_n be defined on $\sigma(\mathfrak{F}_1 \times \dots \times \mathfrak{F}_n)$:

$$P_n(F) = \int_{\Omega_1} P_1(d\omega_1) \int_{\Omega_2} P(\omega_1, d\omega_2) \cdots \int_{\Omega_n} \mathbf{1}_F(\omega_1, \dots, \omega_n) P(\omega_1, \dots, \omega_{n-1}, d\omega_n).$$

There is a **unique** prob. measure P on $\sigma\left(\bigtimes_{j=1}^{\infty} \mathfrak{F}_j\right)$ such that for all n :

$$P\{\omega \in \Omega \mid (\omega_1, \dots, \omega_n) \in B^n\} = P_n(B^n)$$

Intuition: The measure of a cylinder equals the measure of its finite base.

Continuous Time Markov Decision Processes

Definition

A CTMDP is a tuple $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$ with finite set of states \mathcal{S} , labeled according to AP and L. Further

- Act is the set of possible actions and
- $\mathbf{R} : \mathcal{S} \times \text{Act} \times \mathcal{S} \rightarrow \mathbb{R}$ is a transition rate matrix, parameterized with actions.

Continuous Time Markov Decision Processes

Definition

A CTMDP is a tuple $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$ with finite set of states \mathcal{S} , labeled according to AP and L. Further

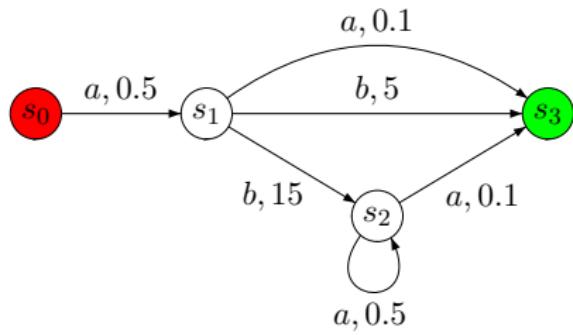
- Act is the set of possible actions and
- $\mathbf{R} : \mathcal{S} \times \text{Act} \times \mathcal{S} \rightarrow \mathbb{R}$ is a transition rate matrix, parameterized with actions.

Example

Being in state $s \in \mathcal{S}$,

- ① choose enabled action from $\text{Act}(s)$
- ② sojourn time in s : $1 - e^{-E(s,a)t}$
- ③ next state probability: $\frac{\mathbf{R}(s,a,s')}{E(s,a)}$

where $E(s, a) := \sum_{s' \in \mathcal{S}} \mathbf{R}(s, a, s')$.



Paths in a CTMDP

Definition (Paths)

Let $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \mathbf{L})$. Finite paths are denoted

$$\pi = s_0 \xrightarrow{a_0, t_0} s_1 \xrightarrow{a_1, t_1} s_2 \xrightarrow{a_2, t_2} \cdots \xrightarrow{a_{n-1}, t_{n-1}} s_n.$$

Paths in a CTMDP

Definition (Paths)

Let $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \mathbf{L})$. Finite paths are denoted

$$\pi = s_0 \xrightarrow{a_0, t_0} s_1 \xrightarrow{a_1, t_1} s_2 \xrightarrow{a_2, t_2} \cdots \xrightarrow{a_{n-1}, t_{n-1}} s_n.$$

Sets of paths are denoted as usual:

$$\text{Paths}^n := \mathcal{S} \times (\text{Act} \times \mathbb{R} \times \mathcal{S})^n \quad \text{and} \quad \text{Paths}^* := \bigcup_{i=0}^{\infty} \text{Paths}^n$$

Paths in a CTMDP

Definition (Paths)

Let $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$. Finite paths are denoted

$$\pi = s_0 \xrightarrow{a_0, t_0} s_1 \xrightarrow{a_1, t_1} s_2 \xrightarrow{a_2, t_2} \cdots \xrightarrow{a_{n-1}, t_{n-1}} s_n.$$

Sets of paths are denoted as usual:

$$\text{Paths}^n := \mathcal{S} \times (\text{Act} \times \mathbb{R} \times \mathcal{S})^n \quad \text{and} \quad \text{Paths}^* := \bigcup_{i=0}^{\infty} \text{Paths}^n$$

Some notation

- $|\pi| := n$ and $\pi \downarrow := s_n$

Paths in a CTMDP

Definition (Paths)

Let $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$. Finite paths are denoted

$$\pi = s_0 \xrightarrow{a_0, t_0} s_1 \xrightarrow{a_1, t_1} s_2 \xrightarrow{a_2, t_2} \cdots \xrightarrow{a_{n-1}, t_{n-1}} s_n.$$

Sets of paths are denoted as usual:

$$\text{Paths}^n := \mathcal{S} \times (\text{Act} \times \mathbb{R} \times \mathcal{S})^n \quad \text{and} \quad \text{Paths}^* := \bigcup_{i=0}^{\infty} \text{Paths}^n$$

Some notation

- $|\pi| := n$ and $\pi \downarrow := s_n$
- $\pi[i..j] := s_i \xrightarrow{a_i, t_i} \cdots \xrightarrow{a_{j-1}, t_{j-1}} s_j$ for $0 \leq i < j \leq |\pi|$.

Paths in a CTMDP

Definition (Paths)

Let $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \mathbf{L})$. Finite paths are denoted

$$\pi = s_0 \xrightarrow{a_0, t_0} s_1 \xrightarrow{a_1, t_1} s_2 \xrightarrow{a_2, t_2} \cdots \xrightarrow{a_{n-1}, t_{n-1}} s_n.$$

Sets of paths are denoted as usual:

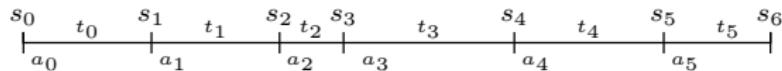
$$\text{Paths}^n := \mathcal{S} \times (\text{Act} \times \mathbb{R} \times \mathcal{S})^n \quad \text{and} \quad \text{Paths}^* := \bigcup_{i=0}^{\infty} \text{Paths}^n$$

Some notation

- $|\pi| := n$ and $\pi \downarrow := s_n$
- $\pi[i..j] := s_i \xrightarrow{a_i, t_i} \cdots \xrightarrow{a_{j-1}, t_{j-1}} s_j$ for $0 \leq i < j \leq |\pi|$.
- $\pi @ t$ is the state occupied in π at time t .
- $\delta(\pi, n) = t_n$ denotes the time spent in the n -th state.

Paths in a CTMDP

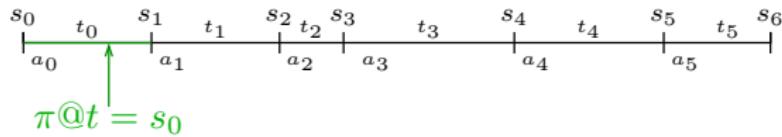
Example



$$\pi @ t := \delta \left(\pi, \min \left\{ k \in \mathbb{N} \mid \sum_{i=0}^k t_i > t \right\} \right) \quad \delta(\pi, n) := t_n$$

Paths in a CTMDP

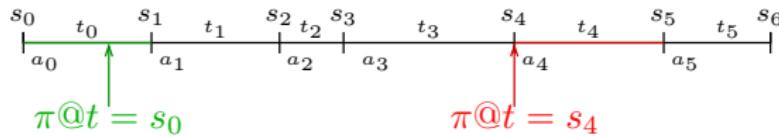
Example



$$\pi @ t := \delta \left(\pi, \min \left\{ k \in \mathbb{N} \mid \sum_{i=0}^k t_i > t \right\} \right) \quad \delta(\pi, n) := t_n$$

Paths in a CTMDP

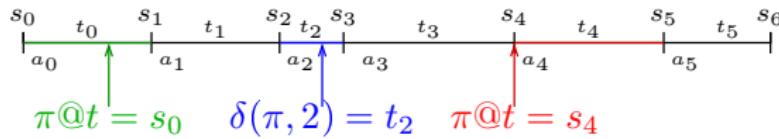
Example



$$\pi @ t := \delta \left(\pi, \min \left\{ k \in \mathbb{N} \mid \sum_{i=0}^k t_i > t \right\} \right) \quad \delta(\pi, n) := t_n$$

Paths in a CTMDP

Example



$$\pi @ t := \delta\left(\pi, \min\left\{k \in \mathbb{N} \mid \sum_{i=0}^k t_i > t\right\}\right) \quad \delta(\pi, n) := t_n$$

Paths in a CTMDP

Definition (Infinite Paths)

The set of infinite paths is

$$Paths^\omega := \mathcal{S} \times (\text{Act} \times \mathbb{R} \times \mathcal{S})^\omega.$$

The definitions are extended to $Paths^\omega$ if appropriate.

Whatever you like: a, b, c

In CTMDP, the next action is chosen **nondeterministically**.

→ Nondeterminism must be resolved to assign probabilities.

Classes of schedulers

A scheduler resolves the nondeterminism in a *CTMDP*.

According to the information available, distinguish:

- ① information about the history:
stationary markovian, markovian deterministic, history dependent
- ② timed or time-abstract

The decision taken can either be

- ① deterministic
- ② randomized

Example: Scheduler Classes

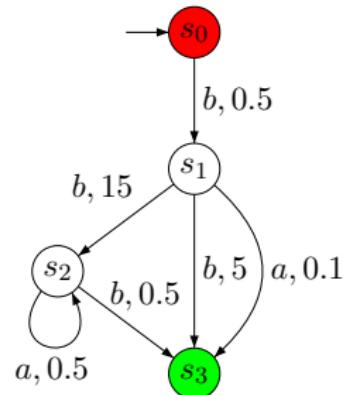
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \mathcal{L})$.

1 Stationary Markovian deterministic scheduler:

Consider *SMD*-scheduler that always chooses action b :

$$\mathcal{D} : \mathcal{S} \rightarrow \text{Act} : s \mapsto b$$

\mathcal{C} and \mathcal{D} induce a CTMC as follows:



Example: Scheduler Classes

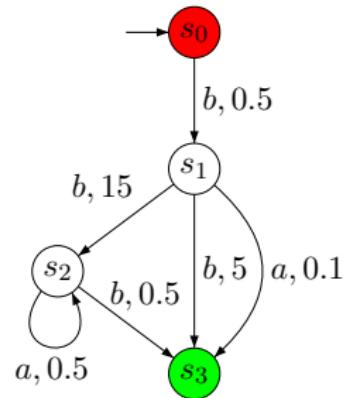
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \mathcal{L})$.

① Stationary Markovian deterministic scheduler:

Consider *SMD*-scheduler that always chooses action b :

$$\mathcal{D} : \mathcal{S} \rightarrow \text{Act} : s \mapsto b$$

\mathcal{C} and \mathcal{D} induce a CTMC as follows:



Example: Scheduler Classes

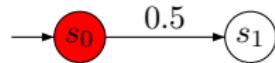
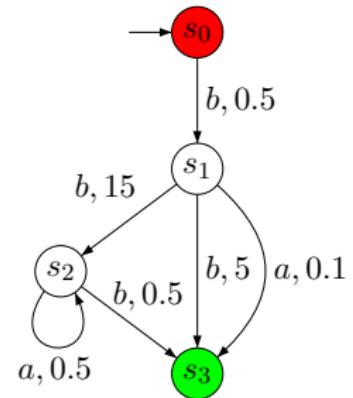
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \mathcal{L})$.

① Stationary Markovian deterministic scheduler:

Consider *SMD*-scheduler that always chooses action b :

$$\mathcal{D} : \mathcal{S} \rightarrow \text{Act} : s \mapsto b$$

\mathcal{C} and \mathcal{D} induce a CTMC as follows:



Example: Scheduler Classes

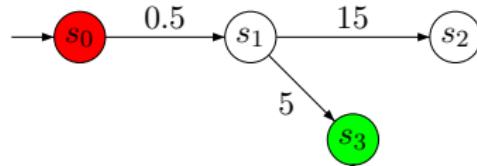
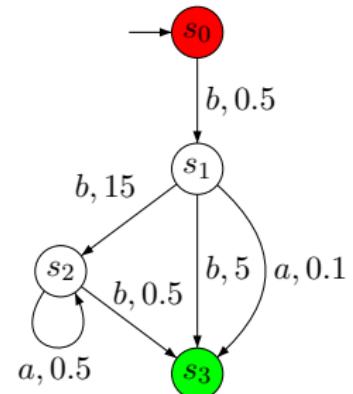
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$.

1 Stationary Markovian deterministic scheduler:

Consider *SMD*-scheduler that always chooses action b :

$$\mathcal{D} : \mathcal{S} \rightarrow \text{Act} : s \mapsto b$$

\mathcal{C} and \mathcal{D} induce a CTMC as follows:



Example: Scheduler Classes

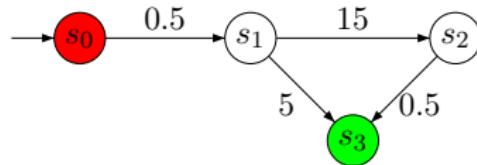
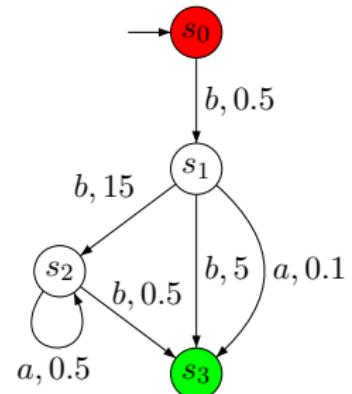
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \mathcal{L})$.

1 Stationary Markovian deterministic scheduler:

Consider *SMD*-scheduler that always chooses action b :

$$\mathcal{D} : \mathcal{S} \rightarrow \text{Act} : s \mapsto b$$

\mathcal{C} and \mathcal{D} induce a CTMC as follows:



Example: Markovian Randomized Scheduler

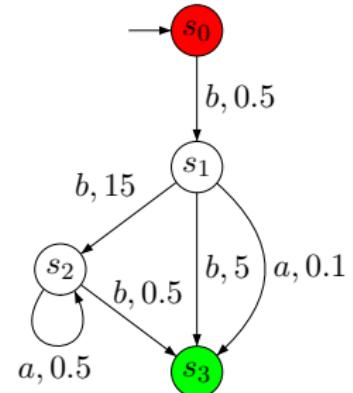
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$.

② Markovian randomized scheduler:

$$\mathcal{D} : \mathbb{N} \times \mathcal{S} \rightarrow \text{Distr}(\text{Act}) : (n, s) \mapsto \begin{cases} \mathbf{I}_b & \text{if } s \in \{s_0, s_1\} \\ \gamma_n & \text{if } s = s_2 \end{cases}$$

$$\gamma_n : \text{Act} \rightarrow [0, 1] : x \mapsto \begin{cases} 1 - 2^{-n} & \text{if } x = a \\ 2^{-n} & \text{if } x = b \end{cases}$$

where



Example: Markovian Randomized Scheduler

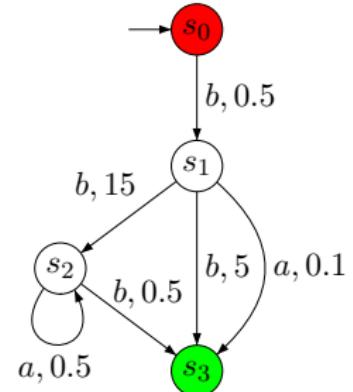
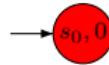
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$.

② Markovian randomized scheduler:

$$\mathcal{D} : \mathbb{N} \times \mathcal{S} \rightarrow \text{Distr}(\text{Act}) : (n, s) \mapsto \begin{cases} \mathbf{I}_b & \text{if } s \in \{s_0, s_1\} \\ \gamma_n & \text{if } s = s_2 \end{cases}$$

$$\gamma_n : \text{Act} \rightarrow [0, 1] : x \mapsto \begin{cases} 1 - 2^{-n} & \text{if } x = a \\ 2^{-n} & \text{if } x = b \end{cases}$$

where



Example: Markovian Randomized Scheduler

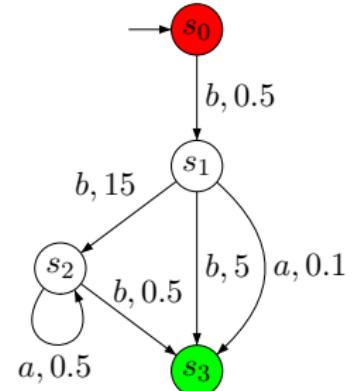
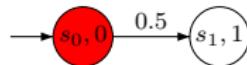
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$.

② Markovian randomized scheduler:

$$\mathcal{D} : \mathbb{N} \times \mathcal{S} \rightarrow \text{Distr}(\text{Act}) : (n, s) \mapsto \begin{cases} \mathbf{I}_b & \text{if } s \in \{s_0, s_1\} \\ \gamma_n & \text{if } s = s_2 \end{cases}$$

$$\gamma_n : \text{Act} \rightarrow [0, 1] : x \mapsto \begin{cases} 1 - 2^{-n} & \text{if } x = a \\ 2^{-n} & \text{if } x = b \end{cases}$$

where



Example: Markovian Randomized Scheduler

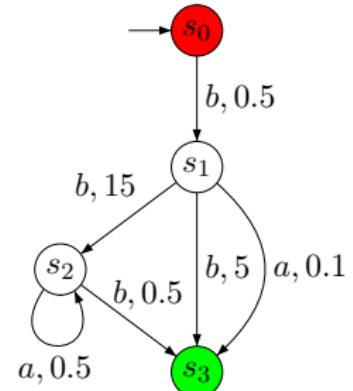
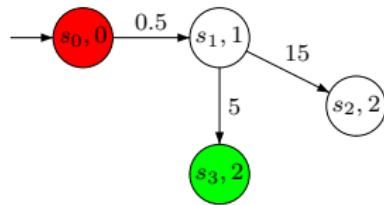
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$.

② Markovian randomized scheduler:

$$\mathcal{D} : \mathbb{N} \times \mathcal{S} \rightarrow \text{Distr}(\text{Act}) : (n, s) \mapsto \begin{cases} \mathbf{I}_b & \text{if } s \in \{s_0, s_1\} \\ \gamma_n & \text{if } s = s_2 \end{cases}$$

$$\gamma_n : \text{Act} \rightarrow [0, 1] : x \mapsto \begin{cases} 1 - 2^{-n} & \text{if } x = a \\ 2^{-n} & \text{if } x = b \end{cases}$$

where



Example: Markovian Randomized Scheduler

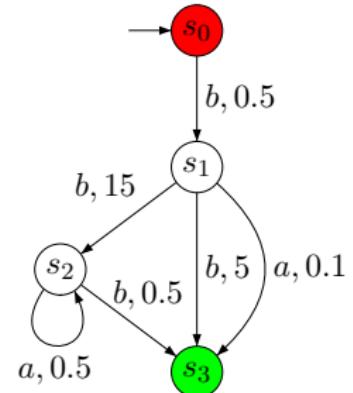
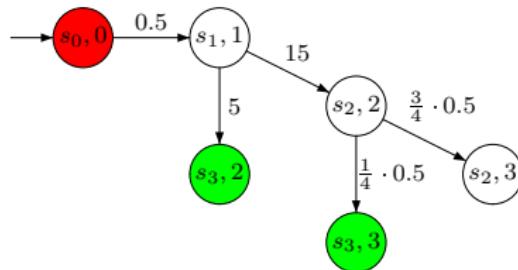
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$.

② Markovian randomized scheduler:

$$\mathcal{D} : \mathbb{N} \times \mathcal{S} \rightarrow \text{Distr}(\text{Act}) : (n, s) \mapsto \begin{cases} \mathbf{I}_b & \text{if } s \in \{s_0, s_1\} \\ \gamma_n & \text{if } s = s_2 \end{cases}$$

$$\gamma_n : \text{Act} \rightarrow [0, 1] : x \mapsto \begin{cases} 1 - 2^{-n} & \text{if } x = a \\ 2^{-n} & \text{if } x = b \end{cases}$$

where



Example: Markovian Randomized Scheduler

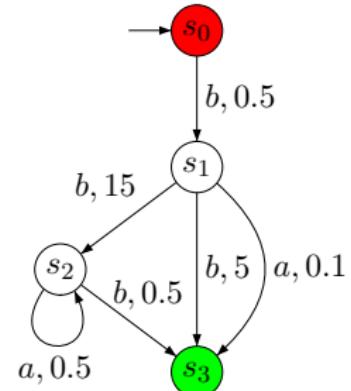
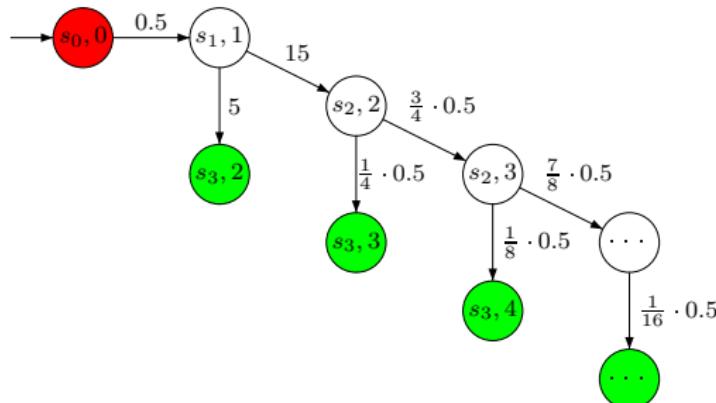
Assume $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$.

② Markovian randomized scheduler:

$$\mathcal{D} : \mathbb{N} \times \mathcal{S} \rightarrow \text{Distr}(\text{Act}) : (n, s) \mapsto \begin{cases} \mathbf{I}_b & \text{if } s \in \{s_0, s_1\} \\ \gamma_n & \text{if } s = s_2 \end{cases}$$

where

$$\gamma_n : \text{Act} \rightarrow [0, 1] : x \mapsto \begin{cases} 1 - 2^{-n} & \text{if } x = a \\ 2^{-n} & \text{if } x = b \end{cases}$$



Example: The General Setting

In general: CTMDP \mathcal{C} and scheduler \mathcal{D} do **not** induce a finite (or countable) CTMC!

Example

Consider a timed-history dependent scheduler.

The states of its induced CTMC consist of the set of timed paths which is uncountable.

Semantics: Combined Transitions

Given $\pi \in Paths^*$, the probability to continue by $\pi \downarrow \xrightarrow{a,t} s$ depends on

- $\mathbf{R}(\pi \downarrow, a, s)$, the exponential distribution of CTMDP and
- $\mathcal{D}(\pi, a)$, the scheduler's decision.

Semantics: Combined Transitions

Given $\pi \in Paths^*$, the probability to continue by $\pi \downarrow \xrightarrow{a,t} s$ depends on

- $\mathbf{R}(\pi \downarrow, a, s)$, the exponential distribution of CTMDP and
- $\mathcal{D}(\pi, a)$, the scheduler's decision.

Definition (Combined Transition)

Let $\Omega = \text{Act} \times \mathbb{R} \times \mathcal{S}$. Then $(a, t, s) \in \Omega$ is a **combined transition**.

- $\mathfrak{F}_{\text{Act}} \times \mathfrak{B}(\mathbb{R}) \times \mathfrak{F}_{\mathcal{S}}$ is the class of **measurable rectangles** and
- $\mathfrak{F} := \sigma(\mathfrak{F}_{\text{Act}} \times \mathfrak{B}(\mathbb{R}) \times \mathfrak{F}_{\mathcal{S}})$ is the **σ -field** over combined transitions.

Semantics: Combined Transitions

Given $\pi \in Paths^*$, the probability to continue by $\pi \downarrow \xrightarrow{a,t} s$ depends on

- $\mathbf{R}(\pi \downarrow, a, s)$, the exponential distribution of CTMDP and
- $\mathcal{D}(\pi, a)$, the scheduler's decision.

Definition (Combined Transition)

Let $\Omega = \text{Act} \times \mathbb{R} \times \mathcal{S}$. Then $(a, t, s) \in \Omega$ is a **combined transition**.

- $\mathfrak{F}_{\text{Act}} \times \mathfrak{B}(\mathbb{R}) \times \mathfrak{F}_{\mathcal{S}}$ is the class of **measurable rectangles** and
- $\mathfrak{F} := \sigma(\mathfrak{F}_{\text{Act}} \times \mathfrak{B}(\mathbb{R}) \times \mathfrak{F}_{\mathcal{S}})$ is the **σ -field** over combined transitions.

Example

\mathfrak{F} is the class of measurable sets of combined transitions;
 $M \in \mathfrak{F}$ is a set of combined transitions.

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n , represented as a Cartesian product

$$S_0 \times \underbrace{A_0 \times I_0 \times S_1}_{M_0} \times \cdots \times \underbrace{A_{n-1} \times I_{n-1} \times S_n}_{M_{n-1}}$$

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n , represented as a Cartesian product

$$S_0 \times \underbrace{A_0 \times I_0 \times S_1}_{M_0} \times \cdots \times \underbrace{A_{n-1} \times I_{n-1} \times S_n}_{M_{n-1}}$$

is called

- **path rectangle** iff $S_0 \subseteq \mathcal{S}$ and $M_i \subseteq \Omega$.

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n , represented as a Cartesian product

$$S_0 \times \underbrace{A_0 \times I_0 \times S_1}_{M_0} \times \cdots \times \underbrace{A_{n-1} \times I_{n-1} \times S_n}_{M_{n-1}}$$

is called

- **path rectangle** iff $S_0 \subseteq \mathcal{S}$ and $M_i \subseteq \Omega$.
- **measurable path rectangle** iff $S_0 \in \mathfrak{F}_{\mathcal{S}}$ and $M_i \in \mathfrak{F}$.

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n , represented as a Cartesian product

$$S_0 \times \underbrace{A_0 \times I_0 \times S_1}_{M_0} \times \cdots \times \underbrace{A_{n-1} \times I_{n-1} \times S_n}_{M_{n-1}}$$

is called

- **path rectangle** iff $S_0 \subseteq \mathcal{S}$ and $M_i \subseteq \Omega$.
- **measurable path rectangle** iff $S_0 \in \mathfrak{F}_{\mathcal{S}}$ and $M_i \in \mathfrak{F}$.

Set of measurable path rectangles: $\mathfrak{F}_{\mathcal{S}} \times \mathfrak{F}^n$

Semantics: From Paths to Rectangles

Finite Measurable Path Rectangles

A set of path of length n , represented as a Cartesian product

$$S_0 \times \underbrace{A_0 \times I_0 \times S_1}_{M_0} \times \cdots \times \underbrace{A_{n-1} \times I_{n-1} \times S_n}_{M_{n-1}}$$

is called

- **path rectangle** iff $S_0 \subseteq \mathcal{S}$ and $M_i \subseteq \Omega$.
- **measurable path rectangle** iff $S_0 \in \mathfrak{F}_{\mathcal{S}}$ and $M_i \in \mathfrak{F}$.

Set of measurable path rectangles: $\mathfrak{F}_{\mathcal{S}} \times \mathfrak{F}^n$

Lemma

The class of finite disjoint unions of measurable rectangles is a field.

Semantics: The Product σ -Field

Finite Product σ -Field over Measurable Path Rectangles

The smallest σ -field generated by **measurable path rectangles**:

$$\mathfrak{F}_{Paths^n} := \sigma(\mathfrak{F}_{\mathcal{S}} \times \mathfrak{F}^n) \quad \text{for } n \geq 0.$$

Semantics: The Product σ -Field

Finite Product σ -Field over Measurable Path Rectangles

The smallest σ -field generated by **measurable path rectangles**:

$$\mathfrak{F}_{Paths^n} := \sigma(\mathfrak{F}_{\mathcal{S}} \times \mathfrak{F}^n) \quad \text{for } n \geq 0.$$

Example

Let $\mathcal{S} = \{s_0, s_1\}$, $Act = \{a, b\}$.

- $\{s_0\} \times \{a, b\} \times (0, 0.2] \cup [1.2, 2] \times \{s_0, s_1\}$ is a measurable **rectangle**.
Elements: $s_0 \xrightarrow{a, 0.1} s_0$, $s_0 \xrightarrow{a, 0.1001} s_0$, $s_0 \xrightarrow{b, \sqrt{2}} s_1$, etc.

Semantics: The Product σ -Field

Finite Product σ -Field over Measurable Path Rectangles

The smallest σ -field generated by **measurable path rectangles**:

$$\mathfrak{F}_{Paths^n} := \sigma(\mathfrak{F}_{\mathcal{S}} \times \mathfrak{F}^n) \quad \text{for } n \geq 0.$$

Example

Let $\mathcal{S} = \{s_0, s_1\}$, $Act = \{a, b\}$.

- $\{s_0\} \times \{a, b\} \times (0, 0.2] \cup [1.2, 2] \times \{s_0, s_1\}$ is a measurable **rectangle**.
Elements: $s_0 \xrightarrow{a, 0.1} s_0$, $s_0 \xrightarrow{a, 0.1001} s_0$, $s_0 \xrightarrow{b, \sqrt{2}} s_1$, etc.
- $\left(\{s_1\} \times \{a\} \times (0, 0.2] \times \{s_2\}\right) \cup \left(\{s_1\} \times \{b\} \times [0.3, 1] \times \{s_3\}\right) \in \mathfrak{F}_{Paths^1}$
Elements: $s_1 \xrightarrow{a, 0.1} s_2$, $s_1 \xrightarrow{b, \frac{1}{3}} s_3$, $s_1 \xrightarrow{a, 0.2} s_2$, $s_1 \xrightarrow{a, \frac{1}{3}} s_3$, etc.

Semantics: Cylinders and Infinite Paths I

Cylinder Set Construction

Let $C^n \subseteq \text{Paths}^n$ be a set of finite paths. Its induced **cylinder** is

$$C_n := \{\pi \in \text{Paths}^\omega \mid \pi[0..n] \in C^n\}$$

C^n is the **cylinder base** of C_n .

Semantics: Cylinders and Infinite Paths I

Cylinder Set Construction

Let $C^n \subseteq \text{Paths}^n$ be a set of finite paths. Its induced **cylinder** is

$$C_n := \{\pi \in \text{Paths}^\omega \mid \pi[0..n] \in C^n\}$$

C^n is the **cylinder base** of C_n .

C_n is a **measurable cylinder** iff $C^n \in \mathfrak{F}_{\text{Paths}^n}$.

Semantics: Cylinders and Infinite Paths I

Cylinder Set Construction

Let $C^n \subseteq \text{Paths}^n$ be a set of finite paths. Its induced **cylinder** is

$$C_n := \{\pi \in \text{Paths}^\omega \mid \pi[0..n] \in C^n\}$$

C^n is the **cylinder base** of C_n .

C_n is a **measurable cylinder** iff $C^n \in \mathfrak{F}_{\text{Paths}^n}$.

Properties of Cylinders

- Any cylinder C can be represented by a finite cylinder base.

Semantics: Cylinders and Infinite Paths I

Cylinder Set Construction

Let $C^n \subseteq \text{Paths}^n$ be a set of finite paths. Its induced **cylinder** is

$$C_n := \{\pi \in \text{Paths}^\omega \mid \pi[0..n] \in C^n\}$$

C^n is the **cylinder base** of C_n .

C_n is a **measurable cylinder** iff $C^n \in \mathfrak{F}_{\text{Paths}^n}$.

Properties of Cylinders

- Any cylinder C can be represented by a finite cylinder base.
- If $m < n$ and $C^m = C^n \times \Omega^{n-m}$, then $C_m = C_n$.

Semantics: Cylinders and Infinite Paths II

Definition (σ -Field generated by Measurable Cylinders)

The minimal σ -field generated by measurable cylinders is defined by

$$\mathfrak{F}_{Paths^\omega} := \sigma(\mathfrak{F}_{\mathcal{S}} \times \mathfrak{F}^\infty) \quad \text{or equivalently}$$

$$\mathfrak{F}_{Paths^\omega} := \sigma\left(\bigcup_{i=0}^{\infty} \{C_n \mid C^n \in \mathfrak{F}_{Paths^n}\}\right).$$

Finally: $(Paths^\omega, \mathfrak{F}_{Paths^\omega})$ is our measurable space.

Semantics: Combined Transition Probability

Product Measure on Combined Transitions

For history $\pi \in Paths^*$, three types of measure spaces are involved:

- ① $(Act, \mathfrak{F}_{Act}, \mathcal{D}(\pi))$

Semantics: Combined Transition Probability

Product Measure on Combined Transitions

For history $\pi \in Paths^*$, three types of measure spaces are involved:

- ① $(Act, \mathfrak{F}_{Act}, \mathcal{D}(\pi))$
- ② $(\mathbb{R}_{\geq 0}, \mathfrak{B}(\mathbb{R}_{\geq 0}), \mu_a)$ where

μ_a 's distribution: $F(x) = \int_0^x E(\pi \downarrow, a) \cdot e^{-E(\pi \downarrow, a)t} dt$

Semantics: Combined Transition Probability

Product Measure on Combined Transitions

For history $\pi \in Paths^*$, three types of measure spaces are involved:

- ① $(Act, \mathfrak{F}_{Act}, \mathcal{D}(\pi))$
- ② $(\mathbb{R}_{\geq 0}, \mathfrak{B}(\mathbb{R}_{\geq 0}), \mu_a)$ where
 μ_a 's distribution: $F(x) = \int_0^x E(\pi \downarrow, a) \cdot e^{-E(\pi \downarrow, a)t} dt$
- ③ $(\mathcal{S}, \mathfrak{F}_{\mathcal{S}}, \mathbf{P}(\pi \downarrow, a)).$

Semantics: Combined Transition Probability

Product Measure on Combined Transitions

For history $\pi \in Paths^*$, three types of measure spaces are involved:

- ① $(Act, \mathfrak{F}_{Act}, \mathcal{D}(\pi))$
- ② $(\mathbb{R}_{\geq 0}, \mathfrak{B}(\mathbb{R}_{\geq 0}), \mu_a)$ where
 μ_a 's distribution: $F(x) = \int_0^x E(\pi \downarrow, a) \cdot e^{-E(\pi \downarrow, a)t} dt$
- ③ $(\mathcal{S}, \mathfrak{F}_{\mathcal{S}}, \mathbf{P}(\pi \downarrow, a)).$

Definition (A Measure on Subsets of Ω)

Let $\pi \in Paths^*$. Then

$\mu_{\mathcal{D}}(\pi, \cdot) : \mathfrak{F} \rightarrow [0, 1] :$

$$M \mapsto \int_{Act} \mathcal{D}(\pi, da) \int_{\mathbb{R}_{\geq 0}} \eta_a(dt) \int_{\mathcal{S}} \overbrace{\mathbf{I}_M(a, t, s)}^{\text{indicator}} \mathbf{P}(\pi \downarrow, a, ds).$$

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)

Let $\pi \in Paths^*$. Let $A \times I \times S' \in \mathfrak{F}$, I an interval. Then

$$\mu_{\mathcal{D}}(\pi, A \times I \times S') = \sum_{a \in A} \mathcal{D}(\pi, \{a\}) \cdot \mathbf{P}(\pi \downarrow, a, S') \cdot \int_I E(\pi \downarrow, a) \cdot e^{-E(\pi \downarrow, a)t} dt$$

Intuition

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)

Let $\pi \in Paths^*$. Let $A \times I \times S' \in \mathfrak{F}$, I an interval. Then

$$\mu_{\mathcal{D}}(\pi, A \times I \times S') = \sum_{a \in A} \mathcal{D}(\pi, \{a\}) \cdot \mathbf{P}(\pi \downarrow, a, S') \cdot \int_I E(\pi \downarrow, a) \cdot e^{-E(\pi \downarrow, a)t} dt$$

Intuition

- $\mathcal{D}(\pi, \{a\})$: probability to leave $\pi \downarrow$ via action a

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)

Let $\pi \in Paths^*$. Let $A \times I \times S' \in \mathfrak{F}$, I an interval. Then

$$\mu_{\mathcal{D}}(\pi, A \times I \times S') = \sum_{a \in A} \mathcal{D}(\pi, \{a\}) \cdot \mathbf{P}(\pi \downarrow, a, S') \cdot \int_I E(\pi \downarrow, a) \cdot e^{-E(\pi \downarrow, a)t} dt$$

Intuition

- $\mathcal{D}(\pi, \{a\})$: probability to leave $\pi \downarrow$ via action a
- $\mathbf{P}(\pi \downarrow, a, S')$: probability for a -successor in S'

Semantics: Combined Transition Probability

Example (Probability Measure of Rectangles)

Let $\pi \in Paths^*$. Let $A \times I \times S' \in \mathfrak{F}$, I an interval. Then

$$\mu_{\mathcal{D}}(\pi, A \times I \times S') = \sum_{a \in A} \mathcal{D}(\pi, \{a\}) \cdot \mathbf{P}(\pi \downarrow, a, S') \cdot \int_I E(\pi \downarrow, a) \cdot e^{-E(\pi \downarrow, a)t} dt$$

Intuition

- $\mathcal{D}(\pi, \{a\})$: probability to leave $\pi \downarrow$ via action a
- $\mathbf{P}(\pi \downarrow, a, S')$: probability for a -successor in S'
- $\int_I E(\pi \downarrow, a) \cdot e^{-E(\pi \downarrow, a)t} dt$: probability to leave $\pi \downarrow$ within I .

Semantics: Combined Transition Probability

Lemma (Measurability of $\mu_{\mathcal{D}}$)

For fixed $M \in \mathfrak{F}$ and finite path-length n :

$$\mu_{\mathcal{D}}(\cdot, M) : (Paths^n, \mathfrak{F}_{Paths^n}) \rightarrow (\mathbb{R}, \mathfrak{B}(\mathbb{R}))$$

Measurability **necessary** for Lebesgue–integration.

Semantics: Probability Measures on \mathfrak{F}_{Paths^*}

Definition (Probability Measures on \mathfrak{F}_{Paths^*})

Let $(\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$ be a CTMDP, α an initial distribution and \mathcal{D} a *THR* scheduler.

Semantics: Probability Measures on \mathfrak{F}_{Paths^*}

Definition (Probability Measures on \mathfrak{F}_{Paths^*})

Let $(\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$ be a CTMDP, α an initial distribution and \mathcal{D} a *THR* scheduler. Define inductively

$$Pr_{\alpha, \mathcal{D}}^0 : \mathfrak{F}_{\mathcal{S}} \rightarrow [0, 1] : \textcolor{red}{S} \mapsto \sum_{s \in S} \alpha(s)$$

$$Pr_{\alpha, \mathcal{D}}^n : \mathfrak{F}_{Paths^n} \rightarrow [0, 1] :$$

$$\Pi \mapsto \int_{Paths^{n-1}} Pr_{\alpha, \mathcal{D}}^{n-1}(d\pi) \int_{\Omega} \overbrace{\mathbf{I}_{\Pi}(\pi \circ m)}^{\text{indicator}} \mu_{\mathcal{D}}(\pi, dm).$$

Semantics: Probability Measures on \mathfrak{F}_{Paths^*}

Definition (Probability Measures on \mathfrak{F}_{Paths^*})

Let $(\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$ be a CTMDP, α an initial distribution and \mathcal{D} a *THR* scheduler. Define inductively

$$Pr_{\alpha, \mathcal{D}}^0 : \mathfrak{F}_{\mathcal{S}} \rightarrow [0, 1] : \textcolor{red}{S} \mapsto \sum_{s \in S} \alpha(s)$$

$$Pr_{\alpha, \mathcal{D}}^n : \mathfrak{F}_{Paths^n} \rightarrow [0, 1] :$$

$$\Pi \mapsto \int_{Paths^{n-1}} Pr_{\alpha, \mathcal{D}}^{n-1}(d\pi) \int_{\Omega} \overbrace{\mathbf{I}_{\Pi}(\pi \circ m)}^{\text{indicator}} \mu_{\mathcal{D}}(\pi, dm).$$

Remarks:

- $m \in \Omega$ ranges over combined transitions.

Semantics: Probability Measures on \mathfrak{F}_{Paths^*}

Definition (Probability Measures on \mathfrak{F}_{Paths^*})

Let $(\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$ be a CTMDP, α an initial distribution and \mathcal{D} a *THR* scheduler. Define inductively

$$Pr_{\alpha, \mathcal{D}}^0 : \mathfrak{F}_{\mathcal{S}} \rightarrow [0, 1] : \textcolor{red}{S} \mapsto \sum_{s \in S} \alpha(s)$$

$$Pr_{\alpha, \mathcal{D}}^n : \mathfrak{F}_{Paths^n} \rightarrow [0, 1] :$$

$$\Pi \mapsto \int_{Paths^{n-1}} Pr_{\alpha, \mathcal{D}}^{n-1}(d\pi) \int_{\Omega} \overbrace{\mathbf{I}_{\Pi}(\pi \circ m)}^{\text{indicator}} \mu_{\mathcal{D}}(\pi, dm).$$

Remarks:

- $m \in \Omega$ ranges over combined transitions.
- If $\pi = s_0 \xrightarrow{a_0, t_0} s_1 \xrightarrow{a_1, t_1} \dots \xrightarrow{a_{n-1}, t_{n-1}} s_n$ and $m = (a, t, s)$, then
 $\pi \circ m := s_0 \xrightarrow{a_0, t_0} \dots \xrightarrow{a_{n-1}, t_{n-1}} s_n \xrightarrow{a, t} s$.

Intuition: Probability of Rectangles

Example (Probability of Rectangles)

For measurable rectangle $\Pi \times M \in \mathfrak{F}_{Paths^n}$, we obtain

$$Pr_{\alpha, \mathcal{D}}^n(\Pi \times M) = \int_{\Pi} \mu_{\mathcal{D}}(\pi, M) \ Pr_{\alpha, \mathcal{D}}^{n-1}(d\pi)$$

Intuition: Probability of Rectangles

Example (Probability of Rectangles)

For measurable rectangle $\Pi \times M \in \mathfrak{F}_{Paths^n}$, we obtain

$$Pr_{\alpha, \mathcal{D}}^n(\Pi \times M) = \int_{\Pi} \mu_{\mathcal{D}}(\pi, M) \ Pr_{\alpha, \mathcal{D}}^{n-1}(d\pi)$$

where

$$\mu_{\mathcal{D}}(\pi, M) = \int_{\text{Act}} \mathcal{D}(\pi, da) \int_{\mathbb{R}_{\geq 0}} \eta_a(dt) \int_{\mathcal{S}} \underbrace{\mathbf{I}_M(a, t, s)}_{\text{indicator}} \mathbf{P}(\pi \downarrow, a, ds).$$

Intuition: Probability of Rectangles

Example (Probability of Rectangles)

For measurable rectangle $\Pi \times M \in \mathfrak{F}_{Paths^n}$, we obtain

$$Pr_{\alpha, \mathcal{D}}^n(\Pi \times M) = \int_{\Pi} \mu_{\mathcal{D}}(\pi, M) \ Pr_{\alpha, \mathcal{D}}^{n-1}(d\pi)$$

where

$$\mu_{\mathcal{D}}(\pi, M) = \int_{Act} \mathcal{D}(\pi, da) \int_{\mathbb{R}_{\geq 0}} \eta_a(dt) \int_S \underbrace{\mathbf{I}_M(a, t, s)}_{\text{indicator}} \mathbf{P}(\pi \downarrow, a, ds).$$

Intuition:

- $\Pi \in \mathfrak{F}_{Paths^{n-1}}$ is a measurable set of paths,

Intuition: Probability of Rectangles

Example (Probability of Rectangles)

For measurable rectangle $\Pi \times M \in \mathfrak{F}_{Paths^n}$, we obtain

$$Pr_{\alpha, \mathcal{D}}^n(\Pi \times M) = \int_{\Pi} \mu_{\mathcal{D}}(\pi, M) \ Pr_{\alpha, \mathcal{D}}^{n-1}(d\pi)$$

where

$$\mu_{\mathcal{D}}(\pi, M) = \int_{Act} \mathcal{D}(\pi, da) \int_{\mathbb{R}_{\geq 0}} \eta_a(dt) \int_S \underbrace{\mathbf{I}_M(a, t, s)}_{\text{indicator}} \mathbf{P}(\pi \downarrow, a, ds).$$

Intuition:

- $\Pi \in \mathfrak{F}_{Paths^{n-1}}$ is a measurable set of paths,
- $M \in \mathfrak{F}$ is a set of combined transitions (e.g. $M = A \times I \times S'$).

Semantics: Probability of Measurable Cylinders

A Probability Measure on $\mathfrak{F}Paths^\omega$

Any measurable cylinder C can be represented as

$$C = \{\pi \in Paths^\omega \mid \pi[0..n] \in C^n\} \quad \text{for some } n \geq 0 \text{ and } C^n \in \mathfrak{F}Paths^n.$$

Define the probability measure on measurable cylinders:

$$Pr_{\alpha, \mathcal{D}}^\omega : \mathfrak{F}Paths^\omega \rightarrow [0, 1] : C_n \mapsto Pr_{\alpha, \mathcal{D}}^n(C^n)$$

Semantics: Probability of Measurable Cylinders

A Probability Measure on $\mathfrak{F}Paths^\omega$

Any measurable cylinder C can be represented as

$$C = \{\pi \in Paths^\omega \mid \pi[0..n] \in C^n\} \quad \text{for some } n \geq 0 \text{ and } C^n \in \mathfrak{F}Paths^n.$$

Define the probability measure on measurable cylinders:

$$Pr_{\alpha, \mathcal{D}}^\omega : \mathfrak{F}Paths^\omega \rightarrow [0, 1] : C_n \mapsto Pr_{\alpha, \mathcal{D}}^n(C^n)$$

Theorem (Ionescu–Tulcea)

$Pr_{\alpha, \mathcal{D}}^\omega$ is well-defined and unique.

Semantics: Probability of Measurable Cylinders

A Probability Measure on $\mathfrak{F}Paths^\omega$

Any measurable cylinder C can be represented as

$$C = \{\pi \in Paths^\omega \mid \pi[0..n] \in C^n\} \quad \text{for some } n \geq 0 \text{ and } C^n \in \mathfrak{F}Paths^n.$$

Define the probability measure on measurable cylinders:

$$Pr_{\alpha, \mathcal{D}}^\omega : \mathfrak{F}Paths^\omega \rightarrow [0, 1] : C_n \mapsto Pr_{\alpha, \mathcal{D}}^n(C^n)$$

Theorem (Ionescu–Tulcea)

$Pr_{\alpha, \mathcal{D}}^\omega$ is well-defined and unique.

Finally: $(Paths^\omega, \mathfrak{F}Paths^\omega, Pr_{\alpha, \mathcal{D}}^\omega)$ is the desired probability space.

The Logic $nCSL$

nondeterministic Continuous Stochastic Logic ($nCSL$).

Zeno Behaviour

Definition (Zeno Path)

Let $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$ be a CTMDP and

$$\pi = s_0 \xrightarrow{a_0, t_0} s_1 \xrightarrow{a_1, t_1} s_2 \xrightarrow{a_2, t_2} \dots$$

π is a **zeno path** iff the sequence $\sum_{i=0}^n t_i$ is convergent.

Zeno Behaviour

Definition (Zeno Path)

Let $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \mathbf{L})$ be a CTMDP and

$$\pi = s_0 \xrightarrow{a_0, t_0} s_1 \xrightarrow{a_1, t_1} s_2 \xrightarrow{a_2, t_2} \dots$$

π is a **zeno path** iff the sequence $\sum_{i=0}^n t_i$ is convergent.

Lemma (Converging Paths Lemma)

The probability measure of the set of converging paths is zero.

Zeno Behaviour

Definition (Zeno Path)

Let $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \mathbf{L})$ be a CTMDP and

$$\pi = s_0 \xrightarrow{a_0, t_0} s_1 \xrightarrow{a_1, t_1} s_2 \xrightarrow{a_2, t_2} \dots$$

π is a **zeno path** iff the sequence $\sum_{i=0}^n t_i$ is convergent.

Lemma (Converging Paths Lemma)

The probability measure of the set of converging paths is zero.

Example (What is it good for?)

For any $\pi \in \text{Paths}^\omega$ and $t \in \mathbb{R}_{\geq 0}$, $\pi @ t$ is well-defined.

Syntax of $nCSL$

Two kinds of property specifications:

Syntax of $nCSL$

Two kinds of property specifications:

Example (Transient State Measures)

Given an initial distribution, what is the possibility to reach an error state within the first t time units?

Syntax of $nCSL$

Two kinds of property specifications:

Example (Transient State Measures)

Given an initial distribution, what is the possibility to reach an error state within the first t time units?

Example (Long Run Average Behaviour)

Average time spent in a blocking state.

Syntax of $nCSL$

Definition ($nCSL$ Formulae)

For $a \in AP$, $p \in [0, 1]$ and $\sqsubseteq \in \{<, \leqslant, \geqslant, >\}$, **$nCSL$ state-formulas** are built according to the following context-free grammar:

$$\Phi ::= a \mid \neg\Phi \mid \Phi \wedge \Phi \mid \exists^{\sqsubseteq p} \varphi \mid \mathsf{L}^{\sqsubseteq p} \Phi$$

Syntax of *nCSL*

Definition (*nCSL* Formulae)

For $a \in \text{AP}$, $p \in [0, 1]$ and $\sqsubseteq \in \{<, \leqslant, \geqslant, >\}$, ***nCSL state-formulas*** are built according to the following context-free grammar:

$$\Phi ::= a \mid \neg\Phi \mid \Phi \wedge \Phi \mid \exists^{\sqsubseteq p} \varphi \mid \mathsf{L}^{\sqsubseteq p} \Phi$$

For $I \subseteq \mathbb{R}$ a nonempty interval, ***nCSL path-formulas*** are defined by

$$\varphi ::= \mathsf{X}^I \Phi \mid \Phi \mathsf{U}^I \Phi$$

Semantics of n CSL I

Definition (Semantics of State Formulae)

Let $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$. Define

$$s \models a \iff a \in \text{L}(s)$$

$$s \models \neg \Phi \iff \text{not } s \models \Phi$$

$$s \models \Phi \wedge \Psi \iff s \models \Phi \text{ and } s \models \Psi$$

Semantics of n CSL: Path Formulae

Definition (Semantics of Path Formulae)

For time-interval $I \subseteq \mathbb{R}$ and state formulas Φ and Ψ , define:

$$\pi \models X^I \Phi \iff \pi[1] \models \Phi \wedge \delta(\pi, 0) \in I$$

$$\pi \models \Phi U^I \Psi \iff \exists t \in I. (\pi @ t \models \Psi \wedge (\forall t' \in [0, t). \pi @ t' \models \Phi)) .$$

Semantics of $nCSL$: Transient State Measures

Definition (Transient State Formulae)

For probability bound $p \in [0, 1]$, comparison operator \sqsubseteq and path formula φ , the transient state semantics is given by

$$s \models \exists^{\sqsubseteq p} \varphi \iff \exists D \in \text{THR}. \Pr_{\alpha, \mathcal{D}_s}^{\omega} \{ \pi \in \text{Paths}^{\omega} \mid \pi \models \varphi \} \sqsubseteq p$$

Semantics of $nCSL$: Transient State Measures

Definition (Transient State Formulae)

For probability bound $p \in [0, 1]$, comparison operator \sqsubseteq and path formula φ , the transient state semantics is given by

$$s \models \exists^{\sqsubseteq p} \varphi \iff \exists D \in \text{THR}. \Pr_{\alpha, \mathcal{D}_s}^{\omega} \{ \pi \in \text{Paths}^{\omega} \mid \pi \models \varphi \} \sqsubseteq p$$

Lemma (Measurability of Satisfying Paths)

For arbitrary path formula φ :

$$\{ \pi \in \text{Paths}^{\omega} \mid \pi \models \varphi \} \in \mathfrak{F}_{\text{Paths}^{\omega}}.$$

Semantics of $nCSL$: Long Run Average Behaviour I

Preliminaries

For CTMDP $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$, state s and state-formula Φ :

What is the average amount of time spent in Φ -states?

Semantics of $nCSL$: Long Run Average Behaviour I

Preliminaries

For CTMDP $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \text{L})$, state s and state-formula Φ :

What is the average amount of time spent in Φ -states?

Definition (state indicator)

Let $S \subseteq \mathcal{S}$ and $t \in \mathbb{R}_{\geq 0}$. Then

$$h_{S,t} : \text{Paths}^\omega \rightarrow \{0, 1\} : \pi \mapsto \begin{cases} 1 & \text{if } \pi @ t \in S \\ 0 & \text{otherwise} \end{cases}$$

Semantics of $nCSL$: Long Run Average Behaviour I

Preliminaries

For CTMDP $\mathcal{C} = (\mathcal{S}, \text{Act}, \mathbf{R}, \text{AP}, \mathcal{L})$, state s and state-formula Φ :

What is the average amount of time spent in Φ -states?

Definition (state indicator)

Let $S \subseteq \mathcal{S}$ and $t \in \mathbb{R}_{\geq 0}$. Then

$$h_{S,t} : \text{Paths}^\omega \rightarrow \{0, 1\} : \pi \mapsto \begin{cases} 1 & \text{if } \pi @ t \in S \\ 0 & \text{otherwise} \end{cases}$$

Intuition: Does π occupy a state from S at time-point t ?

Lemma

The function $h_{S,t}$ is measurable relative to $(\text{Paths}^\omega, \mathfrak{F}_{\text{Paths}^\omega})$.

Semantics of $nCSL$: Long Run Average Behaviour II

Deduction of Long Run Average Behaviour

The fraction of time spent in S -states on path $\pi \in Paths^\omega$:

$$g_{S,t} : Paths^\omega \rightarrow [0, 1] : \pi \mapsto \frac{1}{t} \int_0^t h_{S,t'}(\pi) dt'.$$

Semantics of $nCSL$: Long Run Average Behaviour II

Deduction of Long Run Average Behaviour

The fraction of time spent in S -states on path $\pi \in Paths^\omega$:

$$g_{S,t} : Paths^\omega \rightarrow [0, 1] : \pi \mapsto \frac{1}{t} \int_0^t h_{S,t'}(\pi) dt'.$$

Lemma

$g_{S,t}$ is **measurable** in $(Paths^\omega, \mathfrak{F}_{Paths^\omega})$ and a **random variable**.

Semantics of $nCSL$: Long Run Average Behaviour II

Deduction of Long Run Average Behaviour

The fraction of time spent in S -states on path $\pi \in Paths^\omega$:

$$g_{S,t} : Paths^\omega \rightarrow [0, 1] : \pi \mapsto \frac{1}{t} \int_0^t h_{S,t'}(\pi) dt'.$$

Lemma

$g_{S,t}$ is **measurable** in $(Paths^\omega, \mathfrak{F}_{Paths^\omega})$ and a **random variable**.

Definition (Expectation)

Take the expectation $g_{S,t}$ over $\pi \in Paths^\omega$:

$$E(g_{S,t}) = \int_{Paths^\omega} g_{S,t}(\pi) \ Pr_{\alpha, \mathcal{D}}^\omega(d\pi).$$

Semantics of $nCSL$: Long Run Average Behaviour III

Definition (Long Run Average Formulae)

For fraction $p \in [0, 1]$, comparison operator \sqsubseteq and state formula Φ , the long-run average semantics is defined by:

$$s \models L^{\sqsubseteq p} \Phi \iff \forall D \in THR. \lim_{t \rightarrow \infty} \underbrace{\int_{Paths^\omega} \left(\frac{1}{t} \int_0^t h_{Sat(\Phi), t'}(\pi) dt' \right) dPr_{\alpha_s, D}^\omega}_{\text{expectation!}} \sqsubseteq p$$

Semantics of $nCSL$: Long Run Average Behaviour III

Definition (Long Run Average Formulae)

For fraction $p \in [0, 1]$, comparison operator \sqsubseteq and state formula Φ , the long-run average semantics is defined by:

$$s \models L^{\sqsubseteq p} \Phi \iff \forall D \in THR. \lim_{t \rightarrow \infty} \underbrace{\int_{Paths^\omega} \left(\frac{1}{t} \int_0^t h_{Sat(\Phi), t'}(\pi) dt' \right) dPr_{\alpha_s, D}^\omega}_{\text{expectation!}} \sqsubseteq p$$

Example

For CTMDP \mathcal{C} with initial state s where $r \in AP$ labels all **reactive states**. The property

“99% of the time, the system directly reacts on input”

can be checked by the following $nCSL$ -formula:

$$s \models L^{>0.99} r$$

Ongoing Work

- ① Complete measurability issues in $nCSL$ -semantics
Measurability of U^I subformulas.
- ② Are all $nCSL$ -formulas preserved under strong bisimulation?
Provide the proof.
- ③ Which $nCSL$ -restrictions are preserved under strong simulation?
Define strong simulation on CTMDP, find appropriate restriction of $nCSL$

Thank you for your attention!