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Java Bytecode

Intermediate language between high-level language and machine code

Execution on Java Virtual Machine (JVM)

Advantages:
architecture independency (especially for web applications)
faster than pure (i.e., source code) interpretation

Problem: security issues

destruction of data
modification of data
disclosure of personal information
modification of other programs

Static Program Analysis Summer Semester 2011 10.4



Java Security: the Sandbox

Insulation layer providing
indirect access to system
resources

Hardware access via API classes
and methods

Bytecode verification upon
uploading

well-typedness
proper object referencing
proper control flow
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The Java Virtual Machine

Conventional stack-based abstract machine

Supports object-oriented features: classes, methods, etc.

Stack for intermediate results of expression evaluations

Registers for source-level local variables and method parameters

Both part of method activation record
(and thus preserved across method calls)

Method entry point specifies required number of registers (mr ) and
stack slots (ms ; for memory allocation)

(Most) instructions are typed
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Example: Factorial Function

Example 10.1 (Factorial function)

Source Java code:

static int factorial(int n)
{ int res;
for (res = 1; n > 0; n--) res = res * n;
return res; }

Corresponding JVM bytecode:

method static int factorial(int), 2 registers, 2 stack slots
1: iconst_1 // push constant 1
2: istore 1 // store in register 1 (= res)
3: iload 0 // push register 0 (= n)
4: ifle 11 // if <= 0, go to 11
5: iload 1 // push res
6: iload 0 // push n
7: imul // res * n on top of stack
8: istore 1 // store in res
9: iinc 0, -1 // decrement n
10: goto 3 // go to loop header
11: iload 1 // push res
12: ireturn // return res to caller
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JVM Instruction Set (excerpt)

iload n: push integer from register n
istore n: pop integer into register n
iconst z : push integer z

aconst null: push null reference
iadd: add two topmost integers on stack and push sum

getfield C f τ : pops reference to object (of class C ) and pushes value
of field f (of type τ)

putfield C f τ : pops value v (of type τ) and reference to object o (of
class C ) and assigns v to field f of o

new C : creates new object (of class C ) and pushes reference
invoke C M τ0(τ1, . . . , τn): pops values v1, . . . , vn (of type τ1, . . . , τn)

and reference to object (of class C ), calls method M with
parameters v1, . . . , vn, and pushes return value (of type τ0)

if icmpeq l: pop two topmost integers from stack and jump to line l if
equal

ireturn: return to caller with integer result on top of stack

(≈ 200 instructions in total)
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Malicious Bytecode

Example 10.2 (Malicious bytecode)

1: iconst_5

2: iconst_1

3: putfield A f int

interprets second stack entry (5) as reference to object of class A and
assigns first stack entry (1) to field f of this object
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Correctness of Bytecode

Conditions to ensure proper operation:

Type correctness: arguments of instructions always of expected type

No stack over-/underflow: never push to full stack or pop from empty
stack

Code containment: PC must always point into the method code

Register initialization: load from non-parameter register only after store

Object initialization: constructor must be invoked before using class
instance

Access control: operations must respect visibility modifiers
(private/protected/public)

Options:

dynamic checking at execution time (“defensive JVM approach”)

expensive, slows down execution

static checking at loading time (here)

verified code executable at full speed without extra dynamic checks
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The Java Bytecode Verifier

Summary: dataflow analysis applied to type-level abstract interpretation
of JVM

1 Association of type information with register and stack contents

set of types forms a complete lattice

2 Simulation of execution of instructions at type level

3 Use dataflow analysis to cover all concrete executions

4 Analysis proceeds method per method

(see X. Leroy: Java Bytecode Verification: Algorithms and Formalizations,
Journal of Automated Reasoning 30(3-4), 2003, 235–269)
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Types

The set of types, Typ, is composed of

Primitive types:

int (covering boolean, byte, char , short)
long
float
double

Object reference types: C for every class name C

Array types: τ [] for every primitive or object reference type τ

Method types: τ0(τ1, . . . , τn) for n ∈ N, τi ∈ Typ

Special types:

null (null reference)
Object (any object)
> (contents of uninitialized registers, i.e., any value)
⊥ (absence of any value)
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The Subtyping Relation (excerpt)

(C , D, E user-defined classes; D, E extending C )

>

int long Object float double

int[] long [] C Object[] float[] double[]

D E C []

D[] E []

null

⊥

Notation: τ1 vt τ2
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The Type-Level Abstract Interpreter I

Idea: execute JVM instructions on types
(rather than concrete values)

stack type S ∈ Typ≤ms

register type R : {0, . . . ,mr − 1} → Typ

Represented as transition relation

i : (S ,R)→ (S ′,R ′)

where

i : current instruction
(S ,R): stack/register type before execution
(S ′,R ′): stack/register type after execution

Errors (type mismatch, stack over-/underflow, ...) denoted by
absence of transition
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The Type-Level Abstract Interpreter II

Some transition rules:

iconst z : (S ,R) → (int.S ,R) if |S | < ms

aconst null : (S ,R) → (null .S ,R) if |S | < ms

iadd : (int.int.S ,R) → (int.S ,R)

if icmpeq l : (int.int.S ,R) → (S ,R)

iload n : (S ,R) → (int.S ,R)
if 0 ≤ n < mr ,R(n) = int, |S | < ms

aload n : (S ,R) → (R(n).S ,R)
if 0 ≤ n < mr ,R(n) vt Object, |S | < ms

istore n : (int.S ,R) → (S ,R[n 7→ int]) if 0 ≤ n < mr

astore n : (τ.S ,R) → (S ,R[n 7→ τ ])
if 0 ≤ n < mr , τ vt Object

getfield C f τ : (D.S ,R) → (τ.S ,R) if D vt C

putfield C f τ : (τ ′.D.S ,R) → (S ,R)
if τ ′ vt τ,D vt C

invoke C M σ : (τ ′n . . . τ
′
1.τ
′.S ,R) → (τ0.S ,R)

if σ = τ0(τ1, . . . , τn), τ ′i vt τi for 1 ≤ i ≤ n, τ ′ vt C
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Some Theoretical Properties

Lemma 10.3
1 (Typ,vt) is a complete lattice satisfying ACC.

2 (Determinacy) The transitions of the abstract interpreter define a
partial function: If i : (S ,R)→ (S1,R1) and i : (S ,R)→ (S2,R2),
then S1 = S2 and R1 = R2.

3 (Soundness) If i : (S ,R)→ (S ′,R ′), then for all concrete states (s, r)
matching (S ,R), the defensive JVM will not stop with a run-time
type exception when applying i to (s, r) (but rather change to some
(s ′, r ′) matching (S ′,R ′)).

Proof.

see X. Leroy: Java Bytecode Verification: Algorithms and
Formalizations
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The Dataflow System I

The dataflow system S = (L,E ,F , (D,v), ι, ϕ) for a method M:

Labels L := {line numbers of Java bytecode}
Extremal label E := {1} (forward problem)

Flow relation F : for every l ∈ L,
(l ,m), (l , l + 1) ∈ F if l : conditional jump to m
(l ,m) ∈ F if l : unconditional jump to m
− if l : return instruction
(l , l + 1) otherwise

Complete lattice (D,v) where

D := Typ≤ms︸ ︷︷ ︸
stack

×{0, . . . ,mr − 1} → Typ︸ ︷︷ ︸
registers

∪ { None︸ ︷︷ ︸
least element

, Error︸ ︷︷ ︸
untypeable

}

for every (S ,R) ∈ D, None v (S ,R) and (S ,R) v Error
(S1,R1) v (S2,R2) iff

S1 = σ1 . . . σn, S2 = τ1 . . . τn (same length!), σi vt τi for 1 ≤ i ≤ n
R1(i) vt R2(i) for 0 ≤ i < mr
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The Dataflow System II

Extremal value
ι := (ε, (τ1, . . . , τn, >, . . . ,>︸ ︷︷ ︸

mr−n times

))

with parameter types τ1, . . . , τn of M
Transfer functions {ϕl | l ∈ L} are defined by

ϕl(S ,R) :=

{
(S ′,R ′) if l : i and i : (S ,R)→ (S ′,R ′)
Error otherwise

Monotonicity of transfer functions is ensured by the following lemma.

Lemma 10.4

If i : (S ,R)→ (S ′,R ′) and (S1,R1) v (S ,R), then there exists
(S ′1,R

′
1) ∈ D such that i : (S1,R1)→ (S ′1,R

′
1) and (S ′1,R

′
1) v (S ′,R ′).

Proof.

see X. Leroy: Java Bytecode Verification: Algorithms and
Formalizations
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