
Software-Modellierung und Verifikation

Informatik 2

Prof. J.-P. Katoen

RWTH Aachen

Priv.-Doz. T. Noll noll@cs.rwth-aachen.de
J. Heinen heinen@cs.rwth-aachen.de

Ch. Jansen christina.jansen@cs.rwth-aachen.de

2. Exercise sheet Static Program Analysis 2011
Due Mon, 09. May 2011, before the exercise course begins.

Exercise 2.1: (3 points)

Both, available expression and live variable analysis had transfer functions of the form ϕl(d) = (d \ kill(Bl)) ∪
gen(Bl). Consider the following flowgraph and transfer functions on domain 2{a,b,c,d} and determine the minimal
fixpoint using the worklist algorithm from the lecture.

1

2

3 4

5

6

ϕ1(M) = (M \ {a}) ∪ {c}

ϕ2(M) =

{

M ∪ {b} if b ∈ M ∨ c ∈ M

M otherwise

ϕ3(M) =



















M ∪ {a, c} if (a ∈ M ∨ d ∈ M) ∧ (b ∈ M ∨ c ∈ M)

M ∪ {a} if a ∈ M ∨ d ∈ M

M ∪ {c} if b ∈ M ∨ c ∈ M

M otherwise

ϕ4(M) =

{

M ∪ {b, d} if b ∈ M ∨ c ∈ M ∨ d ∈ M

M ∪ {b} otherwise

ϕ5(M) = (M \ {a}) ∪ {d}

ϕ6(M) = M

Hint: LUB = set union, relation = set-inclusion, initial value = ∅.

Exercise 2.2: (3 points)

Perform an available expression analysis on the following program using the meet over all paths (MOP) solution.

x := x + 1;
y := 1;
if x ∗ y > y then

x := x + 1;
y := x + y;

else

y := y + 1;
x := x + y;

Exercise 2.3: (2+2 points)

Consider domains of the form D = 2M where M is a finite set. Transfer function ϕl : D 7→ D is called distributive,
iff for any d1, d2 ∈ D:

ϕl(d1 t d2) = ϕl(d1) t ϕl(d2)

(a) Show that any transfer function of the form ϕl(d) = (d \ kill(Bl)) ∪ gen(Bl) is distributive in this setting.

(b) Show that the transfer function from Exercise 2.1 is not representable in kill-gen style, but still is distributive.



Exercise 2.4: (2+1+1 points)

(a) Perform a constant propagation analysis on the following program using the fixpoint iteration which was
presented in the lecture (do not use the worklist algorithm!).

x := 10;
y := 1;
while x > 1 do

y := x ∗ y;
x := x − 1;

(b) The aim of constant propagation analysis is to shift time needed for calculation from execution to compile
time. For the given program with fixed variables x and y it would be possible to perform ALL calculations
during compile time. Though constant propagation won’t provide this result. Why?

(c) Which of the program statements is the reason that constant propagation analysis is not distributive? Why?
Give suitable variable valuations that confirm your explanation.


