
Software-Modellierung und Verifikation

Informatik 2

Prof. J.-P. Katoen

RWTH Aachen

Priv.-Doz. T. Noll noll@cs.rwth-aachen.de
J. Heinen heinen@cs.rwth-aachen.de

Ch. Jansen christina.jansen@cs.rwth-aachen.de

5. Exercise sheet Static Program Analysis 2011
Due Mon, 30. May 2011, before the exercise course begins.

Exercise 5.1: (3 points)

Perform a type correctness analysis for the following Java bytecode Check that the return value is of type C and that
the program is type safe. The return value is the reference that remains on the operation stack after termination of
the method. The bytecode uses three classes A,B and C that are not related. Register one is initialised with type
A and the second with type B.

1 load 1
2 i c o n s t 1
3 invoke A m Int C
4 s t o r e 0
5 load 0
6 g e t f i e l d C f Int
7 i c o n s t 0
8 i f i cmpeq 1
9 load 0

10 return

Exercise 5.2: (1+3+3 points)

In Java new objects can only be created by calling a constructor, thus object creation and initialisation is one
action. However, in Java bytecode this is not the case. Creation and initialisation are independent (cf. the following
code example).

Object creation and access in Java:

Point p = new Point (2 , 3) ;
p . p r i n t () ;

The corresponding Java bytecode:

1 new A // c r e a t e s a new Point − ob j e c t
2 dup // d u p l i c a t e s the l a s t s tack entry
3 i c o n s t 2 // pushes the constant va lue 2 to the s tack
4 i c o n s t 3 // pushes the constant va lue 3 to the s tack
5 i n v o k e s p e c i a l Point < i n i t >(int , i n t) // c a l l s the con s t ruc to r Point (int , i n t)
6 a s t o r e 4 // s t o r e s the r e f e r e n c e in r e g i s t e r 4
7 aload 4 // loads the r e f e r e n c e in r e g i s t e r 4

Because of this fact object initialisation is not guaranteed for byte code and it is important to check that any object
is initialised before it is accessed.
Develop and execute an object initialisation analysis verifying:

(1) An uninitialised object is never been stored to a register or field, nor used as parameter and its fields or
methods are never accessed.

(2) Any object is initialised by a method of the corresponding type.

(3) No object is initialised twice.

Hint: When an object is initialised the analysis information of any stack position reference to this object has to
be updated. Therefore it is necessary to distinguish uninitialised objects. Considering that the size of the stack is
fixed for any label (cf. type correctness analysis) it is sufficient to use the label of creation for distinction.

(a) Give a complete lattice satisfying ACC suitable for object initialization analysis.

(b) Define the object initialization transition rules for the following byte code:

new C: creates a new object of type C

iconst z: push integer z

aconst null: push null reference

if cmpeq l: pop the two topmost references from stack and jump to line l if they are equal

aload n: push reference from register n

astore n: pop reference and store it to register n

getfield C f τ : pop reference and push value of field f

putfield C f τ : pop value v and reference to object o and assign v to field f of o

invoke C f σ: pop values v1, . . . , vn and reference to object, calls method M with parameters
v1, . . . , vn, and pushes return value

invokespecial C f σ: pop values v1, . . . , vn and reference to object and calls a constructor (invokespe-
cial not always refers to a constructor but we assume this here)

dup: duplicates the last stack entry

(c) Perform an object initialization analysis for the following byte code. Assume that at the beginning registers
and the stack contain instantiated objects only:

1 new A
2 dup
3 aload 1
4 aconst n u l l
5 i f cmpeq 9
6 aload 1
7 i n v o k e s p e c i a l A < i n i t> (B)
8 goto 14
9 new B

10 dup
11 i c o n s t 3
12 i n v o k e s p e c i a l B < i n i t> (A, i n t)
13 i n v o k e s p e c i a l A < i n i t> (B)
14 a s t o r e 0

Exercise 5.3: (2+2 points)

So far we restricted the type-analysis to classes, while in Java interfaces define valid object types, too. In this
exercise we consider (Typ,v) extended by interfaces.

(a) Show that (Typ,v) extended by interfaces is not a complete lattice satisfying ACC.

(b) Give a sound adaption for (Typ,v) to a complete lattice satisfying ACC.

