
Static Program Analysis
Lecture 10: Dataflow Analysis IX

(The Java Bytecode Verifier)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Dauerwerbesendung

Informatik-Kolloquium:
Uwe Schöning (Univ. Ulm):

Das SAT-Problem und lokale Suchmethoden

15:00 Uhr, AH 4

HiWis wanted:

Organisatorische Unterstützung der

Aachen Concurrency and Dependability Week

05.-10.09.2011, SuperC
Technischer Support in Hörsälen, Bestuhlung, Kaffeepausen, ...
Vertrag über 1 Monat (ca. 900e)
Ggf. Besuch der Vortragsveranstaltungen möglich
Kontakt: Sabrina von Styp
(sabrina.von-styp@cs.rwth-aachen.de)

Static Program Analysis Summer Semester 2011 10.2

Outline

1 Overview

2 The Java Bytecode Verifier

3 The Type-Level Abstract Interpreter

4 The Dataflow Analysis

Static Program Analysis Summer Semester 2011 10.3

Java Bytecode

Intermediate language between high-level language and machine code

Execution on Java Virtual Machine (JVM)

Advantages:
architecture independency (especially for web applications)
faster than pure (i.e., source code) interpretation

Problem: security issues

destruction of data
modification of data
disclosure of personal information
modification of other programs

Static Program Analysis Summer Semester 2011 10.4

Java Security: the Sandbox

Insulation layer providing
indirect access to system
resources

Hardware access via API classes
and methods

Bytecode verification upon
uploading

well-typedness
proper object referencing
proper control flow

Static Program Analysis Summer Semester 2011 10.5

The Java Virtual Machine

Conventional stack-based abstract machine

Supports object-oriented features: classes, methods, etc.

Stack for intermediate results of expression evaluations

Registers for source-level local variables and method parameters

Both part of method activation record
(and thus preserved across method calls)

Method entry point specifies required number of registers (mr) and
stack slots (ms ; for memory allocation)

(Most) instructions are typed

Static Program Analysis Summer Semester 2011 10.6

Example: Factorial Function

Example 10.1 (Factorial function)

Source Java code:

static int factorial(int n)
{ int res;
for (res = 1; n > 0; n--) res = res * n;
return res; }

Corresponding JVM bytecode:

method static int factorial(int), 2 registers, 2 stack slots
1: iconst_1 // push constant 1
2: istore 1 // store in register 1 (= res)
3: iload 0 // push register 0 (= n)
4: ifle 11 // if <= 0, go to 11
5: iload 1 // push res
6: iload 0 // push n
7: imul // res * n on top of stack
8: istore 1 // store in res
9: iinc 0, -1 // decrement n
10: goto 3 // go to loop header
11: iload 1 // push res
12: ireturn // return res to caller

Static Program Analysis Summer Semester 2011 10.7

JVM Instruction Set (excerpt)

iload n: push integer from register n
istore n: pop integer into register n
iconst z : push integer z

aconst null: push null reference
iadd: add two topmost integers on stack and push sum

getfield C f τ : pops reference to object (of class C) and pushes value
of field f (of type τ)

putfield C f τ : pops value v (of type τ) and reference to object o (of
class C) and assigns v to field f of o

new C : creates new object (of class C) and pushes reference
invoke C M τ0(τ1, . . . , τn): pops values v1, . . . , vn (of type τ1, . . . , τn)

and reference to object (of class C), calls method M with
parameters v1, . . . , vn, and pushes return value (of type τ0)

if icmpeq l: pop two topmost integers from stack and jump to line l if
equal

ireturn: return to caller with integer result on top of stack

(≈ 200 instructions in total)
Static Program Analysis Summer Semester 2011 10.8

Malicious Bytecode

Example 10.2 (Malicious bytecode)

1: iconst_5

2: iconst_1

3: putfield A f int

interprets second stack entry (5) as reference to object of class A and
assigns first stack entry (1) to field f of this object

Static Program Analysis Summer Semester 2011 10.9

Outline

1 Overview

2 The Java Bytecode Verifier

3 The Type-Level Abstract Interpreter

4 The Dataflow Analysis

Static Program Analysis Summer Semester 2011 10.10

Correctness of Bytecode

Conditions to ensure proper operation:

Type correctness: arguments of instructions always of expected type

No stack over-/underflow: never push to full stack or pop from empty
stack

Code containment: PC must always point into the method code

Register initialization: load from non-parameter register only after store

Object initialization: constructor must be invoked before using class
instance

Access control: operations must respect visibility modifiers
(private/protected/public)

Options:

dynamic checking at execution time (“defensive JVM approach”)

expensive, slows down execution

static checking at loading time (here)

verified code executable at full speed without extra dynamic checks

Static Program Analysis Summer Semester 2011 10.11

The Java Bytecode Verifier

Summary: dataflow analysis applied to type-level abstract interpretation
of JVM

1 Association of type information with register and stack contents

set of types forms a complete lattice

2 Simulation of execution of instructions at type level

3 Use dataflow analysis to cover all concrete executions

4 Analysis proceeds method per method

(see X. Leroy: Java Bytecode Verification: Algorithms and Formalizations,
Journal of Automated Reasoning 30(3-4), 2003, 235–269)

Static Program Analysis Summer Semester 2011 10.12

Outline

1 Overview

2 The Java Bytecode Verifier

3 The Type-Level Abstract Interpreter

4 The Dataflow Analysis

Static Program Analysis Summer Semester 2011 10.13

Types

The set of types, Typ, is composed of

Primitive types:

int (covering boolean, byte, char , short)
long
float
double

Object reference types: C for every class name C

Array types: τ [] for every primitive or object reference type τ

Method types: τ0(τ1, . . . , τn) for n ∈ N, τi ∈ Typ

Special types:

null (null reference)
Object (any object)
> (contents of uninitialized registers, i.e., any value)
⊥ (absence of any value)

Static Program Analysis Summer Semester 2011 10.14

The Subtyping Relation (excerpt)

(C , D, E user-defined classes; D, E extending C)

>

int long Object float double

int[] long [] C Object[] float[] double[]

D E C []

D[] E []

null

⊥

Notation: τ1 vt τ2

Static Program Analysis Summer Semester 2011 10.15

The Type-Level Abstract Interpreter I

Idea: execute JVM instructions on types
(rather than concrete values)

stack type S ∈ Typ≤ms

register type R : {0, . . . ,mr − 1} → Typ

Represented as transition relation

i : (S ,R)→ (S ′,R ′)

where

i : current instruction
(S ,R): stack/register type before execution
(S ′,R ′): stack/register type after execution

Errors (type mismatch, stack over-/underflow, ...) denoted by
absence of transition

Static Program Analysis Summer Semester 2011 10.16

The Type-Level Abstract Interpreter II

Some transition rules:

iconst z : (S ,R) → (int.S ,R) if |S | < ms

aconst null : (S ,R) → (null .S ,R) if |S | < ms

iadd : (int.int.S ,R) → (int.S ,R)

if icmpeq l : (int.int.S ,R) → (S ,R)

iload n : (S ,R) → (int.S ,R)
if 0 ≤ n < mr ,R(n) = int, |S | < ms

aload n : (S ,R) → (R(n).S ,R)
if 0 ≤ n < mr ,R(n) vt Object, |S | < ms

istore n : (int.S ,R) → (S ,R[n 7→ int]) if 0 ≤ n < mr

astore n : (τ.S ,R) → (S ,R[n 7→ τ])
if 0 ≤ n < mr , τ vt Object

getfield C f τ : (D.S ,R) → (τ.S ,R) if D vt C

putfield C f τ : (τ ′.D.S ,R) → (S ,R)
if τ ′ vt τ,D vt C

invoke C M σ : (τ ′n . . . τ
′
1.τ
′.S ,R) → (τ0.S ,R)

if σ = τ0(τ1, . . . , τn), τ ′i vt τi for 1 ≤ i ≤ n, τ ′ vt C
Static Program Analysis Summer Semester 2011 10.17

Some Theoretical Properties

Lemma 10.3
1 (Typ,vt) is a complete lattice satisfying ACC.

2 (Determinacy) The transitions of the abstract interpreter define a
partial function: If i : (S ,R)→ (S1,R1) and i : (S ,R)→ (S2,R2),
then S1 = S2 and R1 = R2.

3 (Soundness) If i : (S ,R)→ (S ′,R ′), then for all concrete states (s, r)
matching (S ,R), the defensive JVM will not stop with a run-time
type exception when applying i to (s, r) (but rather change to some
(s ′, r ′) matching (S ′,R ′)).

Proof.

see X. Leroy: Java Bytecode Verification: Algorithms and
Formalizations

Static Program Analysis Summer Semester 2011 10.18

Outline

1 Overview

2 The Java Bytecode Verifier

3 The Type-Level Abstract Interpreter

4 The Dataflow Analysis

Static Program Analysis Summer Semester 2011 10.19

The Dataflow System I

The dataflow system S = (L,E ,F , (D,v), ι, ϕ) for a method M:

Labels L := {line numbers of Java bytecode}
Extremal label E := {1} (forward problem)

Flow relation F : for every l ∈ L,
(l ,m), (l , l + 1) ∈ F if l : conditional jump to m
(l ,m) ∈ F if l : unconditional jump to m
− if l : return instruction
(l , l + 1) otherwise

Complete lattice (D,v) where

D := Typ≤ms︸ ︷︷ ︸
stack

×{0, . . . ,mr − 1} → Typ︸ ︷︷ ︸
registers

∪ { None︸ ︷︷ ︸
least element

, Error︸ ︷︷ ︸
untypeable

}

for every (S ,R) ∈ D, None v (S ,R) and (S ,R) v Error
(S1,R1) v (S2,R2) iff

S1 = σ1 . . . σn, S2 = τ1 . . . τn (same length!), σi vt τi for 1 ≤ i ≤ n
R1(i) vt R2(i) for 0 ≤ i < mr

Static Program Analysis Summer Semester 2011 10.20

The Dataflow System II

Extremal value
ι := (ε, (τ1, . . . , τn, >, . . . ,>︸ ︷︷ ︸

mr−n times

))

with parameter types τ1, . . . , τn of M
Transfer functions {ϕl | l ∈ L} are defined by

ϕl(S ,R) :=

{
(S ′,R ′) if l : i and i : (S ,R)→ (S ′,R ′)
Error otherwise

Monotonicity of transfer functions is ensured by the following lemma.

Lemma 10.4

If i : (S ,R)→ (S ′,R ′) and (S1,R1) v (S ,R), then there exists
(S ′1,R

′
1) ∈ D such that i : (S1,R1)→ (S ′1,R

′
1) and (S ′1,R

′
1) v (S ′,R ′).

Proof.

see X. Leroy: Java Bytecode Verification: Algorithms and
Formalizations

Static Program Analysis Summer Semester 2011 10.21

	Overview
	The Java Bytecode Verifier
	The Type-Level Abstract Interpreter
	The Dataflow Analysis

