
Static Program Analysis
Lecture 11: Dataflow Analysis X

(Java Bytecode Verification)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Repetition: The Java Bytecode Verifier

2 Examples of Bytecode Verification

3 Further Issues in Bytecode Verification

Static Program Analysis Summer Semester 2011 11.2

Correctness of Bytecode

Conditions to ensure proper operation:

Type correctness: arguments of instructions always of expected type

No stack over-/underflow: never push to full stack or pop from empty
stack

Code containment: PC must always point into the method code

Register initialization: load from non-parameter register only after store

Object initialization: constructor must be invoked before using class
instance

Access control: operations must respect visibility modifiers
(private/protected/public)

Options:

dynamic checking at execution time (“defensive JVM approach”)

expensive, slows down execution

static checking at loading time (here)

verified code executable at full speed without extra dynamic checks

Static Program Analysis Summer Semester 2011 11.3

The Java Bytecode Verifier

Summary: dataflow analysis applied to type-level abstract interpretation
of JVM

1 Association of type information with register and stack contents

set of types forms a complete lattice

2 Simulation of execution of instructions at type level

3 Use dataflow analysis to cover all concrete executions

4 Analysis proceeds method per method

(see X. Leroy: Java Bytecode Verification: Algorithms and Formalizations,
Journal of Automated Reasoning 30(3-4), 2003, 235–269)

Static Program Analysis Summer Semester 2011 11.4

The Subtyping Relation (excerpt)

(C , D, E user-defined classes; D, E extending C)

>

int long Object float double

int[] long [] C Object[] float[] double[]

D E C []

D[] E []

null

⊥

Notation: τ1 vt τ2

Static Program Analysis Summer Semester 2011 11.5

The Type-Level Abstract Interpreter I

Idea: execute JVM instructions on types
(rather than concrete values)

stack type S ∈ Typ≤ms

register type R : {0, . . . ,mr − 1} → Typ

Represented as transition relation

i : (S ,R)→ (S ′,R ′)

where

i : current instruction
(S ,R): stack/register type before execution
(S ′,R ′): stack/register type after execution

Errors (type mismatch, stack over-/underflow, ...) denoted by
absence of transition

Static Program Analysis Summer Semester 2011 11.6

The Type-Level Abstract Interpreter II

Some transition rules:

iconst z : (S ,R) → (int.S ,R) if |S | < ms

aconst null : (S ,R) → (null .S ,R) if |S | < ms

iadd : (int.int.S ,R) → (int.S ,R)

if icmpeq l : (int.int.S ,R) → (S ,R)

iload n : (S ,R) → (int.S ,R)
if 0 ≤ n < mr ,R(n) = int, |S | < ms

aload n : (S ,R) → (R(n).S ,R)
if 0 ≤ n < mr ,R(n) vt Object, |S | < ms

istore n : (int.S ,R) → (S ,R[n 7→ int]) if 0 ≤ n < mr

astore n : (τ.S ,R) → (S ,R[n 7→ τ])
if 0 ≤ n < mr , τ vt Object

getfield C f τ : (D.S ,R) → (τ.S ,R) if D vt C

putfield C f τ : (τ ′.D.S ,R) → (S ,R)
if τ ′ vt τ,D vt C

invoke C M σ : (τ ′n . . . τ
′
1.τ
′.S ,R) → (τ0.S ,R)

if σ = τ0(τ1, . . . , τn), τ ′i vt τi for 1 ≤ i ≤ n, τ ′ vt C
Static Program Analysis Summer Semester 2011 11.7

The Dataflow System I

The dataflow system S = (L,E ,F , (D,v), ι, ϕ) for a method M:

Labels L := {line numbers of Java bytecode}
Extremal label E := {1} (forward problem)

Flow relation F : for every l ∈ L,
(l ,m), (l , l + 1) ∈ F if l : conditional jump to m
(l ,m) ∈ F if l : unconditional jump to m
− if l : return instruction
(l , l + 1) otherwise

Complete lattice (D,v) where

D := Typ≤ms︸ ︷︷ ︸
stack

×{0, . . . ,mr − 1} → Typ︸ ︷︷ ︸
registers

∪ { None︸ ︷︷ ︸
least element

, Error︸ ︷︷ ︸
untypeable

}

for every (S ,R) ∈ D, None v (S ,R) and (S ,R) v Error
(S1,R1) v (S2,R2) iff

S1 = σ1 . . . σn, S2 = τ1 . . . τn (same length!), σi vt τi for 1 ≤ i ≤ n
R1(i) vt R2(i) for 0 ≤ i < mr

Static Program Analysis Summer Semester 2011 11.8

The Dataflow System II

Extremal value
ι := (ε, (τ1, . . . , τn, >, . . . ,>︸ ︷︷ ︸

mr−n times

))

with parameter types τ1, . . . , τn of M
Transfer functions {ϕl | l ∈ L} are defined by

ϕl(S ,R) :=

{
(S ′,R ′) if l : i and i : (S ,R)→ (S ′,R ′)
Error otherwise

Monotonicity of transfer functions is ensured by the following lemma.

Lemma

If i : (S ,R)→ (S ′,R ′) and (S1,R1) v (S ,R), then there exists
(S ′1,R

′
1) ∈ D such that i : (S1,R1)→ (S ′1,R

′
1) and (S ′1,R

′
1) v (S ′,R ′).

Proof.

see X. Leroy: Java Bytecode Verification: Algorithms and
Formalizations

Static Program Analysis Summer Semester 2011 11.9

Outline

1 Repetition: The Java Bytecode Verifier

2 Examples of Bytecode Verification

3 Further Issues in Bytecode Verification

Static Program Analysis Summer Semester 2011 11.10

Example of Correct Bytecode

Example 11.1

Method declared by method static C ...(B) with ms = 2, mr = 1

Classes B and C with C vt B

B (and thus C) provides method M of type C(int), field f of type int

Application of worklist algorithm: on the board

Label Instruction Transition rule (w/o conditions)
1 aload 0 (S ,R) → (R(0).S ,R)
2 iconst 1 (S ,R) → (int.S ,R)
3 invoke B M C(int) (int.B.S ,R) → (C.S ,R)
4 astore 0 (τ.S ,R) → (S ,R[0 7→ τ])
5 aload 0 (S ,R) → (R(0).S ,R)
6 getfield C f int (C.S ,R) → (int.S ,R)
7 iconst 0 (S ,R) → (int.S ,R)
8 if icmpeq 1 (int.int.S ,R) → (S ,R)
9 aload 0 (S ,R) → (R(0).S ,R)

10 areturn (S ,R) → (S ,R)

Static Program Analysis Summer Semester 2011 11.11

Example of Malicious Bytecode

Example 11.2 (cf. Example 10.2)

Assumption: class A provides field f of type int

Program interprets second stack entry (5) as reference to A-object
and assigns first stack entry (1) to field f

ms = 2, mr = 0

Application of worklist algorithm: on the board

Label Instruction Transition rule (w/o conditions)
1 iconst 5 (S ,R) → (int.S ,R)
2 iconst 1 (S ,R) → (int.S ,R)
3 putfield A f int (int.A.S ,R) → (S ,R)
4 . . .

Static Program Analysis Summer Semester 2011 11.12

Soundness of Bytecode Verifier

Theorem 11.3
If dataflow analysis yields AIl 6= Error for every l ∈ L, then the analyzed method
will not stop with a run-time type exception when run on the JVM. Here run-time
type exceptions refer to

using instruction operands of wrong type
(“Expecting to find ... on stack”),
method return values of wrong type
(“Wrong return value”),
type-incompatible assignments to fields
(“Incompatible type for setting field”),
different stack sizes at the same location
(“Inconsistent stack height”),
stack overflows (i.e., more than ms entries)
(“Stack size too large”), and
stack underflows (i.e., pop from empty stack)
(“Unable to pop operand off an empty stack”).

Moreover it is excluded that different stack sizes occur at the same location
(“Inconsistent stack height”).

Static Program Analysis Summer Semester 2011 11.13

Outline

1 Repetition: The Java Bytecode Verifier

2 Examples of Bytecode Verification

3 Further Issues in Bytecode Verification

Static Program Analysis Summer Semester 2011 11.14

Extended Basic Blocks

Idea: set up dataflow equations only for extended basic blocks
(rather than single instructions)
Extended basic blocks: maximal sequence of instructions with

jump targets only at beginning
(conditional or unconditional) jump and return instructions only at end

Example 11.4 (cf. Example 10.1)

method static int factorial(int), 2 registers, 2 stack slots
1: iconst_1 // push constant 1
2: istore 1 // store in register 1 (= res)
3: iload 0 // push register 0 (= n)
4: ifle 11 // if <= 0, go to 11
5: iload 1 // push res
6: iload 0 // push n
7: imul // res * n on top of stack
8: istore 1 // store in res
9: iinc 0, -1 // decrement n
10: goto 3 // go to loop header
11: iload 1 // push res
12: ireturn // return res to caller

(12 instructions) (4 extended basic blocks)
Static Program Analysis Summer Semester 2011 11.15

Bytecode Verification on Small Devices

(for details see X. Leroy: Java Bytecode Verification: Algorithms and
Formalizations)

Problem: bytecode verification is expensive
=⇒ can exceed resources of small embedded systems

(mobile phones, smart cards, PDAs, ...)

Example: Java SmartCard

8-bit microprocessor
≈ 2 kB RAM (volatile, fast)
≈ 80 kB EEPROM (persistent, slow)
≈ 100 kB ROM (operating system)

=⇒ RAM too small to store dataflow infos

Solutions:
Use EEPROM to hold verifier data structures (slow)
Off-card verification using certificates (see following slides)
On-card verification with off-card code transformation
(see following slides)

Static Program Analysis Summer Semester 2011 11.16

Off-Card Verification Using Certificates

(also: “lightweight bytecode verification using certificates”)

Inspired by “proof-carrying code approach”

Bytecode producer attaches type information to bytecode
(“certificates”)

Embedded system checks well-typedness of code
(rather than inferring types)

Advantages:

type checking faster than inference (no fixpoint iteration)
only reading access to certificates =⇒ can be kept in EEPROM

Practical limitation: certificates require ≈ 50% of size of annotated
code

Implementation: Sun’s K Virtual Machine (KVM)

Static Program Analysis Summer Semester 2011 11.17

On-Card Verification with Off-Card Transformation

Standard bytecode verification (solving dataflow equations using
fixpoint iteration) on normalized bytecode

Bytecode restrictions:

only one register type shared by all control points
(= entry points of extended basic blocks)
stack empty before each jump target and after each jump instruction
(= entry/exit points of extended basic blocks)

Space complexity of bytecode verification
(|L|/ms/mr = number of blocks/stack entries/registers):

w/o restriction: O(|L| · (ms + mr))
with restriction: O(ms + mr)

Restrictions ensured by off-card (i.e., compile-time) code
transformation

stack normalizations around jumps
register re-allocation by graph coloring
can increase code size and number of used registers
(but negligible on “typical” Java Card code)

Static Program Analysis Summer Semester 2011 11.18

	Repetition: The Java Bytecode Verifier
	Examples of Bytecode Verification
	Further Issues in Bytecode Verification

