Static Program Analysis

Lecture 10: Dataflow Analysis IX
(The Java Bytecode Verifier)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Dauerwerbesendung

o Informatik-Kolloquium:
Uwe Schéning (Univ. Ulm):

Das SAT-Problem und lokale Suchmethoden
15:00 Uhr, AH 4

o HiWis wanted:

e Organisatorische Unterstiitzung der

Aachen Concurrency and Dependability Week
05.-10.09.2011, SuperC
Technischer Support in Horsalen, Bestuhlung, Kaffeepausen, ...
Vertrag iiber 1 Monat (ca. 900 €)
Ggf. Besuch der Vortragsveranstaltungen moglich
Kontakt: Sabrina von Styp
(sabrina.von-styp@cs.rwth-aachen.de)

“er Static Program Analysis Summer Semester 2011 10.2

© Overview

“er Static Program Analysis Summer Semester 2011 10.3

Java Bytecode

@ Intermediate language between high-level language and machine code
e Execution on Java Virtual Machine (JVM)
o Advantages:

e architecture independency (especially for web applications)
o faster than pure (i.e., source code) interpretation

@ Problem: security issues

destruction of data

e modification of data

o disclosure of personal information

e modification of other programs

“er Static Program Analysis Summer Semester 2011 10.4

Java Security: the Sandbox

@ Insulation layer providing (Femote G i) (Lavt G s
indirect access to system
resources Bytvade Vrir

(o P o s |
@ Hardware access via API classes

and methods

[— ’
'
Security Manager
Access Controller

(Operating System]

@ Bytecode verification upon
uploading Key Dalahase | +—+|
o well-typedness
e proper object referencing
e proper control flow

“er Static Program Analysis Summer Semester 2011 10.5

The Java Virtual Machine

Conventional stack-based abstract machine
Supports object-oriented features: classes, methods, etc.
Stack for intermediate results of expression evaluations

Registers for source-level local variables and method parameters

Both part of method activation record
(and thus preserved across method calls)

Method entry point specifies required number of registers (m,) and
stack slots (ms; for memory allocation)

(Most) instructions are typed

“er Static Program Analysis Summer Semester 2011 10.6

Example: Factorial Function

Example 10.1 (Factorial function)

Source Java code:

static int factorial(int n)

{ int res;
for (res = 1; n > 0; n——) res = res * n;
return res; }

Corresponding JVM bytecode:
method static int factorial(int), 2 registers, 2 stack slots

1: iconst_1 // push constant 1

2: istore 1 // store in register 1 (= res)
3: iload 0 // push register 0 (= n)
4: ifle 11 // if <= 0, go to 11

5: iload 1 // push res

6: iload 0 // push n

7: imul // res * n on top of stack
8: istore 1 // store in res

9: iinc 0, -1 // decrement n

10: goto 3 // go to loop header

11: iload 1 // push res

12: ireturn // return res to caller

RWTH Static Program Analysis Summer Semester 2011 10.7

JVM Instruction Set (excerpt)

iload n: push integer from register n
istore n: pop integer into register n
iconst_z: push integer z
aconst_null: push null reference
iadd: add two topmost integers on stack and push sum
getfield C f 7: pops reference to object (of class C) and pushes value
of field f (of type 7)
putfield C f 7: pops value v (of type 7) and reference to object o (of
class C) and assigns v to field f of o
new C: creates new object (of class C) and pushes reference
invoke C M 7o(71,...,7n): pops values vi,..., v, (of type 71,...,7s)
and reference to object (of class C), calls method M with
parameters vy, ..., v,, and pushes return value (of type 79)
if icmpeq /: pop two topmost integers from stack and jump to line / if
equal
ireturn: return to caller with integer result on top of stack

(= 200 instructions in total)
RWTH Static Program Analysis Summer Semester 2011 10.8

Malicious Bytecode

Example 10.2 (Malicious bytecode)

1: iconst_5b
2: iconst_1
3: putfield A f int

interprets second stack entry (5) as reference to object of class A and
assigns first stack entry (1) to field £ of this object

“er Static Program Analysis Summer Semester 2011 10.9

© The Java Bytecode Verifier

“er Static Program Analysis Summer Semester 2011 10.10

Correctness of Bytecode

Conditions to ensure proper operation:
Type correctness: arguments of instructions always of expected type

No stack over-/underflow: never push to full stack or pop from empty
stack
Code containment: PC must always point into the method code
Register initialization: load from non-parameter register only after store
Object initialization: constructor must be invoked before using class
instance
Access control: operations must respect visibility modifiers
(private/protected/public)
Options:
@ dynamic checking at execution time (“defensive JVM approach”)
e expensive, slows down execution
@ static checking at loading time (here)

o verified code executable at full speed without extra dynamic checks

“er Static Program Analysis Summer Semester 2011 10.11

The Java Bytecode Verifier

Summary: dataflow analysis applied to type-level abstract interpretation
of JVM
@ Association of type information with register and stack contents
e set of types forms a complete lattice

@ Simulation of execution of instructions at type level
© Use dataflow analysis to cover all concrete executions

@ Analysis proceeds method per method

(see X. Leroy: Java Bytecode Verification: Algorithms and Formalizations,
Journal of Automated Reasoning 30(3-4), 2003, 235-269)

“er Static Program Analysis Summer Semester 2011 10.12

© The Type-Level Abstract Interpreter

“er Static Program Analysis Summer Semester 2011 10.13

The set of types, Typ, is composed of
@ Primitive types:

o int (covering boolean, byte, char, short)
e long

o float
o

double

@ Object reference types: C for every class name C
o Array types: T[] for every primitive or object reference type T
e Method types: 7o(m1,...,7n) for n €N, 7; € Typ
@ Special types:
o null (null reference)
o Object (any object)
o T (contents of uninitialized registers, i.e., any value)
o L (absence of any value)

“er Static Program Analysis Summer Semester 2011 10.14

The Subtyping Relation (excerpt)

(C, D, E user-defined classes; D, E extending C)

T
/ |
int /Ong ObjeCt float double
\
int]] /ong[] Object[] float(] double]]
/ |
E (]
|
\\\ / E]
nu//
N L .

Notation: 71 T 7
“er Static Program Analysis Summer Semester 2011 10.15

The Type-Level Abstract Interpreter |

o ldea: execute JVM instructions on types
(rather than concrete values)
o stack type S € Typ="
o register type R: {0,...,m, — 1} — Typ

@ Represented as transition relation
i:(S,R)— (S, R)

where
e i: current instruction
o (S5, R): stack/register type before execution
o (5, R’): stack/register type after execution
@ Errors (type mismatch, stack over-/underflow, ...) denoted by
absence of transition

“er Static Program Analysis Summer Semester 2011 10.16

The Type-Level Abstract Interpreter |l

Some transition rules:

iconst_z: (S,R) — (int.S,R) if |S] < ms
aconst.null : (5,R) — (null.5,R) if |S] < ms
iadd : (int.int.S,R) — (int.S, R)
if_icmpeq /: (int.int.S,R) — (S, R)
iload n: (5,R) — (int.5,R)
if 0 < n< my,R(n)=int,|S| < ms
aload n: (5R)—>(()SR)
if 0 < n < m,,R(n) C; Object, |S| < ms
istore n: (int.5,R) — (S,R[n — int]) if0<n<m,
astore n: (1.5,R) = (S,R[n — 7])
if 0 < n< m,7E; Object
getfield C f 7: (D.5,R) — (7.5,R) if DTy C
putfield C f 7: (7'.D.S,R) — (S,R)

ifT/ EtT,DEt C

invoke C M o: (7}...77.7".S,R) = (70.S5, R)
if o =710(71,...,7n), 7] Ce i for 1 <i<n, 7' C¢ C
RWTH Static Program Analysis Summer Semester 2011 10.17

Some Theoretical Properties

Lemma 10.3

O (Typ,C;) is a complete lattice satisfying ACC.

@ (Determinacy) The transitions of the abstract interpreter define a
partial function: If i : (S,R) — (51, R1) and i : (S,R) — (S2, R2),
then S; = S; and Ry = Ry.

© (Soundness) If i : (S§,R) — (S', R'), then for all concrete states (s, r)
matching (S, R), the defensive JVM will not stop with a run-time

type exception when applying i to (s, r) (but rather change to some
(s',r") matching (S',R")).

see X. Leroy: Java Bytecode Verification: Algorithms and
Formalizations []

“w.rH Static Program Analysis Summer Semester 2011 10.18

@ The Dataflow Analysis

“er Static Program Analysis Summer Semester 2011 10.19

The Dataflow System |

The dataflow system S = (L, E, F,(D,C),t,) for a method M:
@ Labels L := {line numbers of Java bytecode}
e Extremal label E := {1} (forward problem)

o Flow relation F: for every | € L,

(I,m),(I,14+1) € F if I: conditional jump to m
(I,m)eF if I: unconditional jump to m
— if I: return instruction
I,1+1) otherwise

e Complete lattice (D, C) where

< s
o D:=Typ="x{0,....,m, —1} - Typ U{ None , Error }
stack registers least element untypeable

o for every (5,R) € D, None C (S, R) and (S, R) C Error
o (51, R) C (S, Ry) iff

@ S1=01...0n0, S2=71...7s (same length!), o; C; 7 for 1 < i <n
] Rl(l) C: RQ(I) for 0 <i<m

RWTH Static Program Analysis Summer Semester 2011 10.20

The Dataflow System Il

@ Extremal value
vi=(, (1, ey Tny T,oo0, T
(e, (n1 n)
my—n times
with parameter types 7y,...,7, of M
e Transfer functions {¢; | | € L} are defined by
__J(S,R) ifl:iandi:(S,R)— (S R')
vi(S,R) = {Error otherwise

Monotonicity of transfer functions is ensured by the following lemma.

Lemma 10.4

Ifi:(S,R)— (S',R’) and (51, R1) C (S, R), then there exists
(S1,R}) € D such that i : (51, R1) — (51, R}) and (S1, R}) C (S, R').

see X. Leroy: Java Bytecode Verification: Algorithms and
Formalizations [

v

RWTH Static Program Analysis Summer Semester 2011 10.21

	Overview
	The Java Bytecode Verifier
	The Type-Level Abstract Interpreter
	The Dataflow Analysis

