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CORE ERLANG Characteristics

What i1s CORE ERLANG?




CORE ERLANG Characteristics

What i1s CORE ERLANG?

A strict functional language
with succinct syntax
based upon leightweight processes

and mterprocess communication.




Process Creation

Creation of a new process

The evaluation of the built—in function

call ’erlang’:’spawn’(Module, Function_name, Arguments)

creates a new process.




Process Creation

Creation of a new process

The evaluation of the built—in function

call ’erlang’:’spawn’(Module, Function_name, Arguments)

creates a new process.

e spawn returns as soon as the new process is created.

Evaluates to the unique identifier of the created process.
e The new process autonomously starts to evaluate the function call

call Module : Function_name (Arguments).

If the evaluation ends, its result is discarded.

~» Interprocess communication and side effects are a necessity!
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Interprocess Communication in Erlang RWNTH

Sending and reception of messages

e Sending of messages:

msgo

The evaluation of an expression

Pidy ! {’req”, Pidy }

call ’erlang’:’!” (Rcv, Expr)

msgn

— first evaluates its arguments Rcv and Expr

— and appends the message to the receiver’s mailbox. lsend(Pidl, Pidy, {"req”, Pid; })

msgo

msgn
{"req”, Pid; }




Interprocess Communication in Erlang

e Sending of messages:

Sending and reception of messages

The evaluation of an expression

call ’erlang’:’!” (Rcv, Expr)

— first evaluates its arguments Rcv and Expr

— and appends the message to the receiver’s mailbox.

e Reception of messages:
receive
Paty when ¢¢ ->

Paty, when g  ->

Pat,, when g, ->

after Timeout ->

Exprq
Exprg

Expr,
TimeoutExpr

— The oldest matching message is received first.

— Clauses are tried in order of appearence.

Pidy ! {’req”, Pidy }

msgo

msgn

lsend(Pidl, Pidy, {"req”, Pid })

msgo

msgn

{’req”, Pidy}

match?

msg

msgs

msgs

msgy




Our Intention: Verifying Concurrent Erlang Programs RWNTH

What is it all about?

Goal: Veritying properties of Core Erlang programs by means of transition system models

Approach:
e Formally define the semantics of Core Erlang,
e Operationalize the semantics by transferring it into a Rewriting Logic specification.
e Use abstractions to reduce the state space of the resulting transition systems.

e Automatically derive the transition system model of a given Core Erlang program (MAUDE).

Verification:
If the set of reachable states is finite, apply model checking techniques to verify properties.




Sequential Core Erlang

A first sublanguage: Sequential Core Erlang

e Regard only the local aspects of expression evaluation.
e Side effects are formalized by non-determinism.
— Non-determinism is resolved later by considering the entire system

Transition system T, only captures the local behaviour of an expression!
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A first sublanguage: Sequential Core Erlang

e Regard only the local aspects of expression evaluation.
e Side effects are formalized by non-determinism.
— Non-determinism is resolved later by considering the entire system

Transition system T, only captures the local behaviour of an expression!

A first example:
e Sequencing operator do:
Fxample:  do 17 apply ’simex’/0()
< The first subexpression is fully evaluated. Semantics: Discard its value and continue!

(Seqy)

=
dovale —, €
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A first sublanguage: Sequential Core Erlang

e Regard only the local aspects of expression evaluation.
e Side effects are formalized by non-determinism.
— Non-determinism is resolved later by considering the entire system

Transition system T, only captures the local behaviour of an expression!

A first example:
e Sequencing operator do:
Fxample:  do 17 apply ’simex’/0()
< The first subexpression is fully evaluated. Semantics: Discard its value and continue!

(Seqy)

=
dovale —, €

e But what about the evaluation of the first subexpression?
Consider for example:  do call ’erlang’:’!’(Rcv,Msg) apply ’proceed’/0()
< Before evaluation of the do-operator can proceed, its first argument must be evaluated:

(Sedqsy)
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SeqCore Pattern Matching Expressions

Pattern matching expressions

® case expressions:

Ji. (match(val, cl;) = € AVj < i. match(val, clj) = 1)

case val of ¢l --- clj end ——, €

(Casey)




SeqCore Pattern Matching Expressions R\NTH

Pattern matching expressions

® case expressions:

Ji. (match(val, cl;) = € AVj < i. match(val, clj) = 1)
(Casey)

case val of ¢l --- clj end ——, €
e receive expressions:
gmatch predicate holds iff a matching message is in the mailbox:

gmatch(q,cly, ..., clg) := 3q1,¢> € Const™, ¢ € Const,i € {1,...,k}. q=q -c-q Amatch(c,cl;) # L

Reception of the first matching message (¢):

—gmatch(q,cly, ..., cly) case ¢ of cly...cl, end ——, € ¢t € NumU {’infinity’} (Rev,)
CVvy

. recv(q,c) /
receive cly---clp after ¢ -> ¢4 ———5, €

Note: The prefix gc of the process’ mailbox is guessed nondeterministically!

< Reflected by the transition label recv(q, ¢)




Transition System Semantics of Concurrent COREERLANG

Global states and the transition system 7T:

e 7 transitions are autonomous evaluation steps.

< can be lifted to the system layer semantics directly:
T /
e —, €

Su{(e,i,q,L,t)} =, SU{(,i,q,L,t)}

(SeqCore)

e Sending of messages:

— By considering process systems, we can formalize message transmission:

Jle /

send(7,7,c)
—_

SU {(61'77;7 qi, Li7ti)7 (6j7j7 qj, Lj7tj)} s S'U {(ega 7:7 qi, Li7ti)7 (6j7j7 qj - C, Lj7tj>}

(Send,)




Transition System Semantics of Concurrent COREERLANG

Global states and the transition system 7T:

e 7 transitions are autonomous evaluation steps.

< can be lifted to the system layer semantics directly:
T /
e —, €

Su{(e,i,q,L,t)} =, SU{(,i,q,L,t)}

(SeqCore)

e Sending of messages:

— By considering process systems, we can formalize message transmission:

Jle /

send(7,7,c)
—_

S U {(6i7i7 qi, Li7ti)7 (6j7j7 qj, Lj7tj)} s SU {(6;7 7:7 qi, Liati)a (6j7j7 qj - C, Lj7tj>}

e Message reception:

recv(qi,c) /
——¢ €

(Recv)

recv(i,c)

SU{(€7i7Q1°C°QQ7L7t)} s SU{(6/7iaQ1'Q27L7t)}

(Send,)




Example: A simple mutual exclusion protocol in CORE ERLANG:

’locker?’/0 = fun () ->
receive
{"request”,Client} when ’true’ -> do
call ’erlang’:’!’(Client, "ok”)
receive
{’release”,From} when

call ’erlang’:’=:=’(From,Client)
-> apply ’locker’/0()

after ’infinity’ -> ’false’

after ’infinity’ -> ’true’

‘client’/1 = fun (LockerPid) ->
let MyPid = call ’erlang’:’self’() in do
call ’erlang’:’!’(LockerPid, {”request”, MyPid})
receive

7o0k” when ’true’ -> do

%% critical section
call ’erlang’:’!’(LockerPid, {"release”, MyPid})
apply ’client’/1(LockerPid)

after ’infinity’ -> ’false’




The Transition System of the Mutual Exclusion Protocol R\NTH

—b((call ’locker’:’start’(),O,E)) - >< (let MyPid = call ’erlang’:’self’()...,0,¢) )
yself()
((let MyPid = o...,o,s)>
VT
((do call ’erlang’:’spawn’(’locker’, ’client’, [0]) ...,O0, 6))
+spawn(0, 1)
(do 1 do call ’erlang’:’spawn’(’locker’, ’client’, [0]),0, ED

(call “locker’:’client’(0),1,¢)

+’7’

(do call ’erlang’:’spawn’(’locker’, ’client’, [0]),0,¢)
(call ’locker’:’client’(0),1,¢€)

spawn(0, 2 \’L>

do call ’erlang’:’spawn’(’locker’, ’client’, [0]),0,¢)
do 2 apply ’locker’/0,0,¢€ ( g p s s » U,
Ecgll ’1o}C)§e¥’:’c1ient’((7)) :1’)5) ( (let MyPid = call ’erlang’:’self’(),1,¢)

call ’locker’:’client’(0),2,¢) +8€lf()

4 T VT L A and Cdo call ’erlang’:’spawn’(’locker’, ’client’, [0]),0,5D

(let MyPid = 1,1,¢€)

v

T (do call ’erlang’:’spawn’(’locker’, ’client’, [0]),0,¢)
~ (do call ’erlang’:’!’(0, {’request”, 1}),1,¢)

m alny Vsend(l, 0, {"request”, 1})

(do call ’erlang’:’spawn’(’locker’, ’client’, [0]), 0, {’request”, 1})
T %7- T (do {’request”, 1} receive, 1,¢)

V7T
(let MyPid = call ’erlang’:’self’(),1,e
(call ’locker’:’client’(0),2,¢) (do call ’erlang’:’spawn’(’locker’, ’client’, [0]),0, {"request”,1})

(receive ..., 1,¢)
$self() I I]_OI.e vspa,wn((), 2)

(receive ---,0,¢)
(let MyPid = 1,1, ¢)
(call ’locker’:’client’(0),2,¢€)

(apply ’locker’/0,0,¢€)
call ’locker’:’client’(0),1,¢)
call ’locker’:’client’(0),2,¢)

- %T
(receive ---,0,¢)

call ’locker’:’client’(0),1,¢)
call ’locker’:’client’(0),2,¢)

N AN

(receive ---,0,¢)

N

(do 2 apply (’locker’/O, 0, {"request”, 1})
receive ..., 1,¢
(call ’locker’:’client’(0),2,¢)

VT ‘T

N

(receive ---,0,¢)
(do call ’erlang’:’!’(0, {’request”, 1}),1,¢) (apply ’locker’/0,0, {"request”, 1})
(call ’locker’:’client’(0),2,¢€) (receive ...,1,¢)
(call ’locker’:’client’(0),2,¢)
%send(l, 0, {’request”, 1})
pa

receive - --,0, {"request”, 1} T (receive ---,0, {"request”, 1})

do {’"request”,1} receive, 1, ¢ (receive ---,1,¢
(call ’locker’:’client’(0),2,¢) (call ’locker’:’client’(0),2,¢€)




Transition System Semantics Revisited: Merging States RWNTH

Abstracting from 7 evaluation steps

TS, = (S/N,M,—n [SO]N), where

e States are the equivalence classes in S/ s
e Actions: Act = Act_ \ {r} 1. <=, denotes the reflexive, symmetric

o o T
e Transition relation — C S/ x Act x S/ and transitive closure of —.,.

[So]~ € )~ as initial state 2. Equivalence relation: N::<i>:




~ Equivalent States of the Mutual Exclusion Protocol

-G - —
self ()

((let MyPid = o...,0,5)>

V7T
((do call ’erlang’:’spawn’(’locker’, ’cliemnt’, [0]) ...,O0, s))

+spawn(0, 1)
Gdo 1 do call ’erlang’:’spawn’(’locker’, ’client’, [0]), 0, sb

(call ’locker’:’client’(0),1,¢)

+’7’

(do call ’erlang’:’spawn’(’locker’, ’client’, [0]),O,€D

(call ’locker’:’client’(0),1, )

spawn(0, 2 T,

(let MyPid = call ’erlang’:’self’(),1,¢)

Cdo call ’erlang’:’spawn’(’locker’, ’client’, [0]),0,¢)

’

self()

spawn(0,2)

(do 2 apply ’'locker’/0,0, {"request”,1})
(receive ...,1,¢)
(call ’locker’:’client’(0),2,¢e)
v

(apply ’locker’/0,0, {’request”, 1})
(receive ...,1,¢)
(call ’locker’:’client’(0), 2, ¢)

send(l, 0, {’request”, 1})

pa
receive - --,0, {’request”, 1} T (receive - --,0, {"request”, 1})
do {”request”,1} receive, 1, ¢ (receive ---,1,¢

(call ’locker’:’client’(0), 2, ¢e) (call ’locker’:’client’(0), 2, ¢)

send(1,0, {"request”, 1})




The MAUDE system

What 1s MAUDE?

Specification language based on José Meseguer’s Rewriting Logic.
Interpreter for parameterized Rewriting Logic theories.

Developed at the University of Illinois at Urbana-Champaign.




MAUDE Preliminaries

MAUDE preliminaries:

1. Membership equational logic theory (£2,&) where
e Q= ((K,%),¢) denotes a many kinded signature and
e £ denotes the set of equations.
e £ = FRWY A where A are equational attributes (associativity, commutativity, identity) and ER are
(directed) equations
< equational rewriting /simplification
(€2, £) allows equational simplification of a term into a £ normal form.

Precondition: The directed equations in FR are confluent and terminating modulo A




MAUDE Preliminaries R“TH

MAUDE preliminaries:

1. Membership equational logic theory ({2,&) where
e Q= ((K,%),¢) denotes a many kinded signature and
e £ denotes the set of equations.
e £ = FRWY A where A are equational attributes (associativity, commutativity, identity) and ER are
(directed) equations
< equational rewriting /simplification
(€2, £) allows equational simplification of a term into a £ normal form.

Precondition: The directed equations in FR are confluent and terminating modulo A

2. Rewriting logic theory (2, &, ¢, R) extends the MEL theory:
((K,X),¢) is the signature,
(€, €) is the underlying MEL theory and

QX — 2N defines frozen argument positions.

R denotes the set of rewriting rules

< needs not to be confluent!

Idea: Normalize term wrt. FRW A and then apply the rewriting rules from R!
— Coherence properties between FRW A and R must be fulfilled!




A Signature for Process Systems RWNTH

Representation of processes and process systems in MAUDE

e Processes:
op <UL OEE[E]E[E> ¢ Label SysResult Expr Pid Mailbox ProcessLinks TrapExit ModEnv -> Process .

Label, SysResult and ModEnv are needed in order to operationalize the semantics

e Process systems:
op empty-processes : -> Processes [ctor]

op [J||lJ: Processes Processes -> Processes [ctor assoc comm id: empty-processes]

subsort relation: Process Cg,.. Processes

e Process environments:
op ((LJ,00,00,00)) : SysLabel Processes ModEnv PidSequence -> ProcessEnvironment

<~ Process environments constitute the states of our transition system.




Implementation of the Quotient Transition System 7'S,.

Specify the equivalence ~ using the equational theory (€2, &):

Example:

(Seqy)

-
dowvale —, € do e €3

(Sedqs)

o /
(e
—

/
e @61 €2




Implementation of the Quotient Transition System TS, RWNTH

Specify the equivalence ~ using the equational theory (€2, &):

Example:

(Seqy)

-
doval e —, e do e; €9

(Sedqs)

@ /
(e
—

/
e ngﬁ_ez

e Livaluation of the do operator itself:

eq [norm-do]
<tau|#no-res|do C EX2|PID|MBOX|LINKS|TRAP|ME> =
<tau|#no-res |EX2|PID|MBOX |LINKS |TRAP |ME>

e Evaluation of the first subexpression:

ceq [norm-do]
<tau |RES|do EX1 EX2|PID|MBOX|LINKS|TRAP|ME> =
<#filterExit (ESL) |RES1|do EX1’ EX2|PID|MBOX|LINKS |TRAP |ME>
if not (EX1 :: Const)
/\ <ESL|RES1|EX1'|PID|MBOX|LINKS|TRAP|ME> :=
<tau |RES |EX1 |PID|MBOX |LINKS | TRAP |ME>




Rewriting Rules Define the Transition Relation —

Rewriting rules define the transition relation R_.:

Idea: Specify — C S, x §/. by rewriting rules R!

Note: Operationally, process systems are available as normal forms wrt. (3, £'U A) only!

Example: Inference rule specifying message reception:

recv(qi,c) /
—¢ €

(Recv)

recv(i,c)

SU {(eai7QI " C QQ7L7t>} s S'U {(6/72.7QI ’ Q2JL7t)}




Rewriting Rules Define the Transition Relation —

Rewriting rules define the transition relation R_.:

Idea: Specify — C S, x §/. by rewriting rules R!

Note: Operationally, process systems are available as normal forms wrt. (3, £'U A) only!

Example: Inference rule specifying message reception:

recv(q1,c) /
— e
, (Recv)
SU{(e,isqn-c- o, L1} = S UL i qu - go, L, 1)}
The corresponding conditional rewrite rule:
crl [sys-receive]
(SL, <receive(C)|#no-res|EX|PID|MBOX|LINKS|TRAP|ME> || PRCS, ME’, PIDS) =>
(sys-receive (PID, C),
<tau|#no-res |EX|PID|MBOX1|LINKS|TRAP|ME> || PRCS, ME’, PIDS)
if MBOX1 := #extractMessage (MBOX|C)

Remark: Receivable messages are observed on expression layer but removed on system layer!




Soundness and Completeness

e Semantic point of view:

e Operational point of view:

Soundness and completeness

R/ auER
—_—

B A ] AUER

ER/ .

5] LN

Do they coincide?




Soundness and Completeness

e Semantic point of view:

e Operational point of view:

Soundness and completeness

[3]5 = [s] AUER Havrn, [s'] AUER — [

ER/A *

5] LN

Do they coincide?

Yes, they do!




Demo: LTL Model Checking Applied to the Mutual Exclusion Protocol

Defining predicates

States of T'S,.. are represented by (£2,£) normal forms.

— Associate predicates to these terms:

s = send(i, j, )

“process ¢ just sent message c to process j”

s = receive(i, )

“process 1 just received c¢”

Remark: If s = send(i, j, c¢) is valid, the respective state was reached by this transition.




Demo: LTL Model Checking Applied to the Mutual Exclusion Protocol

Defining predicates

States of T'S,.. are represented by (£2,£) normal forms.

— Associate predicates to these terms:

s = send(i, j,¢) | “process i just sent message ¢ to process j”

s E receive(i,c) | “process i just received ¢”

Remark: If s = send(i, j, c¢) is valid, the respective state was reached by this transition.

Model checking the mutual exclusion protocol:

e As long as the first client is in its critical section, the second cannot enter
v1 = scheduler(0,1,2) — O (send(0,1,”0k”)— (—send(0,2,”0k™) U send(1,0,{’rel”,1})))
e Eventually, the second client enters the critical section:

©po = scheduler(0,1) — < (send(0,2,70k™))
vy = scheduler(0,1,2) — < (send(0,2,”0k™))

But: In general (unfair scheduling), - is not fulfilled:

~» Counterexample: The first client enters whereas the second client starves.




Future Work

Future Work

1. REAL TIME MAUDE:
Extend the Core Erlang semantics with a notion of time.
2. Case studies:

More examples to see how this approach scales.




Thank you

Thank you for your attention!

Any questions?

Tool available at http://www.marneu.com/




