

8. Exercise sheet *Static Program Analysis 2011*

Due Mon, 27 . June 2011, *before* the exercise course begins.

Exercise 8.1:

(2 + 3 points)

Consider the following WHILE program:

```
while  $x > y$  do
     $y := -x;$ 
     $x := x * y;$ 
```

Let x and y be input variables. Determine the abstract states reachable from the initial state ...

- (a) for the abstract domain $Var \rightarrow 2^{SGN}$
- (b) for the abstract domain $2^{Var \rightarrow SGN}$

where $SGN = \{-, 0, +\}$.

Exercise 8.2:

(1 + 3 + 3 points)

In Exercise 6.1 we introduced a Galois connection for n -modulo abstraction. Reconsider this Galois connection (α_n, γ_n) between $2^{\mathbb{Z}}$ and $2^{\{0, \dots, n-1\}}$ for some $n \in \mathbb{N}$:

- (a) Give the extraction function β_n for the n -modulo abstraction for $n \in \mathbb{N}$.
- (b) Extract the functions $+_n^\sharp, *_n^\sharp, (\text{ mod } m)_n^\sharp$ and relations $=_n^\sharp, >_n^\sharp$ as safe approximations of $+$, $*$, $\text{ mod } m$, $=$ and $>$.
- (c) Determine the reachable abstract states from $\sigma_{[x \mapsto \{0, \dots, n-1\}]}$ for the following while program considering the n -modulo abstraction with $n = 4$:

```
 $x := x * 3;$ 
while  $\neg(x \text{ mod } 4 = 0)$  do
    if  $x \text{ mod } 4 = 1$  then
         $x := x * 3;$ 
     $x := x + 1;$ 
```

Exercise 8.3:

(2 + 1 + 1 points)

Prove or disprove the following statements:

- (a) $\alpha(\top_L) = \top_M$ for any Galois connection (α, γ) with $\alpha : L \rightarrow M$ and $\gamma : M \rightarrow L$.
- (b) $\alpha(\top_L) = \top_M$ for any Galois insertion (α, γ) with $\alpha : L \rightarrow M$ and $\gamma : M \rightarrow L$.
- (c) $\gamma(\perp_M) = \perp_L$ for any Galois insertion (α, γ) with $\alpha : L \rightarrow M$ and $\gamma : M \rightarrow L$.