Abstraction and Model Checking of
CORE ERLANG Programs in MAUDE

— Martin Neuhaufter and Thomas Noll —

Software Modeling and Verification Group (MOVES)
RWTH Aachen University

6th Workshop on Rewriting Logic and its Applications, Vienna, April 2006

CORE ERLANG Characteristics

What i1s CORE ERLANG?

CORE ERLANG Characteristics

What i1s CORE ERLANG?

A strict functional language
with succinct syntax
based upon leightweight processes

and mterprocess communication.

Process Creation

Creation of a new process

The evaluation of the built—in function

call ’erlang’:’spawn’(Module, Function_name, Arguments)

creates a new process.

Process Creation

Creation of a new process

The evaluation of the built—in function

call ’erlang’:’spawn’(Module, Function_name, Arguments)

creates a new process.

e spawn returns as soon as the new process is created.

Evaluates to the unique identifier of the created process.
e The new process autonomously starts to evaluate the function call

call Module : Function_name (Arguments).

If the evaluation ends, its result is discarded.

~» Interprocess communication and side effects are a necessity!

¥ N
&
L)

Interprocess Communication in Erlang RWNTH

Sending and reception of messages

e Sending of messages:

msgo

The evaluation of an expression

Pidy ! {’req”, Pidy }

call ’erlang’:’!” (Rcv, Expr)

msgn

— first evaluates its arguments Rcv and Expr

— and appends the message to the receiver’s mailbox. lsend(Pidl, Pidy, {"req”, Pid; })

msgo

msgn
{"req”, Pid; }

Interprocess Communication in Erlang

e Sending of messages:

Sending and reception of messages

The evaluation of an expression

call ’erlang’:’!” (Rcv, Expr)

— first evaluates its arguments Rcv and Expr

— and appends the message to the receiver’s mailbox.

e Reception of messages:
receive
Paty when ¢¢ ->

Paty, when g ->

Pat,, when g, ->

after Timeout ->

Exprq
Exprg

Expr,
TimeoutExpr

— The oldest matching message is received first.

— Clauses are tried in order of appearence.

Pidy ! {’req”, Pidy }

msgo

msgn

lsend(Pidl, Pidy, {"req”, Pid })

msgo

msgn

{’req”, Pidy}

match?

msg

msgs

msgs

msgy

Our Intention: Verifying Concurrent Erlang Programs RWNTH

What is it all about?

Goal: Veritying properties of Core Erlang programs by means of transition system models

Approach:
e Formally define the semantics of Core Erlang,
e Operationalize the semantics by transferring it into a Rewriting Logic specification.
e Use abstractions to reduce the state space of the resulting transition systems.

e Automatically derive the transition system model of a given Core Erlang program (MAUDE).

Verification:
If the set of reachable states is finite, apply model checking techniques to verify properties.

Sequential Core Erlang

A first sublanguage: Sequential Core Erlang

e Regard only the local aspects of expression evaluation.
e Side effects are formalized by non-determinism.
— Non-determinism is resolved later by considering the entire system

Transition system T, only captures the local behaviour of an expression!

Sequential Core Erlang

A first sublanguage: Sequential Core Erlang

e Regard only the local aspects of expression evaluation.
e Side effects are formalized by non-determinism.
— Non-determinism is resolved later by considering the entire system

Transition system T, only captures the local behaviour of an expression!

A first example:
e Sequencing operator do:
Fxample: do 17 apply ’simex’/0()
< The first subexpression is fully evaluated. Semantics: Discard its value and continue!

(Seqy)

=
dovale —, €

Sequential Core Erlang RWNTH

A first sublanguage: Sequential Core Erlang

e Regard only the local aspects of expression evaluation.
e Side effects are formalized by non-determinism.
— Non-determinism is resolved later by considering the entire system

Transition system T, only captures the local behaviour of an expression!

A first example:
e Sequencing operator do:
Fxample: do 17 apply ’simex’/0()
< The first subexpression is fully evaluated. Semantics: Discard its value and continue!

(Seqy)

=
dovale —, €

e But what about the evaluation of the first subexpression?
Consider for example: do call ’erlang’:’!’(Rcv,Msg) apply ’proceed’/0()
< Before evaluation of the do-operator can proceed, its first argument must be evaluated:

(Sedqsy)

o /
(e
—

/
do €1 €2 — do € €2

SeqCore Pattern Matching Expressions

Pattern matching expressions

® case expressions:

Ji. (match(val, cl;) = € AVj < i. match(val, clj) = 1)

case val of ¢l --- clj end ——, €

(Casey)

SeqCore Pattern Matching Expressions R\NTH

Pattern matching expressions

® case expressions:

Ji. (match(val, cl;) = € AVj < i. match(val, clj) = 1)
(Casey)

case val of ¢l --- clj end ——, €
e receive expressions:
gmatch predicate holds iff a matching message is in the mailbox:

gmatch(q,cly, ..., clg) := 3q1,¢> € Const™, ¢ € Const,i € {1,...,k}. q=q -c-q Amatch(c,cl;) # L

Reception of the first matching message (¢):

—gmatch(q,cly, ..., cly) case ¢ of cly...cl, end ——, € ¢t € NumU {’infinity’} (Rev,)
CVvy

. recv(q,c) /
receive cly---clp after ¢ -> ¢4 ———5, €

Note: The prefix gc of the process’ mailbox is guessed nondeterministically!

< Reflected by the transition label recv(q, ¢)

Transition System Semantics of Concurrent COREERLANG

Global states and the transition system 7T:

e 7 transitions are autonomous evaluation steps.

< can be lifted to the system layer semantics directly:
T /
e —, €

Su{(e,i,q,L,t)} =, SU{(,i,q,L,t)}

(SeqCore)

e Sending of messages:

— By considering process systems, we can formalize message transmission:

Jle /

send(7,7,c)
—_

SU {(61'77;7 qi, Li7ti)7 (6j7j7 qj, Lj7tj)} s S'U {(ega 7:7 qi, Li7ti)7 (6j7j7 qj - C, Lj7tj>}

(Send,)

Transition System Semantics of Concurrent COREERLANG

Global states and the transition system 7T:

e 7 transitions are autonomous evaluation steps.

< can be lifted to the system layer semantics directly:
T /
e —, €

Su{(e,i,q,L,t)} =, SU{(,i,q,L,t)}

(SeqCore)

e Sending of messages:

— By considering process systems, we can formalize message transmission:

Jle /

send(7,7,c)
—_

S U {(6i7i7 qi, Li7ti)7 (6j7j7 qj, Lj7tj)} s SU {(6;7 7:7 qi, Liati)a (6j7j7 qj - C, Lj7tj>}

e Message reception:

recv(qi,c) /
——¢ €

(Recv)

recv(i,c)

SU{(€7i7Q1°C°QQ7L7t)} s SU{(6/7iaQ1'Q27L7t)}

(Send,)

Example: A simple mutual exclusion protocol in CORE ERLANG:

’locker?’/0 = fun () ->
receive
{"request”,Client} when ’true’ -> do
call ’erlang’:’!’(Client, "ok”)
receive
{’release”,From} when

call ’erlang’:’=:=’(From,Client)
-> apply ’locker’/0()

after ’infinity’ -> ’false’

after ’infinity’ -> ’true’

‘client’/1 = fun (LockerPid) ->
let MyPid = call ’erlang’:’self’() in do
call ’erlang’:’!’(LockerPid, {”request”, MyPid})
receive

7o0k” when ’true’ -> do

%% critical section
call ’erlang’:’!’(LockerPid, {"release”, MyPid})
apply ’client’/1(LockerPid)

after ’infinity’ -> ’false’

The Transition System of the Mutual Exclusion Protocol R\NTH

—b((call ’locker’:’start’(),O,E)) - >< (let MyPid = call ’erlang’:’self’()...,0,¢))
yself()
((let MyPid = o...,o,s)>
VT
((do call ’erlang’:’spawn’(’locker’, ’client’, [0]) ...,O0, 6))
+spawn(0, 1)
(do 1 do call ’erlang’:’spawn’(’locker’, ’client’, [0]),0, ED

(call “locker’:’client’(0),1,¢)

+’7’

(do call ’erlang’:’spawn’(’locker’, ’client’, [0]),0,¢)
(call ’locker’:’client’(0),1,¢€)

spawn(0, 2 \’L>

do call ’erlang’:’spawn’(’locker’, ’client’, [0]),0,¢)
do 2 apply ’locker’/0,0,¢€ (g p s s » U,
Ecgll ’1o}C)§e¥’:’c1ient’((7)) :1’)5) ((let MyPid = call ’erlang’:’self’(),1,¢)

call ’locker’:’client’(0),2,¢) +8€lf()

4 T VT L A and Cdo call ’erlang’:’spawn’(’locker’, ’client’, [0]),0,5D

(let MyPid = 1,1,¢€)

v

T (do call ’erlang’:’spawn’(’locker’, ’client’, [0]),0,¢)
~ (do call ’erlang’:’!’(0, {’request”, 1}),1,¢)

m alny Vsend(l, 0, {"request”, 1})

(do call ’erlang’:’spawn’(’locker’, ’client’, [0]), 0, {’request”, 1})
T %7- T (do {’request”, 1} receive, 1,¢)

V7T
(let MyPid = call ’erlang’:’self’(),1,e
(call ’locker’:’client’(0),2,¢) (do call ’erlang’:’spawn’(’locker’, ’client’, [0]),0, {"request”,1})

(receive ..., 1,¢)
$self() I I]_OI.e vspa,wn((), 2)

(receive ---,0,¢)
(let MyPid = 1,1, ¢)
(call ’locker’:’client’(0),2,¢€)

(apply ’locker’/0,0,¢€)
call ’locker’:’client’(0),1,¢)
call ’locker’:’client’(0),2,¢)

- %T
(receive ---,0,¢)

call ’locker’:’client’(0),1,¢)
call ’locker’:’client’(0),2,¢)

N AN

(receive ---,0,¢)

N

(do 2 apply (’locker’/O, 0, {"request”, 1})
receive ..., 1,¢
(call ’locker’:’client’(0),2,¢)

VT ‘T

N

(receive ---,0,¢)
(do call ’erlang’:’!’(0, {’request”, 1}),1,¢) (apply ’locker’/0,0, {"request”, 1})
(call ’locker’:’client’(0),2,¢€) (receive ...,1,¢)
(call ’locker’:’client’(0),2,¢)
%send(l, 0, {’request”, 1})
pa

receive - --,0, {"request”, 1} T (receive ---,0, {"request”, 1})

do {’"request”,1} receive, 1, ¢ (receive ---,1,¢
(call ’locker’:’client’(0),2,¢) (call ’locker’:’client’(0),2,¢€)

Transition System Semantics Revisited: Merging States RWNTH

Abstracting from 7 evaluation steps

TS, = (S/N,M,—n [SO]N), where

e States are the equivalence classes in S/ s
e Actions: Act = Act_ \ {r} 1. <=, denotes the reflexive, symmetric

o o T
e Transition relation — C S/ x Act x S/ and transitive closure of —.,.

[So]~ €)~ as initial state 2. Equivalence relation: N::<i>:

~ Equivalent States of the Mutual Exclusion Protocol

-G - —
self ()

((let MyPid = o...,0,5)>

V7T
((do call ’erlang’:’spawn’(’locker’, ’cliemnt’, [0]) ...,O0, s))

+spawn(0, 1)
Gdo 1 do call ’erlang’:’spawn’(’locker’, ’client’, [0]), 0, sb

(call ’locker’:’client’(0),1,¢)

+’7’

(do call ’erlang’:’spawn’(’locker’, ’client’, [0]),O,€D

(call ’locker’:’client’(0),1,)

spawn(0, 2 T,

(let MyPid = call ’erlang’:’self’(),1,¢)

Cdo call ’erlang’:’spawn’(’locker’, ’client’, [0]),0,¢)

’

self()

spawn(0,2)

(do 2 apply ’'locker’/0,0, {"request”,1})
(receive ...,1,¢)
(call ’locker’:’client’(0),2,¢e)
v

(apply ’locker’/0,0, {’request”, 1})
(receive ...,1,¢)
(call ’locker’:’client’(0), 2, ¢)

send(l, 0, {’request”, 1})

pa
receive - --,0, {’request”, 1} T (receive - --,0, {"request”, 1})
do {”request”,1} receive, 1, ¢ (receive ---,1,¢

(call ’locker’:’client’(0), 2, ¢e) (call ’locker’:’client’(0), 2, ¢)

send(1,0, {"request”, 1})

The MAUDE system

What 1s MAUDE?

Specification language based on José Meseguer’s Rewriting Logic.
Interpreter for parameterized Rewriting Logic theories.

Developed at the University of Illinois at Urbana-Champaign.

MAUDE Preliminaries

MAUDE preliminaries:

1. Membership equational logic theory (£2,&) where
e Q= ((K,%),¢) denotes a many kinded signature and
e £ denotes the set of equations.
e £ = FRWY A where A are equational attributes (associativity, commutativity, identity) and ER are
(directed) equations
< equational rewriting /simplification
(€2, £) allows equational simplification of a term into a £ normal form.

Precondition: The directed equations in FR are confluent and terminating modulo A

MAUDE Preliminaries R“TH

MAUDE preliminaries:

1. Membership equational logic theory ({2,&) where
e Q= ((K,%),¢) denotes a many kinded signature and
e £ denotes the set of equations.
e £ = FRWY A where A are equational attributes (associativity, commutativity, identity) and ER are
(directed) equations
< equational rewriting /simplification
(€2, £) allows equational simplification of a term into a £ normal form.

Precondition: The directed equations in FR are confluent and terminating modulo A

2. Rewriting logic theory (2, &, ¢, R) extends the MEL theory:
((K,X),¢) is the signature,
(€, €) is the underlying MEL theory and

QX — 2N defines frozen argument positions.

R denotes the set of rewriting rules

< needs not to be confluent!

Idea: Normalize term wrt. FRW A and then apply the rewriting rules from R!
— Coherence properties between FRW A and R must be fulfilled!

A Signature for Process Systems RWNTH

Representation of processes and process systems in MAUDE

e Processes:
op <UL OEE[E]E[E> ¢ Label SysResult Expr Pid Mailbox ProcessLinks TrapExit ModEnv -> Process .

Label, SysResult and ModEnv are needed in order to operationalize the semantics

e Process systems:
op empty-processes : -> Processes [ctor]

op [J||lJ: Processes Processes -> Processes [ctor assoc comm id: empty-processes]

subsort relation: Process Cg,.. Processes

e Process environments:
op ((LJ,00,00,00)) : SysLabel Processes ModEnv PidSequence -> ProcessEnvironment

<~ Process environments constitute the states of our transition system.

Implementation of the Quotient Transition System 7'S,.

Specify the equivalence ~ using the equational theory (€2, &):

Example:

(Seqy)

-
dowvale —, € do e €3

(Sedqs)

o /
(e
—

/
e @61 €2

Implementation of the Quotient Transition System TS, RWNTH

Specify the equivalence ~ using the equational theory (€2, &):

Example:

(Seqy)

-
doval e —, e do e; €9

(Sedqs)

@ /
(e
—

/
e ngﬁ_ez

e Livaluation of the do operator itself:

eq [norm-do]
<tau|#no-res|do C EX2|PID|MBOX|LINKS|TRAP|ME> =
<tau|#no-res |EX2|PID|MBOX |LINKS |TRAP |ME>

e Evaluation of the first subexpression:

ceq [norm-do]
<tau |RES|do EX1 EX2|PID|MBOX|LINKS|TRAP|ME> =
<#filterExit (ESL) |RES1|do EX1’ EX2|PID|MBOX|LINKS |TRAP |ME>
if not (EX1 :: Const)
/\ <ESL|RES1|EX1'|PID|MBOX|LINKS|TRAP|ME> :=
<tau |RES |EX1 |PID|MBOX |LINKS | TRAP |ME>

Rewriting Rules Define the Transition Relation —

Rewriting rules define the transition relation R_.:

Idea: Specify — C S, x §/. by rewriting rules R!

Note: Operationally, process systems are available as normal forms wrt. (3, £'U A) only!

Example: Inference rule specifying message reception:

recv(qi,c) /
—¢ €

(Recv)

recv(i,c)

SU {(eai7QI " C QQ7L7t>} s S'U {(6/72.7QI ’ Q2JL7t)}

Rewriting Rules Define the Transition Relation —

Rewriting rules define the transition relation R_.:

Idea: Specify — C S, x §/. by rewriting rules R!

Note: Operationally, process systems are available as normal forms wrt. (3, £'U A) only!

Example: Inference rule specifying message reception:

recv(q1,c) /
— e
, (Recv)
SU{(e,isqn-c- o, L1} = S UL i qu - go, L, 1)}
The corresponding conditional rewrite rule:
crl [sys-receive]
(SL, <receive(C)|#no-res|EX|PID|MBOX|LINKS|TRAP|ME> || PRCS, ME’, PIDS) =>
(sys-receive (PID, C),
<tau|#no-res |EX|PID|MBOX1|LINKS|TRAP|ME> || PRCS, ME’, PIDS)
if MBOX1 := #extractMessage (MBOX|C)

Remark: Receivable messages are observed on expression layer but removed on system layer!

Soundness and Completeness

e Semantic point of view:

e Operational point of view:

Soundness and completeness

R/ auER
—_—

B A] AUER

ER/ .

5] LN

Do they coincide?

Soundness and Completeness

e Semantic point of view:

e Operational point of view:

Soundness and completeness

[3]5 = [s] AUER Havrn, [s'] AUER — [

ER/A *

5] LN

Do they coincide?

Yes, they do!

Demo: LTL Model Checking Applied to the Mutual Exclusion Protocol

Defining predicates

States of T'S,.. are represented by (£2,£) normal forms.

— Associate predicates to these terms:

s = send(i, j,)

“process ¢ just sent message c to process j”

s = receive(i,)

“process 1 just received c¢”

Remark: If s = send(i, j, c¢) is valid, the respective state was reached by this transition.

Demo: LTL Model Checking Applied to the Mutual Exclusion Protocol

Defining predicates

States of T'S,.. are represented by (£2,£) normal forms.

— Associate predicates to these terms:

s = send(i, j,¢) | “process i just sent message ¢ to process j”

s E receive(i,c) | “process i just received ¢”

Remark: If s = send(i, j, c¢) is valid, the respective state was reached by this transition.

Model checking the mutual exclusion protocol:

e As long as the first client is in its critical section, the second cannot enter
v1 = scheduler(0,1,2) — O (send(0,1,”0k”)— (—send(0,2,”0k™) U send(1,0,{’rel”,1})))
e Eventually, the second client enters the critical section:

©po = scheduler(0,1) — < (send(0,2,70k™))
vy = scheduler(0,1,2) — < (send(0,2,”0k™))

But: In general (unfair scheduling), - is not fulfilled:

~» Counterexample: The first client enters whereas the second client starves.

Future Work

Future Work

1. REAL TIME MAUDE:
Extend the Core Erlang semantics with a notion of time.
2. Case studies:

More examples to see how this approach scales.

Thank you

Thank you for your attention!

Any questions?

Tool available at http://www.marneu.com/

