
Abstra
tion and Model Che
king ofCore Erlang Programs in Maude

� Martin Neuhäuÿer and Thomas Noll �Software Modeling and Veri�
ation Group (MOVES)RWTH Aa
hen University

6th Workshop on Rewriting Logi
 and its Appli
ations, Vienna, April 2006

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Core Erlang Chara
teristi
s
What is Core Erlang?

A stri
t fun
tional languagewith su

in
t syntaxbased upon leightweight pro
essesand interpro
ess
ommuni
ation.

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Core Erlang Chara
teristi
s
What is Core Erlang?

A stri
t fun
tional languagewith su

in
t syntaxbased upon leightweight pro
essesand interpro
ess
ommuni
ation.

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Pro
ess Creation Creation of a new pro
essThe evaluation of the built�in fun
tion
all 'erlang':'spawn'(Module, Fun
tion_name, Arguments)
reates a new pro
ess.

� spawn returns as soon as the new pro
ess is
reated.� Evaluates to the unique identi�er of the
reated pro
ess.� The new pro
ess autonomously starts to evaluate the fun
tion
all
all Module : Fun
tion_name (Arguments).� If the evaluation ends, its result is dis
arded.Interpro
ess
ommuni
ation and side e�e
ts are a ne
essity!

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Pro
ess Creation Creation of a new pro
essThe evaluation of the built�in fun
tion
all 'erlang':'spawn'(Module, Fun
tion_name, Arguments)
reates a new pro
ess.� spawn returns as soon as the new pro
ess is
reated.� Evaluates to the unique identi�er of the
reated pro
ess.� The new pro
ess autonomously starts to evaluate the fun
tion
all
all Module : Fun
tion_name (Arguments).� If the evaluation ends, its result is dis
arded.
; Interpro
ess
ommuni
ation and side e�e
ts are a ne
essity!

Pid1

Pid1

Pid2

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Interpro
ess Communi
ation in ErlangSending and re
eption of messages

� Sending of messages:The evaluation of an expression
all 'erlang':'!' (R
v, Expr)� �rst evaluates its arguments R
v and Expr� and appends the message to the re
eiver's mailbox.

� Re
eption of messages:re
eive when -when -...when -after -� The oldest mat
hing message is re
eived �rst.� Clauses are tried in order of appearen
e.

Pid1 Pid2

msg0...

msgn

{�req�, P id1}

Pid2 ! {�req� , P id1}

Pid1 Pid2

msg0...

msgn

{�req�, P id1}

send(Pid1, P id2, {�req� , P id1})

mat
h?

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Interpro
ess Communi
ation in ErlangSending and re
eption of messages

� Sending of messages:The evaluation of an expression
all 'erlang':'!' (R
v, Expr)� �rst evaluates its arguments R
v and Expr� and appends the message to the re
eiver's mailbox.� Re
eption of messages:re
eive

Pat1 when g1 -> Expr1

Pat2 when g2 -> Expr2...
Patn when gn -> Exprnafter T imeout -> TimeoutExpr� The oldest mat
hing message is re
eived �rst.� Clauses are tried in order of appearen
e.

Pid1 Pid2

msg0...

msgn

{�req�, P id1}

Pid2 ! {�req� , P id1}

Pid1 Pid2

msg0...

msgn

{�req�, P id1}

send(Pid1, P id2, {�req� , P id1})

msg1 msg2 msg3 msg4 . . .

mat
h?

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Our Intention: Verifying Con
urrent Erlang ProgramsWhat is it all about?Goal: Verifying properties of Core Erlang programs by means of transition system modelsApproa
h:� Formally de�ne the semanti
s of Core Erlang.� Operationalize the semanti
s by transferring it into a Rewriting Logi
 spe
i�
ation.� Use abstra
tions to redu
e the state spa
e of the resulting transition systems.� Automati
ally derive the transition system model of a given Core Erlang program (Maude).Veri�
ation:If the set of rea
hable states is �nite, apply model
he
king te
hniques to verify properties.

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Sequential Core Erlang A �rst sublanguage: Sequential Core Erlang� Regard only the lo
al aspe
ts of expression evaluation.� Side e�e
ts are formalized by non-determinism.

→֒ Non-determinism is resolved later by
onsidering the entire systemTransition system Te only
aptures the lo
al behaviour of an expression!

A �rst example:� Sequen
ing operator do: Example: do 17 apply 'simex'/0()The �rst subexpression is fully evaluated. Semanti
s: Dis
ard its value and
ontinue!

do Seq� But what about the evaluation of the �rst subexpression?Consider for example: do
all 'erlang':'!'(R
v,Msg) apply 'pro
eed'/0()Before evaluation of the do-operator
an pro
eed, its �rst argument must be evaluated:

do do Seq

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Sequential Core Erlang A �rst sublanguage: Sequential Core Erlang� Regard only the lo
al aspe
ts of expression evaluation.� Side e�e
ts are formalized by non-determinism.

→֒ Non-determinism is resolved later by
onsidering the entire systemTransition system Te only
aptures the lo
al behaviour of an expression!A �rst example:� Sequen
ing operator do: Example: do 17 apply 'simex'/0()

→֒ The �rst subexpression is fully evaluated. Semanti
s: Dis
ard its value and
ontinue!

do val e
τ
−→e e

(Seq1)

� But what about the evaluation of the �rst subexpression?Consider for example: do
all 'erlang':'!'(R
v,Msg) apply 'pro
eed'/0()Before evaluation of the do-operator
an pro
eed, its �rst argument must be evaluated:

do do Seq

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Sequential Core Erlang A �rst sublanguage: Sequential Core Erlang� Regard only the lo
al aspe
ts of expression evaluation.� Side e�e
ts are formalized by non-determinism.

→֒ Non-determinism is resolved later by
onsidering the entire systemTransition system Te only
aptures the lo
al behaviour of an expression!A �rst example:� Sequen
ing operator do: Example: do 17 apply 'simex'/0()

→֒ The �rst subexpression is fully evaluated. Semanti
s: Dis
ard its value and
ontinue!

do val e
τ
−→e e

(Seq1)� But what about the evaluation of the �rst subexpression?Consider for example: do
all 'erlang':'!'(R
v,Msg) apply 'pro
eed'/0()

→֒ Before evaluation of the do-operator
an pro
eed, its �rst argument must be evaluated:

e1
α
−→e e′1do e1 e2
α
−→e do e′1 e2

(Seq2)

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

SeqCore Pattern Mat
hing ExpressionsPattern mat
hing expressions�
ase expressions:
∃i.

(mat
h(val, cli) = e′ ∧ ∀j < i. mat
h(val, clj) = ⊥
)
ase val of cl1 · · · clk end τ

−−→e e′
(Case1)

� re
eive expressions:qmat
h predi
ate holds i� a mat
hing message is in the mailbox:qmat
h Const Const mat
h

Re
eption of the �rst mat
hing message ():qmat
h
ase of end Num 'infinity're
eive after -> re
v R
vNote: The pre�x of the pro
ess' mailbox is guessed nondeterministi
ally!Re�e
ted by the transition label re
v

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

SeqCore Pattern Mat
hing ExpressionsPattern mat
hing expressions�
ase expressions:
∃i.

(mat
h(val, cli) = e′ ∧ ∀j < i. mat
h(val, clj) = ⊥
)
ase val of cl1 · · · clk end τ

−−→e e′
(Case1)� re
eive expressions:qmat
h predi
ate holds i� a mat
hing message is in the mailbox:qmat
h(q, cl1, . . . , clk) := ∃q1, q2 ∈ Const∗, c ∈ Const, i ∈ {1, . . . , k}. q = q1 · c · q2 ∧mat
h(c, cli) 6= ⊥

Re
eption of the �rst mat
hing message (c):
¬qmat
h(q, cl1, . . . , clk)
ase c of cl1 . . . clk end τ

−−→e e′ ct ∈ Num ∪ {'infinity'}re
eive cl1 · · · clk after ct -> et

re
v(q,c)
−−−−−→e e′

(R
v1)Note: The pre�x qc of the pro
ess' mailbox is guessed nondeterministi
ally!

→֒ Re�e
ted by the transition label re
v(q, c)

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Transition System Semanti
s of Con
urrent CoreErlangGlobal states and the transition system Ts:� τ transitions are autonomous evaluation steps.

→֒
an be lifted to the system layer semanti
s dire
tly:

e
τ
−−→e e′

S ∪ {(e, i, q, L, t)}
τ
−−→s S ∪ {(e′, i, q, L, t)}

(SeqCore)� Sending of messages:
→֒ By
onsidering pro
ess systems, we
an formalize message transmission:

ei
j!c
−−→e e′i

S ∪ {(ei, i, qi, Li, ti), (ej, j, qj , Lj, tj)}

send(i,j,c)
−−−−−−→s S ∪ {(e′i, i, qi, Li, ti), (ej, j, qj · c, Lj, tj)}

(Send1)

� Message re
eption: re
vre
v Re
v

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Transition System Semanti
s of Con
urrent CoreErlangGlobal states and the transition system Ts:� τ transitions are autonomous evaluation steps.

→֒
an be lifted to the system layer semanti
s dire
tly:

e
τ
−−→e e′

S ∪ {(e, i, q, L, t)}
τ
−−→s S ∪ {(e′, i, q, L, t)}

(SeqCore)� Sending of messages:
→֒ By
onsidering pro
ess systems, we
an formalize message transmission:

ei
j!c
−−→e e′i

S ∪ {(ei, i, qi, Li, ti), (ej, j, qj , Lj, tj)}

send(i,j,c)
−−−−−−→s S ∪ {(e′i, i, qi, Li, ti), (ej, j, qj · c, Lj, tj)}

(Send1)

� Message re
eption:

e

re
v(q1,c)
−−−−−→e e′

S ∪ {(e, i, q1 · c · q2, L, t)}

re
v(i,c)
−−−−→s S ∪ {(e′, i, q1 · q2, L, t)}

(Re
v)
Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Example: A simple mutual ex
lusion proto
ol in Core Erlang:

'lo
ker'/0 = fun () ->re
eive{�request�,Client} when 'true' -> do
all 'erlang':'!'(Client, �ok�)re
eive{�release�,From} when
all 'erlang':'=:='(From,Client)-> apply 'lo
ker'/0()after 'infinity' -> 'false'after 'infinity' -> 'true'

'
lient'/1 = fun (Lo
kerPid) ->let MyPid =
all 'erlang':'self'() in do
all 'erlang':'!'(Lo
kerPid, {�request�, MyPid})re
eive�ok� when 'true' -> do%%
riti
al se
tion
all 'erlang':'!'(Lo
kerPid, {�release�, MyPid})apply '
lient'/1(Lo
kerPid)after 'infinity' -> 'false'

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

The Transition System of the Mutual Ex
lusion Proto
ol

(
all 'lo
ker':'start'(), 0, ε) (let MyPid =
all 'erlang':'self'()..., 0, ε)τ

(let MyPid = 0..., 0, ε)

self()

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄) ..., 0, ε)

τ

(do 1 do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, ε)
(
all 'lo
ker':'
lient'(0), 1, ε)

spawn(0, 1)

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, ε)
(
all 'lo
ker':'
lient'(0), 1, ε)

τ

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, ε)
(let MyPid =
all 'erlang':'self'(), 1, ε)

τ

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, ε)
(let MyPid = 1, 1, ε)

self()

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, ε)
(do
all 'erlang':'!'(0, {�request�, 1}), 1, ε)

τ

(do 2 apply 'lo
ker'/0, 0, ε)
(
all 'lo
ker':'
lient'(0), 1, ε)
(
all 'lo
ker':'
lient'(0), 2, ε)

spawn(0, 2)

τ τ

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, {�request�, 1})
(do {�request�, 1} re
eive, 1, ε)

send(1, 0, {�request�, 1})
(apply 'lo
ker'/0, 0, ε)

(
all 'lo
ker':'
lient'(0), 1, ε)
(
all 'lo
ker':'
lient'(0), 2, ε)

τ

τ τ

(re
eive · · · , 0, ε)
(
all 'lo
ker':'
lient'(0), 1, ε)
(
all 'lo
ker':'
lient'(0), 2, ε)

τ

τ τ

(re
eive · · · , 0, ε)
(let MyPid =
all 'erlang':'self'(), 1, ε)

(
all 'lo
ker':'
lient'(0), 2, ε)

τ

(re
eive · · · , 0, ε)
(let MyPid = 1, 1, ε)

(
all 'lo
ker':'
lient'(0), 2, ε)

self()

(re
eive · · · , 0, ε)
(do
all 'erlang':'!'(0, {�request�, 1}), 1, ε)

(
all 'lo
ker':'
lient'(0), 2, ε)

τ

(re
eive · · · , 0, {�request�, 1})
(do {�request�,1} re
eive, 1, ε)
(
all 'lo
ker':'
lient'(0), 2, ε)

send(1, 0, {�request�, 1})
(re
eive · · · , 0, {�request�, 1})

(re
eive · · · , 1, ε)
(
all 'lo
ker':'
lient'(0), 2, ε)

τ

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, {�request�, 1})
(re
eive ..., 1, ε)

τ

(do 2 apply 'lo
ker'/0, 0, {�request�, 1})
(re
eive ..., 1, ε)

(
all 'lo
ker':'
lient'(0), 2, ε)

spawn(0,2)

(apply 'lo
ker'/0, 0, {�request�, 1})
(re
eive ..., 1, ε)

(
all 'lo
ker':'
lient'(0), 2, ε)

τ

τ

and
many

more
Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Transition System Semanti
s Revisited: Merging StatesAbstra
ting from τ evaluation steps

TS/∼ :=
(

S/∼,A
t,→, [s0]∼
), where� States are the equivalen
e
lasses in S/∼� A
tions: A
t := A
ts \ {τ}� Transition relation → ⊆ S/∼ ×A
t× S/∼� [s0]∼ ∈ S/∼ as initial state 1. τ

←→
∗

s denotes the re�exive, symmetri
and transitive
losure of τ
−→s.2. Equivalen
e relation: ∼:=

τ
←→

∗

s

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

∼ Equivalent States of the Mutual Ex
lusion Proto
ol

(
all 'lo
ker':'start'(), 0, ε) (let MyPid =
all 'erlang':'self'()..., 0, ε)τ

(let MyPid = 0..., 0, ε)

self()

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄) ..., 0, ε)

τ

(do 1 do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, ε)
(
all 'lo
ker':'
lient'(0), 1, ε)

spawn(0, 1)

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, ε)
(
all 'lo
ker':'
lient'(0), 1, ε)

τ

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, ε)
(let MyPid =
all 'erlang':'self'(), 1, ε)

τ

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, ε)
(let MyPid = 1, 1, ε)

self()

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, ε)
(do
all 'erlang':'!'(0, {�request�, 1}), 1, ε)

τ

(do 2 apply 'lo
ker'/0, 0, ε)
(
all 'lo
ker':'
lient'(0), 1, ε)
(
all 'lo
ker':'
lient'(0), 2, ε)

spawn(0, 2)

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, {�request�, 1})
(do {�request�, 1} re
eive, 1, ε)

send(1, 0, {�request�, 1})
(apply 'lo
ker'/0, 0, ε)

(
all 'lo
ker':'
lient'(0), 1, ε)
(
all 'lo
ker':'
lient'(0), 2, ε)

τ

(re
eive · · · , 0, ε)
(
all 'lo
ker':'
lient'(0), 1, ε)
(
all 'lo
ker':'
lient'(0), 2, ε)

τ

(re
eive · · · , 0, ε)
(let MyPid =
all 'erlang':'self'(), 1, ε)

(
all 'lo
ker':'
lient'(0), 2, ε)

τ

(re
eive · · · , 0, ε)
(let MyPid = 1, 1, ε)

(
all 'lo
ker':'
lient'(0), 2, ε)

self()

(re
eive · · · , 0, ε)
(do
all 'erlang':'!'(0, {�request�, 1}), 1, ε)

(
all 'lo
ker':'
lient'(0), 2, ε)

τ

(re
eive · · · , 0, {�request�, 1})
(do {�request�,1} re
eive, 1, ε)
(
all 'lo
ker':'
lient'(0), 2, ε)

send(1, 0, {�request�, 1})
(re
eive · · · , 0, {�request�, 1})

(re
eive · · · , 1, ε)
(
all 'lo
ker':'
lient'(0), 2, ε)

τ

(do
all 'erlang':'spawn'('lo
ker', '
lient', [0℄), 0, {�request�, 1})
(re
eive ..., 1, ε)

τ

(do 2 apply 'lo
ker'/0, 0, {�request�, 1})
(re
eive ..., 1, ε)

(
all 'lo
ker':'
lient'(0), 2, ε)

spawn(0,2)

(apply 'lo
ker'/0, 0, {�request�, 1})
(re
eive ..., 1, ε)

(
all 'lo
ker':'
lient'(0), 2, ε)

τ

τ

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

The Maude system

What is Maude?

Spe
i�
ation language based on José Meseguer's Rewriting Logi
.Interpreter for parameterized Rewriting Logi
 theories.Developed at the University of Illinois at Urbana-Champaign.

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Maude Preliminaries Maude preliminaries:1. Membership equational logi
 theory (Ω, E) where� Ω = ((K,Σ) , ϕ) denotes a many kinded signature and� E denotes the set of equations.� E = ER ⊎ A where A are equational attributes (asso
iativity,
ommutativity, identity) and ER are(dire
ted) equations
→֒ equational rewriting/simpli�
ation

(Ω, E) allows equational simpli�
ation of a term into a E normal form.Pre
ondition: The dire
ted equations in ER are
on�uent and terminating modulo A

2. Rewriting logi
 theory extends the MEL theory:� is the signature,� is the underlying MEL theory and� de�nes frozen argument positions.� denotes the set of rewriting rulesneeds not to be
on�uent!Idea: Normalize term wrt. and then apply the rewriting rules from !Coheren
e properties between and must be ful�lled!

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Maude Preliminaries Maude preliminaries:1. Membership equational logi
 theory (Ω, E) where� Ω = ((K,Σ) , ϕ) denotes a many kinded signature and� E denotes the set of equations.� E = ER ⊎ A where A are equational attributes (asso
iativity,
ommutativity, identity) and ER are(dire
ted) equations
→֒ equational rewriting/simpli�
ation

(Ω, E) allows equational simpli�
ation of a term into a E normal form.Pre
ondition: The dire
ted equations in ER are
on�uent and terminating modulo A2. Rewriting logi
 theory (Ω, E , φ,R) extends the MEL theory:� ((K,Σ) , ϕ) is the signature,� (Ω, E) is the underlying MEL theory and� φ : Σ→ 2N de�nes frozen argument positions.� R denotes the set of rewriting rules
→֒ needs not to be
on�uent!Idea: Normalize term wrt. ER ⊎A and then apply the rewriting rules from R!

→֒ Coheren
e properties between ER ⊎A and R must be ful�lled!

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

A Signature for Pro
ess SystemsRepresentation of pro
esses and pro
ess systems in Maude� Pro
esses:op <2|2|2|2|2|2|2|2> : Label SysResult Expr Pid Mailbox Pro
essLinks TrapExit ModEnv -> Pro
ess .Label, SysResult and ModEnv are needed in order to operationalize the semanti
s

� Pro
ess systems:op empty-pro
esses : -> Pro
esses [
tor℄ .op 2||2: Pro
esses Pro
esses -> Pro
esses [
tor asso

omm id: empty-pro
esses℄ .subsort relation: Pro
ess <Spec Pro
esses

� Pro
ess environments:op ((2,2,2,2)) : SysLabel Pro
esses ModEnv PidSequen
e -> Pro
essEnvironment .

→֒ Pro
ess environments
onstitute the states of our transition system.

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Implementation of the Quotient Transition System TS/∼Spe
ify the equivalen
e ∼ using the equational theory (Ω, E):Example:
do val e

τ
−→e e

(Seq1)
e1

α
−→e e′1do e1 e2
α
−→e do e′1 e2

(Seq2)

� Evaluation of the do operator itself:eq [norm-do ℄ :<tau |#no-res |do C EX2 |PID |MBOX |LINKS |TRAP |ME > =<tau |#no-res |EX2 |PID |MBOX |LINKS |TRAP |ME > .� Evaluation of the �rst subexpression:
eq [norm-do ℄ :<tau |RES |do EX1 EX2 |PID |MBOX |LINKS |TRAP |ME > =<#filterExit (ESL)|RES1 |do EX1 EX2 |PID |MBOX |LINKS |TRAP |ME >if not (EX1 :: Const)/\ <ESL |RES1 |EX1 |PID |MBOX |LINKS |TRAP |ME > :=<tau |RES |EX1 |PID |MBOX |LINKS |TRAP |ME > .

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Implementation of the Quotient Transition System TS/∼Spe
ify the equivalen
e ∼ using the equational theory (Ω, E):Example:
do val e

τ
−→e e

(Seq1)
e1

α
−→e e′1do e1 e2
α
−→e do e′1 e2

(Seq2)� Evaluation of the do operator itself:eq [norm-do ℄ :<tau |#no-res |do C EX2 |PID |MBOX |LINKS |TRAP |ME > =<tau |#no-res |EX2 |PID |MBOX |LINKS |TRAP |ME > .� Evaluation of the �rst subexpression:
eq [norm-do ℄ :<tau |RES |do EX1 EX2 |PID |MBOX |LINKS |TRAP |ME > =<#filterExit (ESL)|RES1 |do EX1 ′ EX2 |PID |MBOX |LINKS |TRAP |ME >if not (EX1 :: Const)/\ <ESL |RES1 |EX1 ′|PID |MBOX |LINKS |TRAP |ME > :=<tau |RES |EX1 |PID |MBOX |LINKS |TRAP |ME > .

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Rewriting Rules De�ne the Transition Relation →Rewriting rules de�ne the transition relation R→:Idea: Spe
ify → ⊆ S/∼ × S/∼ by rewriting rules R!Note: Operationally, pro
ess systems are available as normal forms wrt. (Σ, E ∪A) only!Example: Inferen
e rule spe
ifying message re
eption:

e

re
v(q1,c)
−−−−−→e e′

S ∪ {(e, i, q1 · c · q2, L, t)}

re
v(i,c)
−−−−→s S ∪ {(e′, i, q1 · q2, L, t)}

(Re
v)

The
orresponding
onditional rewrite rule:

rl [sys-re
eive ℄ :(SL, <re
eive (C)| #no-res |EX|PID |MBOX |LINKS |TRAP |ME > || PRCS, ME , PIDS) =>(sys-re
eive (PID, C),<tau |#no-res |EX|PID |MBOX1 |LINKS |TRAP |ME > || PRCS, ME , PIDS)if MBOX1 := #extra
tMessage (MBOX |C) .

Remark: Re
eivable messages are observed on expression layer but removed on system layer!

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Rewriting Rules De�ne the Transition Relation →Rewriting rules de�ne the transition relation R→:Idea: Spe
ify → ⊆ S/∼ × S/∼ by rewriting rules R!Note: Operationally, pro
ess systems are available as normal forms wrt. (Σ, E ∪A) only!Example: Inferen
e rule spe
ifying message re
eption:

e

re
v(q1,c)
−−−−−→e e′

S ∪ {(e, i, q1 · c · q2, L, t)}

re
v(i,c)
−−−−→s S ∪ {(e′, i, q1 · q2, L, t)}

(Re
v)

The
orresponding
onditional rewrite rule:

rl [sys-re
eive ℄ :(SL, <re
eive (C)| #no-res |EX|PID |MBOX |LINKS |TRAP |ME > || PRCS, ME′, PIDS) =>(sys-re
eive (PID, C),<tau |#no-res |EX|PID |MBOX1 |LINKS |TRAP |ME > || PRCS, ME′, PIDS)if MBOX1 := #extra
tMessage (MBOX |C) .

Remark: Re
eivable messages are observed on expression layer but removed on system layer!

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Soundness and Completeness Soundness and
ompleteness� Semanti
 point of view:
[

s
]

E
=

[

s
]

A∪ER

R/A∪ER
−−−−−→

[

s′
]

A∪ER
=

[

s′
]

E� Operational point of view:
[s]A

ER/A ∗
−−−−−→|

R/A
−−→

[

s′
]

A

Do they
oin
ide?

Yes, they do!

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Soundness and Completeness Soundness and
ompleteness� Semanti
 point of view:
[

s
]

E
=

[

s
]

A∪ER

R/A∪ER
−−−−−→

[

s′
]

A∪ER
=

[

s′
]

E� Operational point of view:
[s]A

ER/A ∗
−−−−−→|

R/A
−−→

[

s′
]

A

Do they
oin
ide?Yes, they do!

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Demo: LTL Model Che
king Applied to the Mutual Ex
lusion Proto
olDe�ning predi
atesStates of TS/∼ are represented by (Ω, E) normal forms.

→֒ Asso
iate predi
ates to these terms:
s |= send(i, j, c) �pro
ess i just sent message c to pro
ess j�

s |= receive(i, c) �pro
ess i just re
eived c�Remark: If s |= send(i, j, c) is valid, the respe
tive state was rea
hed by this transition.

Model
he
king the mutual ex
lusion proto
ol:� As long as the �rst
lient is in its
riti
al se
tion, the se
ond
annot enter� � � � � �� Eventually, the se
ond
lient enters the
riti
al se
tion: � �� �But: In general (unfair s
heduling), is not ful�lled:Counterexample: The �rst
lient enters whereas the se
ond
lient starves.

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Demo: LTL Model Che
king Applied to the Mutual Ex
lusion Proto
olDe�ning predi
atesStates of TS/∼ are represented by (Ω, E) normal forms.

→֒ Asso
iate predi
ates to these terms:
s |= send(i, j, c) �pro
ess i just sent message c to pro
ess j�

s |= receive(i, c) �pro
ess i just re
eived c�Remark: If s |= send(i, j, c) is valid, the respe
tive state was rea
hed by this transition.Model
he
king the mutual ex
lusion proto
ol:� As long as the �rst
lient is in its
riti
al se
tion, the se
ond
annot enter

ϕ1 = scheduler(0, 1, 2)→ 2 (send(0, 1, �ok�)→ (¬send(0, 2, �ok�) U send(1, 0, {�rel� , 1})))� Eventually, the se
ond
lient enters the
riti
al se
tion:
ϕ2 = scheduler(0, 1)→ 3 (send(0, 2, �ok�))
ϕ3 = scheduler(0, 1, 2)→ 3 (send(0, 2, �ok�))But: In general (unfair s
heduling), ϕ2 is not ful�lled:

; Counterexample: The �rst
lient enters whereas the se
ond
lient starves.

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Future Work

Future Work1. Real Time Maude:Extend the Core Erlang semanti
s with a notion of time.2. Case studies:More examples to see how this approa
h s
ales.

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

Thank you
Thank you for your attention!

Any questions?

Tool available at http://www.marneu.
om/

Abstra
tion and Model Che
king of Core Erlang Programs in Maude 2

