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The challenge

Software in safety critical systems becomes more and more complex.
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Formal methods in computer science

The model checking approach
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Formal methods in computer science

The model checking approach

formalizing

. property
® =V O -collision specification

model checking

(OXO)

(0,0

Model checking: Does a system model satisfy its specification?
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Quantitative system analysis

Classical model checking

Model checking yields YES or NO.
But: Absolute correctness unrealistic:
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Quantitative system analysis

Classical model checking

Model checking yields YES or NO.

But: Absolute correctness unrealistic:
@ Systems are subject to random phenomena
® Environment behaves randomly
©® Imprecisions in the model

Quantitative model checking

Extend models with probabilities to describe real-world systems
= Performance & dependability evaluation
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Outline of the talk

@® Continuous-time Markov decision processes (CTMDPs)
Motivation
Preliminaries
Resolving nondeterministic choices
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Motivation: The stochastic job scheduling problem

Application: Load balancing of a bank’s website

@ Customer request = job.

® Distribute request to multiple servers. 9 \

® Classify jobs according to exp. duration:

e Online Banking: long job
e Serving ticker: short job

Clever way to distribute jobs to servers?
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Motivation: The stochastic job scheduling problem

Application: Load balancing of a bank’s website

@ Customer request = job.

® Distribute request to multiple servers. 9 \ /88
N

® Classify jobs according to exp. duration:
e Online Banking: long job D

e Serving ticker: short job '
Clever way to distribute jobs to servers?

The problem statement [Bruno,Downey,Frederickson '81]

Four jobs {1,2,3,4}
Expected duration of job & is i time units.

Two identical processors.

1981: Minimize expected makespan.

Today: Compute maximum probability to finish all jobs within time z!
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Formalizing the stochastic job scheduling problem

Preemptive scheduling of 4 jobs onto 2 processors
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Formalizing the stochastic job scheduling problem

Preemptive scheduling of 4 jobs onto 2 processors

Many schedules possible!

In this talk:
® Compute the maximum probability to finish all jobs before time z.

@® Synthesize optimal schedule to achieve this probability.
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Continuous-time Markov decision processes (CTMDPs)

Random timing and nondeterminism in CTMDPs

Initial state: sg

Actions: Act(so) = {«, 5}
Choice is nondeterministic!
Transition rates: R(sg, @, s3) =2
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Random timing and nondeterminism in CTMDPs

Initial state: sg

Actions: Act(so) = {«, 5}
Choice is nondeterministic!
Transition rates: R(sg, @, s3) =2

If action (3 is chosen: Only one transition available

-

@:3+(s1) executes after X;~ Ezp(3) time units. Al
Probability to move before ¢ time units: 06 |
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Transition rates: R(sg, @, s3) =2

If action «v is chosen: Race condition

@)21+(5) executes after X, ~ Ezp(1) time units.
60)-":2+(53) executes after X3 ~ Ezp(2) time units.
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Continuous-time Markov decision processes (CTMDPs)

Random timing and nondeterminism in CTMDPs

Initial state: sg

Actions: Act(so) = {«, 5}
Choice is nondeterministic!
Transition rates: R(sg, @, s3) =2

If action «v is chosen: Race condition

@)21+(5) executes after X, ~ Ezp(1) time units.
60)-":2+(53) executes after X3 ~ Ezp(2) time units.

The transition that executes first, wins:
@ Time spent in so: min(Xs, X3) ~ Ezp(1 + 2)

0.2 P(min<XzI-?)Sg)§:§ """"" J
. ) ~ e l b3
Exit rate: E(s,a) =Y s R(s,a,8")=1+2 N oY
0 05 1 i3 2 2 3§
@® Prob. to move to sy = P(X3 < X3).
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The subclass of locally uniform CTMDPs

Restriction to local uniformity
A CTMDP is locally uniform iff

VseS. Va,B € Act(s). E(s,a)=E(s,[).

Exit rate E(s) independent of action!
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The subclass of locally uniform CTMDPs

Restriction to local uniformity
A CTMDP is locally uniform iff

VseS. Va,B € Act(s). E(s,a)=E(s,[).

Exit rate E(s) independent of action!

Why this restriction?

Sojourn time in a state does not depend on action!
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Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

=@
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wait in sg for Xo ~ Ezp(3) time units
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Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

upon leaving sg: nondeterministic choice!
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Resolving nondeterminism by schedulers:
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Resolving nondeterminism by schedulers:
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Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

W:.!zto. t .

upon leaving si: only v available.
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Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

T = . !zto . Zztl .

R(s1,7,82) _

: 1
Race: BGD " 2 chance to move to s
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Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

P = . B, 1o . Y.t . to .

nondeterministic choice between « and 8
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Resolving nondeterminism by schedulers:

T = . !zto . lztl . Oéztg .
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Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

T = . !zto . lztl . Oéztg .

R(s0,2,82) _

: 1
Race: BGo) = 3 chance to move to sg
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Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

P = . B, to . 7, t1 . a,ts .
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Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

T = . B, to . 7, t1 . a, ty .

Time & history dependent schedulers [NeuhzuBer,Stoelinga,Katoen '09]

A scheduler is a measurable mapping
D : Paths™ x Rsg — Distr(Act)

such that D(m,t)(a) > 0= a € Act(last(r)).
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Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

T = . B, to . Yt . a, ty .

Time & history dependent schedulers [NeuhzuBer,Stoelinga,Katoen '09]

A scheduler is a measurable mapping
D : Paths™ x Rsg — Distr(Act)

such that D(m,t)(a) > 0= a € Act(last(r)).

The probability measure

Scheduler D & initial state s induce unique probability measure Pr< ;!
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Modeling the sJSP as a CTMDP

Finishing all jobs within 2z time units:
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Modeling the sJSP as a CTMDP

Finishing all jobs within 2z time units:

All scheduling strategies represented in the CTMDP.

al:(19{3a4}73'_){2a4}) a21(1'—>{2,4},3i—>{1,4})
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Modeling the sJSP as a CTMDP

Finishing all jobs within 2z time units:

All scheduling strategies represented in the CTMDP.

ar: (1~ {3,4},3— {2,4}) az: (1~ {2,4},3— {1,4})

Properties:

@ CTMDP combines nondeterministic choices and stochastic timing.
® The CTMDP model is locally uniform.
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Outline of the talk

® Time-bounded reachability analysis in CTMDPs
The approximation algorithm
Solving the sJSP
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Time-bounded reachability in the sJSP

Time-bounded reachability probabilities

CTMDP model C.
Initial state: s€ S
Goal states: Gc S

Time-bound: z € Ry

The time-bounded reachability event:

e {7r € Paths® | 3t € [0, 2]. 7@t € G}

Maximum time-bounded reachability probability

Poras (5, 2) = sup Pr o (01041G)
D
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Computing the maximum time-bounded reachability
probability

How to compute p€ .7

Idea: Characterize p¢,,, as a fixed-point! J
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Computing the maximum time-bounded reachability
probability

How to compute p€ .7

Idea: Characterize p¢,,, as a fixed-point!

A higher operator for maximum time-bounded reachability

Define : (S xRy = [0,1]) = (S xRy — [0,1]) on measurable functions:
o If se G then Q(F)(s,2) =1.
o If s¢ G then

Q(F)(s,z):f E(s)e BG)t. max ZP(S a,s')-F(s',z—t)dt.

Fixed point characterization

The function p%, . (s,2) is the least fixed point of €.

v
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Applying the fixed point characterization directly

Fixed point characterization
If seG: Q(F)(s,z) =1. Otherwise:

Q(F)(s,2) = f E(s)e PO, IIGIE,i(t Z P(s,a,s8") - F(s',2-t) dt.
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Fixed point characterization
If seG: Q(F)(s,z) =1. Otherwise:

Q(F)(s,2) = f E(s)e PGt max Z P(s,a,s8") - F(s',2-t) dt.

eAct

Solving the reachability problem analytically
Fixed-point computation: Vs e S. Fy(s,z) =0.
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Applying the fixed point characterization directly
Fixed point characterization
If seG: Q(F)(s,z) =1. Otherwise:

Q(F)(s,2) = f E(s)e PO, IIGIE,i(t Z P(s,a,s8") - F(s',2-t) dt.

Solving the reachability problem analytically
Fixed-point computation: Vs e S. Fy(s,z) =0.

Fl(S(),Z) = Q(Fo)(So,Z) =0.
Fi(s1,2) = Q(Fo)(s1,2) =0.
Fl(SQ,Z) = Q(Fo)(Sz,Z) =1
F1(S3,Z) = Q(Fo)(So,Z) =0.
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Applying the fixed point characterization directly

Fixed point characterization
If seG: Q(F)(s,z) =1. Otherwise:

Q(F)(s,2) = /OZE(s)e_E(S)t- max y P(s,a,s") F(s',2-1t)dt.

acAct 7eS

Solving the reachability problem analytically
Fixed-point computation: Vs e S. Fy(s,z) =0.
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acAct o'eS

Solving the reachability problem analytically
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Applying the fixed point characterization directly
Fixed point characterization
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Fy(s1,2) = Q(F1)(s1,2) =1-¢*.
FQ(SQ,Z) = Q(Fl)(SQ,Z) =1

F2(53,Z) = Q(Fl)(33,z) =0.
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Applying the fixed point characterization directly
Fixed point characterization
If seG: Q(F)(s,z) =1. Otherwise:

Q(F)(s,2) = f E(s)e PO, IIGIE,i(t Z P(s,a,s8") - F(s',2-t) dt.
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Applying the fixed point characterization directly
Fixed point characterization
If seG: Q(F)(s,z) =1. Otherwise:

Q(F)(s,2) = fOZE(s)e_E(S)t max y P(s,a,s") F(s',2-1t)dt.

aeAct oeS

Solving the reachability problem analytically
Fixed-point computation: Vs e S. Fy(s,z) =0.

F3(s0,2) = Q(F2)(s0,2) = [, 3¢ -max (%,1-¢7) dt.
F3(s1,2) = Q(F2)(s1,2) =1-¢*.

F3(82,Z) = Q(FQ)(SQ,Z) =1

F3(S3,Z) = Q(FQ)(S?,,Z) =0.

Result: F3 = Q(F3) = F3 is least fixed-point.
For z = 1t pYes(s0,1) =1+ e - 37! ~0.48759.
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What is achieved so far:

Analytical solution J

Allows to compute pC, . (s,z) for small problem instances.
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Analytical solution

Allows to compute pC, . (s,z) for small problem instances.

Disadvantages:

@ Numerical instabilities due to nested integrals.

@® Integration over the maximum of functions.

= Fixed-point characterization not suitable for an algorithmic solution.
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What is achieved so far:

Analytical solution

Allows to compute pC, . (s,z) for small problem instances.

Disadvantages:
@ Numerical instabilities due to nested integrals.

@® Integration over the maximum of functions.

= Fixed-point characterization not suitable for an algorithmic solution.

Instead:

Use the discretization technique that comes next!
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A discretization that computes Py (S, 2)

Reduce p¢,,. to step-bounded reachability P57 in MDPs. J

Each discrete step corresponds to a time-interval of length 7.

Martin R. NeuhduBer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 17 / 35



A discretization that computes Py (S, 2)

Reduce p¢, . to step-bounded reachability pf,{az in MDPs.

Each discrete step corresponds to a time-interval of length 7.

Continuous-time vs. discrete-time Markov decision processes
Continuous-time MDP C Discrete-time MDP C,

Exponential distributions Discrete probability distributions
Reachability within time 2 = Reachability in = steps!
Pras(5,2) Priaa(8,2)

v
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Discretization |

Recall the fixed-point characterization:

The function p%,,.(s,2) is the least fixed point of Q: If s ¢ G, then

pfmx(s,z) = f E(s)e_E(s)t~ max Z P(s,a,s") -pfnax(s',z —t) dt.
0

acAct eS
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The function p%,,.(s,2) is the least fixed point of Q: If s ¢ G, then

pfmx(s,z) = f E(s)e_E(s)t~ max Z P(s,a,s") -pfnaz(s',z —t) dt.
0

acAct eS

The idea for a discretization to compute p¢ . (s,2):

Choose T « z and split p<, ., (s,2) accordingly:
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Discretization |

Recall the fixed-point characterization:

The function p%,,.(s,2) is the least fixed point of Q: If s ¢ G, then

Prae(5:2) = [ E(s)e PO max 3 P(5,0,8)  plan(s's 2 1) .
0 edet s

The idea for a discretization to compute p¢ . (s,2):

Choose T « z and split p<, ., (s,2) accordingly:

A(s,2) = /o E(s)e P! mgxct Z P(s,0,5")  poran(s’, 2 — t) dt
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Discretization |

Recall the fixed-point characterization:

The function p%,,.(s,2) is the least fixed point of Q: If s ¢ G, then

Prae(5:2) = [ E(s)e PO max 3 P(5,0,8)  plan(s's 2 1) .
0 edet s

The idea for a discretization to compute p¢ . (s,2):

Choose T « z and split p<, ., (s,2) accordingly:

A(s,2) = /OTE(s)e_E(S)t max 3 P(s,a,8") e (s’, 2 — 1) dt

aecAct TeS

B(s,z) = /ZE(s)e_E(S)t max > P(s,q,8") P (s, 2~ t) dt

aeAct oeS

—-E(s)T

@
=€ 'pmaz('svz_T)'
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Discretization |

Recall the fixed-point characterization:

The function p%,,.(s,2) is the least fixed point of Q: If s ¢ G, then

Prae(5:2) = [ E(s)e PO max 3 P(5,0,8)  plan(s's 2 1) .
0 edet s

The idea for a discretization to compute p¢ . (s,2):

Choose T « z and split p<, ., (s,2) accordingly:

A(s,2) = /OTE(s)e_E(S)t max 3 P(s,a,8") e (s’, 2 — 1) dt

aecAct TeS
B(s,z) = /T E(s)e B!, nelgz(t Z P(s,0,8) plas(s, 2 —t) dt

—-E(s)T

@
=€ 'pmaz('svz_T)'

Relation to p<, . (s,2): p%,..(8,2) = A(s,z) + B(s, 2)
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Discretization |l

Intuition behind A(s, z) and B(s, 2)

e A(s,z) = Prob. to reach GG within time z with > 1 transitions in [0, 7].
3 In-1

I 1 )
0 A(s,z) T z

Martin R. NeuhduBer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 19 / 35



Discretization |l

Intuition behind A(s, z) and B(s, 2)

e A(s,z) = Prob. to reach GG within time z with > 1 transitions in [0, 7].
3 In-1

I 1 )
0 A(s,z) T z

e B(s,z) = Prob. to reach GG within time z with no transition in [0,7].

t . _tna
> Gyt 9 ts
t3 ty @ to

O &9 9

5 + B(s.2) :
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A step-wise approximation of p¢ (s, 2)

A single step in the discretized MDP
CTMDP C and step duration 7 < z induce the discretized MDP C,:

(1-e PG . P(s,a,5") if s#s
(1 - e‘E(S)T) P(s,a,8) +e )T if =

P.(s,a,8") = {
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A step-wise approximation of p¢ (s, 2)

A single step in the discretized MDP
CTMDP C and step duration 7 < z induce the discretized MDP C,:

(1-e PG . P(s,a,5") if s#s
(1 - e‘E(s)T) P(s,a,8) +e )T if =

P.(s,a,8") = {

Theorem (Correctness of our reduction)

Let C be a CTMDP, G a set of goal states and z a time bound.
Choose some k € N.g and set 7= . Then
(A2)?
2k
® 157, (s,k) is the probability to reach i in at most k steps in C.,

A )\ = mazssE(s) is the maximum exit rate in C and

© k is the number of discretization steps.
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Solving the step-bounded reachability problem in C.

Value iteration for discrete-time MDPs [Bellman '57]

Let G ¢ S be a set of goal states and 4, € [0, 1]‘S| such that

R 1 ifseG 1 ifseG
Vo (s) = 0 ifseC Upa1(s) = max Z;SP(s,a,s’)wn(s') if s¢G

Then pfn*az(s,k) = Tp(s).
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Summarizing our time-bounded reachability analysis

Input
@ locally uniform CTMDP
® Goal states: G = {sa}
©® Time bound: z=1
© Maximum allowed error: € = 1073
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Summarizing our time-bounded reachability analysis

Input
@ locally uniform CTMDP
® Goal states: G = {sa}
©® Time bound: z=1
© Maximum allowed error: € = 1073

Compute the number of discretization steps &

Az)2 _
(2’2) <e = k>4500 = 7:2:0.0002.
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Summarizing our time-bounded reachability analysis

Input
@ locally uniform CTMDP
® Goal states: G = {sa}
©® Time bound: z=1

© Maximum allowed error: € = 1073

Compute the number of discretization steps &

Az)2 _
(;k) <e = k>4500 = 7:2:0.0002.

Value iteration to compute p%{ax(s,k)

- v, 1
UO_(O»Ovl»O) ’
= _ (1 -37
U1 = (§ 1-e ) P
v, 1
V.
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Summarizing our time-bounded reachability analysis

Input
@ locally uniform CTMDP

@® Goal states: G = {s5}
® Time bound: z=1
® Maximum allowed error: € = 10~

Compute the number of discretization steps &

Az)2 _
(;k) <e = k>4500 = 7:2:0.0002.

Value iteration to compute p%{ax(s,k)

%o = (0,0,1,0)
i1=(3(1-¢?),(1-¢T), , )
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%o = (0,0,1,0)
i1=(3(1-¢?),(1-¢T), , )
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Summarizing our time-bounded reachability analysis

Input
@ locally uniform CTMDP

@® Goal states: G = {s2}
® Time bound: z=1
® Maximum allowed error: ¢ = 10~

Compute the number of discretization steps &

Az)2 _
(2’2) <e = k>4500 = 7:2:0.0002.

Value iteration to compute p%{ax(s,k)
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Summarizing our time-bounded reachability analysis

Input
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® Time bound: z=1
® Maximum allowed error: € = 10~

Compute the number of discretization steps &

Az)2 _
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Summarizing our time-bounded reachability analysis

Input
@ locally uniform CTMDP

® Goal states: G = {sa}
©® Time bound: z=1
O Maximum allowed error: ¢ =10~

Compute the number of discretization steps &

Az)2 _
(2213 <e = k>4500 = 7:2:0.0002.

Value iteration to compute p%{ax(s,k)

2_50 (007170)
= (3(1-e7),(1-e7).1,0)

Result: p<r..(s0,4500) = Da500(s0) =~ 0.487
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Complexity of the discretization approach

Complexity
For CTMDP C, time bound z and error bound e:
e Number of iteration steps: O((Az)?/e).

e Each value iteration step: linear in the size of C (transitions + states)
Overall complexity: O(|C|- (A2)?/e).
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Outlook: Computing optimal solutions for the sJSP

Analysis of the sJSP
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@ Different rates = schedule important.
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Outlook: Computing optimal solutions for the sJSP

Analysis of the sJSP

@ Different rates = schedule important.

® Synthesis of best and worst schedules.

o
[
a
0.8 |-
0.6 [
0.4 |
5,0.25,0.25,0.25
f 50,1.50,1.50,1.50
02 L i .25,0.25,0.25,1.50 mew—m |
: ; 125,0.33,1.25,1.50
.25,1.50,1.50,1.50 m—
3 ) .75“1.50. I.F)U, 1.5q =
0 2 4 6 8 10 12 14 =z

Optimal schedule for
(0.25,0.33,1.25,1.5)

1~ {2,3}
1234 |, 03
2+~ {1,3}
1234 | 30 (1)
3 {1,2}
1234 | 300

vy
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Outline of the talk

® Further results in the thesis
Model checking interactive Markov chains
Model checking generalized stochastic Petri nets
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Interactive Markov chains

Model Checking Interactive Markov Chains [Zhang, NeuhzuBer '10]

Continuous-time MDP

Combines actions and rates.

Only one type of transitions:

®*1-®

Martin R. NeuhduBer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 26 / 35



Interactive Markov chains

Model Checking Interactive Markov Chains [Zhang, NeuhzuBer '10]

Continuous-time MDP Interactive Markov Chain [Hermanns'02]

Combines actions and rates. Separates actions and rates.

Only one type of transitions: Two types of transitions:

3.9 e Markovian .—2—@
@ 3 e Interactive

Maximal progress assumption!

Martin R. NeuhduBer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 26 / 35



Interactive Markov chains

Model Checking Interactive Markov Chains [Zhang, NeuhzuBer '10]

Continuous-time MDP

Combines actions and rates.

Only one type of transitions:

®*1-®

Interactive Markov Chain [Hermanns'02]

Separates actions and rates.

Two types of transitions:

e Markovian .—2—@
e Interactive

Maximal progress assumption!

Extending the discretization from CTMDPs to IMCs
Model checking the continuous stochastic logic (CSL) on IMCs!

V.
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Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNSs) [Marsan,Conte,Balbo '84]
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e Places P
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Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNSs) [Marsan,Conte,Balbo '84]

e Places P

e Timed transitions (exp. rate)
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e Places P
e Timed transitions (exp. rate)

e |mmediate transitions

Martin R. NeuhduBer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 27 / 35



Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNSs) [Marsan,Conte,Balbo '84]

e Places P
e Timed transitions (exp. rate)
e |mmediate transitions

e Input, output and inhibitor arcs
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Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNSs) [Marsan,Conte,Balbo '84]

e Places P

e Timed transitions (exp. rate)

e Immediate transitions

e Input, output and inhibitor arcs

Tokens
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Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNSs) [Marsan,Conte,Balbo '84]

e Places P

e Timed transitions (exp. rate)

e Immediate transitions

e Input, output and inhibitor arcs

e Tokens

Semantics: Reachability graph
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Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNSs) [Marsan,Conte,Balbo '84]

Places P

Timed transitions (exp. rate)

e Immediate transitions

e Input, output and inhibitor arcs
e Tokens

Semantics: Reachability graph
= token game!

Overcome confusion in GSPNs [Hermanns,Katoen,NeuhauBer,Zhang '10]

Multiple conflicting immediate transitions enabled.
Which one executes first?

@

2/

V.
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Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNSs) [Marsan,Conte,Balbo '84]

Places P

Timed transitions (exp. rate)

e Immediate transitions

e Input, output and inhibitor arcs
e Tokens

Semantics: Reachability graph
= token game!

Overcome confusion in GSPNs [Hermanns,Katoen,NeuhauBer,Zhang '10]

Multiple conflicting immediate transitions enabled.
Which one executes first?

@ Classical answer: Avoid this case by using weights! (2)

V.
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Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNSs) [Marsan,Conte,Balbo '84]

Timed transitions (exp. rate)

e Immediate transitions

e Input, output and inhibitor arcs
e Tokens

Semantics: Reachability graph
= token game!

Overcome confusion in GSPNs [Hermanns,Katoen,NeuhauBer,Zhang '10]

Multiple conflicting immediate transitions enabled.
Which one executes first?

@ Classical answer: Avoid this case by using weights! @ @

® New approach: Nondeterminism! —

Interpret reachability graph of a GSPN as an IMC!

y
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Dependability Analysis of a Workstation Cluster Haverkort'00

A GSPN model for the dependable workstation cluster

LeftSubcluster RightSubcluster

émz T i LeftWorl

LeftW < Up ULe_/LW D /ILe/LWoT R
RighiWerlgtationFai_RighiWorkstatont Right

Right W = Up Ulhg/uw n-/!ugmw R

hFail L I

=2
f

Bk

RepairUnitAvailable
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Dependability Analysis of a Workstation Cluster Haverkort'00

A GSPN model for the dependable workstation cluster

él/eﬁ i Fail __ Left i LeftWorl
N
LeftWe U uLe/LW D /ILe/LWo'r R

RighiWerlgtationFai_RighiWorkstatont Right
N
Right W Ui Ulhghl W D, '/!Dgh! W R

hFail L I

L
Left .»DOM/I Left WR

S

LeftSubcluster RightSubcluster

=2
f

of o5t oSies
N
«

]
=)

RepairUnifAvailable

Result of the nondeterministic analysis

System is 18% less reliable than predicted by earlier analysis!
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Outline of the talk

® Conclusion
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Results of the thesis

What can be found in there?

@ Continuous-time Markov decision processes

e A new class of time-dependent schedulers
e Time-bounded reachability analysis

e Strong bisimulation

minimization for CTMDPs.

® Interactive Markov chains

e Extension of CTMDP analysis to IMCs
e CSL model checking algorithm

© Generalized stochastic Petri nets

e A simple and concise semantics for GSPNs
e Model checking CSL formulas on GSPNs

0 Case studies

e Solving the stochastic job scheduling problem
e Dependability analysis of a workstation cluster

Martin R. NeuhduBer (RWTH Aachen)

Nondeterministic & Stochastic Model Checking
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Model Checking Nondeterministic
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Results of the thesis

What can be found in there?

@ Continuous-time Markov decision processes

e A new class of time-dependent schedulers
o Time-bounded reachability analysis
e Strong bisimulation minimization for CTMDPs.

@® Interactive Markov chains
e Extension of CTMDP analysis to IMCs B N

e CSL model checking algorithm

Martin R. NeuhauBer

© Generalized stochastic Petri nets

e A simple and concise semantics for GSPNs
e Model checking CSL formulas on GSPNs

0 Case studies

e Solving the stochastic job scheduling problem
e Dependability analysis of a workstation cluster
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Open problems and future research directions

The future...

® Continuous-time Markov decision processes

e Restriction to local uniformity?

e Uniformization for time-dependent schedulers?
® Interactive Markov chains

e Computing long run average measures?
e Support for reward extensions of CSL?

© Generalized stochastic Petri nets

e Allow for partial weight specifications?
o Extension towards stochastic activity networks?

Martin R. NeuhduBer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 31/35



Martin R. NeuhduBer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010



List of Publications

Published papers
@ Model Checking Interactive Markov Chains.

Zhang, NeuhauBer. TACAS 2010
® Delayed Nondeterminism in Continuous-Time Markov Decision Processes.

Neuh&uBer, Stoelinga, Katoen. FoSSaCS 2009
©® Compositional Abstraction for Stochastic Systems.

Katoen, Klink, NeuhauBer. FORMATS 2009
@ Bisimulation and Logical Preservation for Continuous-Time Markov Decision Processes.

NeuhauBer, Katoen. CONCUR 2007
@ Abstraction and Model Checking of Core Erlang Programs in Maude.

NeuhauBer, Noll. WRLA 2007

ot
The pipeline

@ Time-Bounded Reachability in Continuous-Time Markov Decision Processes.
NeuhauBer, Zhang. submitted to LICS 2010

® GSPN model checking despite confusion.
Hermanns, Katoen, NeuhduBer, Zhang. submitted to ICATPN 2010
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Are time-dependent schedulers necessary?

Time-abstract vs. time dependent schedulers

e Why not positional schedulers?

e ... or time-abstract schedulers?

Are our schedulers really better?
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Time-abstract vs. time dependent schedulers

e Why not positional schedulers?

e ... or time-abstract schedulers?

Are our schedulers really better?

Maximum probability to reach state s, in <1 time unit

0.5 T

Prob

04 +

03 +

Yes, they are!

optimal
01 F time abstr.
: positional

o / . ‘positior’al B
0 0.2 0.4 0.6 0.8 1
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Are time-dependent schedulers necessary?

Time-abstract vs. time dependent schedulers

e Why not positional schedulers?

e ... or time-abstract schedulers?

Are our schedulers really better?

Maximum probability to reach state s, in <1 time unit

0.5
2
. . [}
Why is this: ol
Generic scheduler decides upon leaving sg: o
e If long time remains: choose (8 ozl
0 . ) optimal
e If few time remains: choose a. ol / tim st
. . / POS! !ona «
Time-abstract schedulers cannot do this! ol positional 5

0 0.2 0.4 0.6 0.8 1
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Are time-dependent schedulers necessary?

Time-abstract vs. time dependent schedulers

e Why not positional schedulers?

e ... or time-abstract schedulers?

Are our schedulers really better?

Maximum probability to reach state s, in <1 time unit
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Are time-dependent schedulers necessary?

Time-abstract vs. time dependent schedulers

e Why not positional schedulers?

e ... or time-abstract schedulers?

Are our schedulers really better?

Maximum probability to reach state s, in <1 time unit

05 .
Optimal scheduler for time-bound z = 1: S04t
0.3 - Z
a1} if (1-t))<In3-1n2 2l )
D(So,to) = { = } ( .0) 0.2 aptimal
{8+~ 1} otherwise. o1l tim bt
0 ) ";ositior,alﬂ
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A simpler class of optimal schedulers

Total time positional schedulers

A scheduler D : Paths™ x Ryg — Distr(Act) is total time positional iff
Y, ' € Paths*. Vt,t' € Rsg.

(last(w) =last(t') AA(w) +t = A(rn") + t') = D(m,t) = D(x',t").

A(m) is the total time spent on .
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Total time positional schedulers

A scheduler D : Paths™ x Ryg — Distr(Act) is total time positional iff
Y, ' € Paths*. Vt,t' € Rsg.

(last(w) =last(t') AA(w) +t = A(rn") + t') = D(m,t) = D(x',t").

A(m) is the total time spent on .

Intuition:
Total time positional schedulers only depend on
@ the current state last()
@® the total amount of time A(7) +t) that has passed.
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A simpler class of optimal schedulers

Total time positional schedulers

A scheduler D : Paths™ x Ryg — Distr(Act) is total time positional iff
Y, ' € Paths*. Vt,t' € Rsg.

(last(w) =last(t') AA(w) +t = A(rn") + t') = D(m,t) = D(x',t").

A(m) is the total time spent on .

Intuition:
Total time positional schedulers only depend on
@ the current state last()
@® the total amount of time A(7) +t) that has passed.

Optimality of TTPD schedulers
There exists D € TTPD such that Pre . (0%5G) =p$ (5, 2).

Martin R. NeuhduBer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 35 /35



	Introduction
	Continuous-time Markov decision processes (CTMDPs)
	Motivation
	Preliminaries
	Resolving nondeterministic choices

	Time-bounded reachability analysis in CTMDPs
	The approximation algorithm
	Solving the sJSP

	Further results in the thesis
	Model checking interactive Markov chains
	Model checking generalized stochastic Petri nets

	Conclusion
	Appendix

