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1RWTH Aachen University, Germany
2University of Twente, The Netherlands

Oberseminar on January 25, 2010, RWTH Aachen University

Martin R. Neuhäußer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 1 / 35



The challenge

Software in safety critical systems becomes more and more complex.
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Formal methods in computer science

The model checking approach

requirement
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property
specification

model checking

satisfied violated
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Martin R. Neuhäußer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 3 / 35



Formal methods in computer science

The model checking approach

requirement

formalizing

property
specification

model checking

satisfied violated

system
model

modeling

system
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Formal methods in computer science

The model checking approach

requirement

formalizing

property
specificationΦ = ∀ ◻ ¬collision

model checking

satisfied violated

system
model

modeling

system

Model checking: Does a system model satisfy its specification?
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Quantitative system analysis

Classical model checking

Model checking yields YES or NO.
But: Absolute correctness unrealistic:

1 Systems are subject to random phenomena

2 Environment behaves randomly

3 Imprecisions in the model

Quantitative model checking

Extend models with probabilities to describe real-world systems
⇒ Performance & dependability evaluation
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Outline of the talk

1 Introduction

2 Continuous-time Markov decision processes (CTMDPs)
Motivation
Preliminaries
Resolving nondeterministic choices

3 Time-bounded reachability analysis in CTMDPs
The approximation algorithm
Solving the sJSP

4 Further results in the thesis
Model checking interactive Markov chains
Model checking generalized stochastic Petri nets

5 Conclusion
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Motivation: The stochastic job scheduling problem

Application: Load balancing of a bank’s website

1 Customer request ≡ job.

2 Distribute request to multiple servers.

3 Classify jobs according to exp. duration:� Online Banking: long job� Serving ticker: short job

Clever way to distribute jobs to servers?

The problem statement [Bruno,Downey,Frederickson ’81]� Four jobs {1,2,3,4}� Expected duration of job k is 1

λk

time units.� Two identical processors.� 1981: Minimize expected makespan.
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2 Distribute request to multiple servers.

3 Classify jobs according to exp. duration:� Online Banking: long job� Serving ticker: short job

Clever way to distribute jobs to servers?

The problem statement [Bruno,Downey,Frederickson ’81]� Four jobs {1,2,3,4}� Expected duration of job k is 1

λk

time units.� Two identical processors.� 1981: Minimize expected makespan.

Today: Compute maximum probability to finish all jobs within time z!
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Formalizing the stochastic job scheduling problem

Preemptive scheduling of 4 jobs onto 2 processors

1,2,3,4

In this talk:
1 Compute the maximum probability to finish all jobs before time z.

2 Synthesize optimal schedule to achieve this probability.
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Continuous-time Markov decision processes (CTMDPs)

Random timing and nondeterminism in CTMDPs

s0

s1 s2

s3
α,2

γ,1

γ,1

α,1
β,3

β,1 Initial state: s0

Actions: Act(s0) = {α,β}
Choice is nondeterministic!
Transition rates: R(s0, α, s3) = 2
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Transition rates: R(s0, α, s3) = 2

If action β is chosen: Only one transition available

s0 s1
β,3 executes after X1∼ Exp(3) time units.
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t
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If action α is chosen: Race condition

s0 s2
α,1 executes after X2 ∼ Exp(1) time units.

s0 s3
α,2 executes after X3 ∼ Exp(2) time units.

The transition that executes first, wins:

1 Time spent in s0: min(X2,X3) ∼ Exp(1 + 2)
Exit rate: E(s,α) = ∑s′∈SR(s,α, s′) = 1 + 2

2 Prob. to move to s2 = P (X2 <X3).
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The subclass of locally uniform CTMDPs

Restriction to local uniformity

A CTMDP is locally uniform iff

∀s ∈ S. ∀α,β ∈ Act(s). E(s,α) = E(s, β).
Exit rate E(s) independent of action! s0

s1 s2

s3
α,2

γ,1

γ,1

α,1
β, 3

β,1

✓
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Why this restriction?

Sojourn time in a state does not depend on action!
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Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

π = s0

s0

s1 s2

s3
α,2

α,1

γ,1

γ,1

β,3
γ,1

γ,1

Time & history dependent schedulers [Neuhäußer,Stoelinga,Katoen ’09]

A scheduler is a measurable mapping

D ∶ Paths⋆ ×R≥0 → Distr(Act)
such that D(π, t)(α) > 0⇒ α ∈ Act(last(π)).

The probability measure

Scheduler D & initial state s induce unique probability measure Prω
s,D!
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Martin R. Neuhäußer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 10 / 35



Resolving nondeterministic choices

Resolving nondeterminism by schedulers:

π = s0 s1
β, t0

wait in s1 for X1 ∼ Exp(2) time units s0

s1 s2

s3
α,2

α,1

γ,1

γ,1

β,3
γ,1

γ,1

Time & history dependent schedulers [Neuhäußer,Stoelinga,Katoen ’09]
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Modeling the sJSP as a CTMDP

Finishing all jobs within z time units:

1, 2

3, 4
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Finishing all jobs within z time units:
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2, 3, 4

1, 2, 4

α2

λ1
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All scheduling strategies represented in the CTMDP.

α1 ∶ (1↦ {3,4} ,3 ↦ {2,4}) α2 ∶ (1 ↦ {2,4} ,3 ↦ {1,4}) . . .
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All scheduling strategies represented in the CTMDP.

α1 ∶ (1↦ {3,4} ,3 ↦ {2,4}) α2 ∶ (1 ↦ {2,4} ,3 ↦ {1,4}) . . .

Properties:

1 CTMDP combines nondeterministic choices and stochastic timing.

2 The CTMDP model is locally uniform.
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Outline of the talk

1 Introduction

2 Continuous-time Markov decision processes (CTMDPs)
Motivation
Preliminaries
Resolving nondeterministic choices

3 Time-bounded reachability analysis in CTMDPs
The approximation algorithm
Solving the sJSP

4 Further results in the thesis
Model checking interactive Markov chains
Model checking generalized stochastic Petri nets

5 Conclusion
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Time-bounded reachability in the sJSP

Time-bounded reachability probabilities� CTMDP model C.� Initial state: s ∈ S� Goal states: G ⊆ S� Time-bound: z ∈ R≥0
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The time-bounded reachability event:

◇
[0,z]G = {π ∈ Pathsω ∣ ∃t ∈ [0, z]. π@t ∈ G}

Maximum time-bounded reachability probability

pCmax (s, z) = sup
D

Prω
s,D(◇[0,z]G)
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Computing the maximum time-bounded reachability

probability

How to compute pC
max

?

Idea: Characterize pCmax as a fixed-point!
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Computing the maximum time-bounded reachability

probability

How to compute pC
max

?

Idea: Characterize pCmax as a fixed-point!

A higher operator for maximum time-bounded reachability

Define Ω ∶ (S ×R≥0 → [0,1])→ (S ×R≥0 → [0,1]) on measurable functions:� If s ∈ G then Ω(F )(s, z) = 1.� If s ∉ G then

Ω(F )(s, z) = ∫
z

0

E(s)e−E(s)t ⋅ max
α∈Act

∑
s′∈S

P(s,α, s′) ⋅F (s′, z − t) dt.
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Computing the maximum time-bounded reachability

probability

How to compute pC
max

?

Idea: Characterize pCmax as a fixed-point!

A higher operator for maximum time-bounded reachability

Define Ω ∶ (S ×R≥0 → [0,1])→ (S ×R≥0 → [0,1]) on measurable functions:� If s ∈ G then Ω(F )(s, z) = 1.� If s ∉ G then

Ω(F )(s, z) = ∫
z

0

E(s)e−E(s)t ⋅ max
α∈Act

∑
s′∈S

P(s,α, s′) ⋅F (s′, z − t) dt.

Fixed point characterization

The function pCmax(s, z) is the least fixed point of Ω.
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Applying the fixed point characterization directly

Fixed point characterization

If s ∈ G: Ω(F )(s, z) = 1. Otherwise:

Ω(F )(s, z) = ∫
z

0

E(s)e−E(s)t ⋅ max
α∈Act

∑
s′∈S

P(s,α, s′) ⋅ F (s′, z − t) dt.
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0

E(s)e−E(s)t ⋅ max
α∈Act

∑
s′∈S

P(s,α, s′) ⋅ F (s′, z − t) dt.

Solving the reachability problem analytically

Fixed-point computation: ∀s ∈ S. F0(s, z) = 0.
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Applying the fixed point characterization directly
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What is achieved so far:

Analytical solution

Allows to compute pCmax (s, z) for small problem instances.
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Disadvantages:

1 Numerical instabilities due to nested integrals.

2 Integration over the maximum of functions.

⇒ Fixed-point characterization not suitable for an algorithmic solution.
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What is achieved so far:

Analytical solution

Allows to compute pCmax (s, z) for small problem instances.

Disadvantages:

1 Numerical instabilities due to nested integrals.

2 Integration over the maximum of functions.

⇒ Fixed-point characterization not suitable for an algorithmic solution.

Instead:
Use the discretization technique that comes next!
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A discretization that computes pmax(s, z)

Reduce pC
max

to step-bounded reachability pCτmax in MDPs.

Each discrete step corresponds to a time-interval of length τ .
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A discretization that computes pmax(s, z)

Reduce pC
max

to step-bounded reachability pCτmax in MDPs.

Each discrete step corresponds to a time-interval of length τ .

Continuous-time vs. discrete-time Markov decision processes

Continuous-time MDP C

s0

s1 s2

s3
α,2

γ,1

γ,1

α,1
β,3

β,1

Exponential distributions

Discrete-time MDP Cτ

s0

s1 s2

s3
α, 2

3
(1 − e

−3τ)

α, e
−3τ

β, e
−3τ

γ, 1

γ, 1

β, e
−τ

α, 1

3
(1 − e−3τ )

β, (1 − e
−3τ )

β, (1 − e−τ)

Discrete probability distributions

Reachability within time z ≡ Reachability in z
τ

steps!

pCmax(s, z) pCτ

max(s, z
τ
)
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Discretization I

Recall the fixed-point characterization:

The function pCmax(s, z) is the least fixed point of Ω: If s ∉ G, then

pCmax(s, z) = ∫
z

0

E(s)e−E(s)t ⋅ max
α∈Act

∑
s′∈S

P(s,α, s′) ⋅ pCmax(s′, z − t) dt.
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Choose τ ≪ z and split pCmax(s, z) accordingly:
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α∈Act

∑
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P(s,α, s
′) ⋅ pCmax(s′, z − t) dt

= e
−E(s)τ

⋅ p
C
max(s, z − τ).
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0

E(s)e−E(s)t
⋅ max
α∈Act

∑
s′∈S

P(s,α, s
′) ⋅ pCmax(s′, z − t) dt

B(s, z) = ∫
z

τ

E(s)e−E(s)t
⋅ max
α∈Act

∑
s′∈S

P(s,α, s
′) ⋅ pCmax(s′, z − t) dt

= e
−E(s)τ

⋅ p
C
max(s, z − τ).

Relation to pCmax (s, z): pCmax(s, z) = A(s, z) +B(s, z)
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Discretization II

Intuition behind A(s, z) and B(s, z)� A(s, z) = Prob. to reach G within time z with ≥ 1 transitions in [0, τ].

A(s, z)
⋯

s0

s1

s2

s3

s4

s5

s6

s7

⋯t0

t1

t2
t3 t4

t5

t6

t7

sn

tn−1

0 τ z

Martin R. Neuhäußer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 19 / 35



Discretization II

Intuition behind A(s, z) and B(s, z)� A(s, z) = Prob. to reach G within time z with ≥ 1 transitions in [0, τ].
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0 τ z� B(s, z) = Prob. to reach G within time z with no transition in [0, τ].
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A step-wise approximation of pCmax(s, z)

A single step in the discretized MDP

CTMDP C and step duration τ < z induce the discretized MDP Cτ :

Pτ (s,α, s′) =
⎧⎪⎪⎨⎪⎪⎩
(1 − e−E(s)τ) ⋅P(s,α, s′) if s /= s′

(1 − e−E(s)τ) ⋅P(s,α, s) + e−λ(s)τ if s = s′.
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A step-wise approximation of pCmax(s, z)

A single step in the discretized MDP

CTMDP C and step duration τ < z induce the discretized MDP Cτ :

Pτ (s,α, s′) =
⎧⎪⎪⎨⎪⎪⎩
(1 − e−E(s)τ) ⋅P(s,α, s′) if s /= s′

(1 − e−E(s)τ) ⋅P(s,α, s) + e−λ(s)τ if s = s′.

Theorem (Correctness of our reduction)

Let C be a CTMDP, G a set of goal states and z a time bound.

Choose some k ∈ N>0 and set τ = z
k
. Then

pCτ

max(s, k) ≤ pCmax (s, z) ≤ pCτ

max(s, k) +
(λz)2

2k
.

1 pCτ

max(s, k) is the probability to reach G in at most k steps in Cτ ,

2 λ = max s∈SE(s) is the maximum exit rate in C and

3 k is the number of discretization steps.
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Solving the step-bounded reachability problem in Cτ

Value iteration for discrete-time MDPs [Bellman ’57]

Let G ⊆ S be a set of goal states and v⃗n ∈ [0,1]∣S ∣ such that

v⃗0(s) =
⎧⎪⎪⎨⎪⎪⎩
1 if s ∈ G

0 if s ∉ G
v⃗n+1(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if s ∈ G

max
α∈Act

∑
s′∈S

P(s,α, s′) ⋅ vn(s′) if s ∉ G

Then pCτ

max(s, k) = v⃗k(s).
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Summarizing our time-bounded reachability analysis

Input
1 locally uniform CTMDP

2 Goal states: G = {s2}
3 Time bound: z = 1

4 Maximum allowed error: ε = 10−3
s0

s1 s2

s3
α,2

γ,1

γ,1

α,1
β,3

β,1

Compute the number of discretization steps k

(λz)2
2k

≤ ε ⇒ k ≥ 4500 ⇒ τ = z

k
= 0.0002.
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γ, 1

γ, 1
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Complexity of the discretization approach

Complexity

For CTMDP C, time bound z and error bound ε:� Number of iteration steps: O((λz)2/ε).� Each value iteration step: linear in the size of C (transitions + states)

Overall complexity: O(∣C∣ ⋅ (λz)2/ε).
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Outlook: Computing optimal solutions for the sJSP

Analysis of the sJSP

1 Different rates ⇒ schedule important.

2 Synthesis of best and worst schedules.
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Outline of the talk

1 Introduction

2 Continuous-time Markov decision processes (CTMDPs)
Motivation
Preliminaries
Resolving nondeterministic choices

3 Time-bounded reachability analysis in CTMDPs
The approximation algorithm
Solving the sJSP

4 Further results in the thesis
Model checking interactive Markov chains
Model checking generalized stochastic Petri nets

5 Conclusion

Martin R. Neuhäußer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 25 / 35



Interactive Markov chains

Model Checking Interactive Markov Chains [Zhang, Neuhäußer ’10]

Continuous-time MDP
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Combines actions and rates.

Only one type of transitions:

s0 s1
β,2

Extending the discretization from CTMDPs to IMCs

Model checking the continuous stochastic logic (CSL) on IMCs!
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Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNs) [Marsan,Conte,Balbo ’84]� Places P��� Input, output and inhibitor arcs� Tokens
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Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNs) [Marsan,Conte,Balbo ’84]� Places P� Timed transitions (exp. rate)�� Input, output and inhibitor arcs� Tokens
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Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNs) [Marsan,Conte,Balbo ’84]� Places P� Timed transitions (exp. rate)� Immediate transitions� Input, output and inhibitor arcs� Tokens

Semantics: Reachability graph
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Overcome confusion in GSPNs [Hermanns,Katoen,Neuhäußer,Zhang ’10]
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Martin R. Neuhäußer (RWTH Aachen) Nondeterministic & Stochastic Model Checking January 25, 2010 27 / 35



Model checking generalized stochastic Petri nets

Generalized stochastic Petri nets (GSPNs) [Marsan,Conte,Balbo ’84]� Places P� Timed transitions (exp. rate)� Immediate transitions� Input, output and inhibitor arcs� Tokens

Semantics: Reachability graph
⇒ token game!

p0

t0

λ

t1

η

t2

µ

p2
p3

p1

t3
t4

t5

t6

t7 t8γ

Overcome confusion in GSPNs [Hermanns,Katoen,Neuhäußer,Zhang ’10]
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Dependability Analysis of a Workstation Cluster Haverkort’00

A GSPN model for the dependable workstation cluster

RightSubclusterLeftSubcluster

1

2

⋮

N

LeftSwitch

Backbone

RightSwitch

1

2

⋮

N

N

LeftWorkstationUp LeftWorkstationDown LeftWorkstationInRepair

N

RightWorkstationUp RightWorkstationDown RightWorkstationInRepair

LeftSwitchUp LeftSwitchDown LeftSwitchInRepair

RightSwitchUp RightSwitchDown RightSwitchInRepair

BackboneUp BackboneDown BackboneInRepair

RepairUnitAvailable

LeftWorkstationFail LeftWorkstationInspect LeftWorkstationRepair

RightWorkstationFail RightWorkstationInspect RightWorkstationRepair

LeftSwitchFail LeftSwitchInspect LeftSwitchRepair

RightSwitchFail RightSwitchInspect RightSwitchRepair

BackboneFail BackboneInspect BackboneRepair

Result of the nondeterministic analysis

System is 18% less reliable than predicted by earlier analysis!
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Outline of the talk

1 Introduction

2 Continuous-time Markov decision processes (CTMDPs)
Motivation
Preliminaries
Resolving nondeterministic choices

3 Time-bounded reachability analysis in CTMDPs
The approximation algorithm
Solving the sJSP

4 Further results in the thesis
Model checking interactive Markov chains
Model checking generalized stochastic Petri nets

5 Conclusion
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Results of the thesis

What can be found in there?

1 Continuous-time Markov decision processes� A new class of time-dependent schedulers� Time-bounded reachability analysis� Strong bisimulation minimization for CTMDPs.

2 Interactive Markov chains� Extension of CTMDP analysis to IMCs� CSL model checking algorithm

3 Generalized stochastic Petri nets� A simple and concise semantics for GSPNs� Model checking CSL formulas on GSPNs

4 Case studies� Solving the stochastic job scheduling problem� Dependability analysis of a workstation cluster
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Open problems and future research directions

The future...
1 Continuous-time Markov decision processes� Restriction to local uniformity?� Uniformization for time-dependent schedulers?

2 Interactive Markov chains� Computing long run average measures?� Support for reward extensions of CSL?

3 Generalized stochastic Petri nets� Allow for partial weight specifications?� Extension towards stochastic activity networks?
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List of Publications

Published papers

1 Model Checking Interactive Markov Chains.

Zhang, Neuhäußer. TACAS 2010

2 Delayed Nondeterminism in Continuous-Time Markov Decision Processes.

Neuhäußer, Stoelinga, Katoen. FoSSaCS 2009

3 Compositional Abstraction for Stochastic Systems.

Katoen, Klink, Neuhäußer. FORMATS 2009

4 Bisimulation and Logical Preservation for Continuous-Time Markov Decision Processes.

Neuhäußer, Katoen. CONCUR 2007

5 Abstraction and Model Checking of Core Erlang Programs in Maude.

Neuhäußer, Noll. WRLA 2007

The pipeline

1 Time-Bounded Reachability in Continuous-Time Markov Decision Processes.

Neuhäußer, Zhang. submitted to LICS 2010

2 GSPN model checking despite confusion.

Hermanns, Katoen, Neuhäußer, Zhang. submitted to ICATPN 2010
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Are time-dependent schedulers necessary?

Time-abstract vs. time dependent schedulers� Why not positional schedulers?� ... or time-abstract schedulers?

Are our schedulers really better?
s0
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α,1β,3

γ,1
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Are time-dependent schedulers necessary?

Time-abstract vs. time dependent schedulers� Why not positional schedulers?� ... or time-abstract schedulers?

Are our schedulers really better?
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Optimal scheduler for time-bound z = 1:
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A simpler class of optimal schedulers

Total time positional schedulers

A scheduler D ∶ Paths⋆ ×R≥0 → Distr(Act) is total time positional iff
∀π,π′ ∈ Paths

⋆
. ∀t, t′ ∈ R≥0.

(last(π) = last(π′) ∧∆(π) + t =∆(π′) + t′)⇒D(π, t) =D(π′, t′).

∆(π) is the total time spent on π.

Intuition:
Total time positional schedulers only depend on

1 the current state last(π)
2 the total amount of time ∆(π) + t) that has passed.

Optimality of TTPD schedulers

There exists D ∈ TTPD such that Prω
s,Dz(◇[0,z]G) = pG

max(s, z).
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