Static Program Analysis

Lecture 11: Dataflow Analysis X
(Java Bytecode Verification)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Repetition: The Java Bytecode Verifier

“er Static Program Analysis Summer Semester 2011 11.2

Correctness of Bytecode

Conditions to ensure proper operation:
Type correctness: arguments of instructions always of expected type

No stack over-/underflow: never push to full stack or pop from empty
stack
Code containment: PC must always point into the method code
Register initialization: load from non-parameter register only after store
Object initialization: constructor must be invoked before using class
instance
Access control: operations must respect visibility modifiers
(private/protected/public)
Options:
@ dynamic checking at execution time (“defensive JVM approach”)
e expensive, slows down execution
@ static checking at loading time (here)

o verified code executable at full speed without extra dynamic checks

“er Static Program Analysis Summer Semester 2011 11.3

The Java Bytecode Verifier

Summary: dataflow analysis applied to type-level abstract interpretation
of JVM
@ Association of type information with register and stack contents
e set of types forms a complete lattice

@ Simulation of execution of instructions at type level
© Use dataflow analysis to cover all concrete executions

@ Analysis proceeds method per method

(see X. Leroy: Java Bytecode Verification: Algorithms and Formalizations,
Journal of Automated Reasoning 30(3-4), 2003, 235-269)

“er Static Program Analysis Summer Semester 2011 11.4

The Subtyping Relation (excerpt)

(C, D, E user-defined classes; D, E extending C)

T
/ |
int /Ong ObjeCt float double
\
int]] /ong[] Object[] float(] double]]
/ |
E (]
|
\\\ / E]
nu//
N L .

Notation: 71 T 7
“er Static Program Analysis Summer Semester 2011 115

The Type-Level Abstract Interpreter |

o ldea: execute JVM instructions on types
(rather than concrete values)
o stack type S € Typ="
o register type R: {0,...,m, — 1} — Typ

@ Represented as transition relation
i:(S,R)— (S, R)

where
e i: current instruction
o (S5, R): stack/register type before execution
o (5, R’): stack/register type after execution
@ Errors (type mismatch, stack over-/underflow, ...) denoted by
absence of transition

“er Static Program Analysis Summer Semester 2011 11.6

The Type-Level Abstract Interpreter |l

Some transition rules:

iconst_z: (S,R) — (int.S,R) if |S] < ms
aconst.null : (5,R) — (null.5,R) if |S] < ms
iadd : (int.int.S,R) — (int.S, R)
if_icmpeq /: (int.int.S,R) — (S, R)
iload n: (5,R) — (int.5,R)
if 0 < n< my,R(n)=int,|S| < ms
aload n: (5R)—>(()SR)
if 0 < n < m,,R(n) C; Object, |S| < ms
istore n: (int.5,R) — (S,R[n — int]) if0<n<m,
astore n: (1.5,R) = (S,R[n — 7])
if 0 < n< m,7E; Object
getfield C f 7: (D.5,R) — (7.5,R) if DTy C
putfield C f 7: (7'.D.S,R) — (S,R)

ifT/ EtT,DEt C

invoke C M o: (7}...77.7".S,R) = (70.S5, R)
if o =710(71,...,7n), 7] Ce i for 1 <i<n, 7' C¢ C
RWTH Static Program Analysis Summer Semester 2011 11.7

The Dataflow System |

The dataflow system S = (L, E, F,(D,C),t,) for a method M:
@ Labels L := {line numbers of Java bytecode}
e Extremal label E := {1} (forward problem)

o Flow relation F: for every /| € L,

(I,m),(l,14+1) € F if I: conditional jump to m
(I,m)eF if I unconditional jump to m
— if /: return instruction
I,14+1) otherwise
e Complete lattice (D, C) where
e <ms _
o D:=Typ x{0,...,m;—1} — Typ U{ None , Error }
stack registers least element untypeable

o for every (S,R) € D, None C (S, R) and (S, R) C Error
o (51, R) C (5, Ry) iff

e Si=o01...00, S0=71... 71 (Same Iength!), o Ty 7 for 1 <i<n
o Rl(l) C: Rz(l) for0<i< m,

RWTH Static Program Analysis Summer Semester 2011 11.8

The Dataflow System Il

@ Extremal value
vi=(, (1, ey Tny T,oo0, T
(e, (n1 n)
my—n times
with parameter types 7y,...,7, of M
e Transfer functions {¢; | | € L} are defined by
__J(§8,R) ifl:iandi:(S,R)— (S R')
vi(S,R) = {Error otherwise

Monotonicity of transfer functions is ensured by the following lemma.

Lemma

Ifi:(S,R)— (S',R’) and (51, R1) C (S, R), then there exists
(S1,R}) € D such that i : (51, R1) — (51, R}) and (S1, R}) C (S, R').

see X. Leroy: Java Bytecode Verification: Algorithms and
Formalizations [

v

RWTH Static Program Analysis Summer Semester 2011 11.9

© Examples of Bytecode Verification

“er Static Program Analysis Summer Semester 2011 11.10

Example of Correct Bytecode
Example 11.1

@ Method declared by method static C ...(B) with ms=2, m, =1
@ Classes B and C with CC; B
@ B (and thus C) provides method M of type C(int), field £ of type int
@ Application of worklist algorithm: on the board
Label Instruction Transition rule (w/o conditions)
1 aload 0 (S,R) — (R(0).5,R)
2 iconst_1 (5,R) — (int.S,R)
3 invoke B M C(int) (int.B.S,R) — (C.5,R)
4 astore 0 (7.S,R) = (5,R[0+— 7])
5 aload 0 (S,R) — (R(0).S,R)
6 getfield C f int (C.5,R) — (int.S,R)
7 iconst.0 (5,R) — (int.S,R)
8 if_icmpeq 1 (int.int.S,R) — (S, R)
9 aload 0 (5,R) — (R(0).5,R)
10 areturn (5,R) = (S, R)

Static Program Analysis Summer Semester 2011 11.11

Example of Malicious Bytecode

Example 11.2 (cf. Example 10.2)

@ Assumption: class A provides field £ of type int

@ Program interprets second stack entry (5) as reference to A-object
and assigns first stack entry (1) to field £
ems=2 m =0

@ Application of worklist algorithm: on the board

Label Instruction Transition rule
1 iconst.5 (S,R) —
2 icomst_1 (5,R) —
3 putfield A f int (int.A.S,R) —
4 ...

—

w/o conditions)
int.S,R)

int.S, R)

S,R)

—~~

RWTH Static Program Analysis Summer Semester 2011 11.12

Soundness of Bytecode Verifier

Theorem 11.3

If dataflow analysis yields Al; # Error for every | € L, then the analyzed method
will not stop with a run-time type exception when run on the JVM. Here run-time
type exceptions refer to

@ using instruction operands of wrong type
(‘Expecting to find ... on stack”),

@ method return values of wrong type
(‘Wrong return value”),

@ type-incompatible assignments to fields
(“Incompatible type for setting field"),

@ different stack sizes at the same location
(“Inconsistent stack height”),

@ stack overflows (i.e., more than ms entries)
(‘Stack size too large”), and

@ stack underflows (i.e., pop from empty stack)
(‘Unable to pop operand off an empty stack”).

Moreover it is excluded that different stack sizes occur at the same location
(“Inconsistent stack height”).
Rer Static Program Analysis Summer Semester 2011 11.13

© Further Issues in Bytecode Verification

“er Static Program Analysis Summer Semester 2011 11.14

Extended Basic Blocks

o ldea: set up dataflow equations only for extended basic blocks
(rather than single instructions)
@ Extended basic blocks: maximal sequence of instructions with
e jump targets only at beginning
o (conditional or unconditional) jump and return instructions only at end

Example 11.4 (cf. Example 10.1)

method static int factorial(int), 2 registers, 2 stack slots
1: iconst_1 // push constant 1
2: istore 1 // store in register 1 (= res)
5: iload 1 // push res
6: iload O // push n
7: imul // res * n on top of stack
8: istore 1 // store in res
9: iinc 0, -1 // decrement n
10: goto 3 // go to loop header
11: iload 1 // push res
12: ireturn // return res to caller

(12 instructions) (4 extended basic blocks
RWTH Static Program Analysis Summer Semester 2011 11.15

Bytecode Verification on Small Devices

(for details see X. Leroy: Java Bytecode Verification: Algorithms and
Formalizations)

@ Problem: bytecode verification is expensive
= can exceed resources of small embedded systems
(mobile phones, smart cards, PDAs, ...)
o Example: Java SmartCard

e 8-bit microprocessor

o ~ 2 kB RAM (volatile, fast)

e ~ 80 kB EEPROM (persistent, slow)
e ~ 100 kB ROM (operating system)

= RAM too small to store dataflow infos

@ Solutions:

o Use EEPROM to hold verifier data structures (slow)

o Off-card verification using certificates (see following slides)

e On-card verification with off-card code transformation
(see following slides)

“er Static Program Analysis Summer Semester 2011 11.16

Off-Card Verification Using Certificates

(also: “lightweight bytecode verification using certificates”)
@ Inspired by “proof-carrying code approach”
@ Bytecode producer attaches type information to bytecode
(“certificates”)
@ Embedded system checks well-typedness of code
(rather than inferring types)

Advantages:

o type checking faster than inference (no fixpoint iteration)
e only reading access to certificates = can be kept in EEPROM

Practical limitation: certificates require ~ 50% of size of annotated
code

Implementation: Sun’s K Virtual Machine (KVM)

“er Static Program Analysis Summer Semester 2011

11.17

On-Card Verification with Off-Card Transformatio

e Standard bytecode verification (solving dataflow equations using
fixpoint iteration) on normalized bytecode
@ Bytecode restrictions:
e only one register type shared by all control points
(= entry points of extended basic blocks)
e stack empty before each jump target and after each jump instruction
(= entry/exit points of extended basic blocks)

@ Space complexity of bytecode verification
(|L|/ms/m, = number of blocks/stack entries/registers):
e w/o restriction: O(|L| - (ms + m,))
e with restriction: O(ms + m,)
@ Restrictions ensured by off-card (i.e., compile-time) code
transformation
e stack normalizations around jumps
o register re-allocation by graph coloring
@ can increase code size and number of used registers
(but negligible on “typical” Java Card code)

RWTH Static Program Analysis Summer Semester 2011

n

11.18

	Repetition: The Java Bytecode Verifier
	Examples of Bytecode Verification
	Further Issues in Bytecode Verification

