

7. Exercise sheet *Static Program Analysis 2011*

Due Mon, 20. June 2011, before the exercise course begins.

Exercise 7.1:

(5 points)

For every Galois connection we considered so far we observed that $\alpha(\gamma(m)) = m$. This kind of Galois connection is called *Galois insertion*:

(α, γ) is a *Galois insertion* between the complete lattices L and M if and only if:

$\alpha : L \rightarrow M$ and $\gamma : M \rightarrow L$ are monotone functions

that satisfy:

$$\begin{aligned}\gamma(\alpha(l)) &\sqsupseteq l & \forall l \in L \\ \alpha(\gamma(m)) &= m & \forall m \in M\end{aligned}$$

Show that for a Galois connection (α, γ) between L and M the following claims are equivalent:

- (i) (α, γ) is a *Galois insertion*
- (ii) γ is injective
- (iii) α is surjective
- (iv) $\forall m_1, m_2 : m_1 \sqsubseteq m_2 \Leftrightarrow \gamma(m_1) \sqsubseteq \gamma(m_2)$

Exercise 7.2:

(1 + 2 + 3 points)

Proof or disproof the following statements:

- (a) $\gamma(\top_M) = \top_L$ for any Galois connection (α, γ) with $\alpha : L \rightarrow M$ and $\gamma : M \rightarrow L$.
- (b) Given two Galois connections (α_1, γ_1) and (α_2, γ_2) with $\alpha_1 : L \rightarrow M_1$, $\alpha_2 : L \rightarrow M_2$, $\gamma_1 : M_1 \rightarrow L$ and $\gamma_2 : M_2 \rightarrow L$ the *direct product* (α, γ) with:

$$\begin{aligned}\alpha(l) &= (\alpha_1(l), \alpha_2(l)) \\ \gamma(m_1, m_2) &= \gamma_1(m_1) \sqcap \gamma_2(m_2)\end{aligned}$$

is also a Galois connection.

- (c) The *direct product* of two Galois insertions is a Galois insertion.

Exercise 7.3:

(3 + 3 points)

Consider stacks over integer values. Given a stack s and a number i $s.\mathbf{push}(i)$ pushes i on the top of s , $s.\mathbf{peek}()$ returns the top most element of s , while $s.\mathbf{pop}()$ removes the top element without returning it, $t := s$ assigns the stack values from s to the stack t .

- (a) Extend the *execution relation* from the lecture for the new operations. Consider val_σ to work on stack variables and **peek()** calls as expected.
- (b) Show that there is a reasonable Galois connection between pairs of stacks $L = 2^{\mathbb{Z}^* \times \mathbb{Z}^*}$ and $M = 2^{\{H, S\} \times 2^\mathbb{Z}}$, where H means that the top elements of the stacks are equal and S that one stack is a suffix of the other. The second component of M denotes $\text{length}(a) - \text{length}(b)$, the difference in length for stack pair (a, b) . Therefore the value is negative if the first stack contains less elements than the second. Note that the absence of H or S does not claim anything, i.e. neither the absence of H states that the top element is unequal nor the absence of S that none list is a suffix of the other.