
Static Program Analysis
Lecture 12: Abstract Interpretation I

(Theoretical Foundations)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Introduction to Abstract Interpretation

2 Theoretical Foundations of Abstract Interpretation

3 Excursus: Concrete Semantics of WHILE Programs

Static Program Analysis Summer Semester 2011 12.2

Abstract Interpretation I

Summary: a theory of sound approximation of the semantics of
programs

Basic idea: execution of program on abstract values
(similar to type-level bytecode interpreter)

Example: parity (even/odd) rather than concrete numbers

Procedure: run program on finite set of abstract values that cover all
concrete inputs using abstract operations that cover all concrete
outputs
=⇒ soundness of approach

Preciseness of information again characterized by partial order

Static Program Analysis Summer Semester 2011 12.3

Abstract Interpretation II

Advantages:
Abstract interpretation covers conditional branches (if/while)
without further extension
Granularity of abstract domain influences precision and complexity of
analysis (mutual tradeoff)
Numerous variants for different kinds of programs (functional,
concurrent, ...)
Soundness is guaranteed if abstract operations are determined
according to theory

Disadvantages:
Complexity generally higher than with dataflow analysis
Automatic derivation of abstract operations can be difficult

Static Program Analysis Summer Semester 2011 12.4

Overview (tentative)

1 Theoretical foundations (Galois connections)

2 (Concrete &) abstract semantics of WHILE programs

3 Automatic derivation of abstract semantics

4 Application: verification of 16-bit multiplication

5 Predicate abstraction

6 CEGAR (CounterExample-Guided Abstraction Refinement)

Static Program Analysis Summer Semester 2011 12.5

Outline

1 Introduction to Abstract Interpretation

2 Theoretical Foundations of Abstract Interpretation

3 Excursus: Concrete Semantics of WHILE Programs

Static Program Analysis Summer Semester 2011 12.6

Galois Connections I

Definition 12.1 (Galois connection)

Let (L,vL) and (M,vM) be complete lattices. A pair (α, γ) of monotonic
functions

α : L→ M and γ : M → L

is called a Galois connection if

∀l ∈ L : l vL γ(α(l)) and ∀m ∈ M : α(γ(m)) vM m

Interpretation:

L = {sets of concrete values}, M = {sets of abstract values}
α = abstraction function, γ = concretization function

l vL γ(α(l)): α yields over-approximation

α(γ(m)) vM m: no loss of precision by abstraction after
concretization

Usually: l 6= γ(α(l)), α(γ(m)) = m

Static Program Analysis Summer Semester 2011 12.7

Galois Connections II

For A = {concrete values}, B = {abstract values}, L = 2A, M = 2B :

l

γ

α

B
A

∀l ∈ L : l vL γ(α(l))

(α yields over-approximation)

γ

α

B
A

m

∀m ∈ M : α(γ(m)) vM m

(no loss of precision by
abstraction after concretization)

Static Program Analysis Summer Semester 2011 12.8

Galois Connections III

Example 12.2 (Parity abstraction)

Concrete domain: L = (2Z,⊆) Abstract domain: M = (2{even,odd},⊆)
α : 2Z → 2{even,odd}

α(Z) :=


∅ if Z = ∅
{even} if Z ⊆ Zeven

{odd} if Z ⊆ Zodd

{even, odd} otherwise

γ : 2{even,odd} → 2Z

γ(P) :=
⋃

p∈P Zp

where
Zeven := {. . . ,−2, 0, 2, . . .}
Zodd := {. . . ,−3,−1, 1, 3, . . .}

yields a Galois connection. For example,

γ(α({1, 3, 7})) = γ({odd}) = {. . . ,−3,−1, 1, 3, . . .} ⊇ {1, 3, 7}
α(γ({even})) = α({. . . ,−2, 0, 2, . . .}) = {even}

Static Program Analysis Summer Semester 2011 12.9

Galois Connections IV

Example 12.3 (Sign abstraction)

Concrete domain: L = (2Z,⊆) Abstract domain: M = (2{+,−,0},⊆)
α : 2Z → 2{+,−,0}

α(Z) := {sgn(z) | z ∈ Z}

γ : 2{+,−,0} → 2Z

γ(S) :=
⋃

s∈S Zs

where

sgn(z) :=

+ if z > 0
− if z < 0
0 otherwise

Z+ := {1, 2, 3, . . .}
Z− := {−1,−2,−3, . . .}
Z0 := {0}

yields a Galois connection. For example,

γ(α({0, 1, 3})) = γ({+, 0}) = {0, 1, 2, 3, . . .} ⊇ {0, 1, 3}
α(γ({+,−})) = α(Z \ {0}) = {+,−}

Static Program Analysis Summer Semester 2011 12.10

Galois Connections V

Example 12.4 (Interval abstraction (cf. Slide 8.5))

Concrete domain: L = (2Z,⊆) Abstract domain: M = (Int,⊆)

α : 2Z → Int

α(Z) :=

{
∅ if Z = ∅
[
d

Z ,
⊔

Z] otherwise

γ : Int → 2Z

γ(I) :=

{
∅ if I = ∅
{z ∈ Z | z1 ≤ z ≤ z2} if I = [z1, z2]

yields a Galois connection. For example,

γ(α({1, 3, 5, . . .})) = γ([1,+∞]) = {1, 2, 3, 4, 5, . . .} ⊇ {1, 3, 5, . . .}
α(γ([−1, 1])) = α({−1, 0, 1}) = [−1, 1]

Static Program Analysis Summer Semester 2011 12.11

Properties of Galois Connections

Lemma 12.5

Let (α, γ) be a Galois connection with α : L→ M and γ : M → L, and let
l ∈ L, m ∈ M, L′ ⊆ L, M ′ ⊆ M.

1 α(l) vM m ⇐⇒ l vL γ(m)

2 γ is uniquely determined by α as follows:
γ(m) =

⊔
{l ∈ L | α(l) vM m}

3 α is uniquely determined by γ as follows:
α(l) =

d
{m ∈ M | l vL γ(m)}

4 α is completely distributive:
α(
⊔
L′) =

⊔
{α(l) | l ∈ L′}

5 γ is completely multiplicative:
γ(

d
M ′) =

d
{γ(m) | m ∈ M ′}

Proof.

on the board
Static Program Analysis Summer Semester 2011 12.12

Outline

1 Introduction to Abstract Interpretation

2 Theoretical Foundations of Abstract Interpretation

3 Excursus: Concrete Semantics of WHILE Programs

Static Program Analysis Summer Semester 2011 12.13

Reminder: Syntax of WHILE

The syntax of WHILE Programs is defined by the following context-free
grammar (cf. Definition 1.3):

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Static Program Analysis Summer Semester 2011 12.14

Program States

Meaning of expression = value (in the usual sense)

Depends on the values of the variables in the expression

Definition 12.6 (Program state)

A (program) state is an element of the set

Σ := {σ | σ : Var → Z},

called the state space.

Thus σ(x) denotes the value of x ∈ Var in state σ ∈ Σ.

Static Program Analysis Summer Semester 2011 12.15

Evaluation of Expressions

Definition 12.7 (Evaluation function)

Let σ ∈ Σ be a state.

1 valσ : AExp → Z : a→ valσ(a)
yields the value of a in state σ

2 valσ : BExp → B : b → valσ(b)
yields the value of b in state σ

Example 12.8

Let σ(x) = 1 and σ(y) = 2.

1 valσ(2 * x + y) = 4

2 valσ(¬(x + 1 > y)) = true

Static Program Analysis Summer Semester 2011 12.16

Semantics of WHILE I

Definition employs derivation rules of the form

Name
Premise(s)

Conclusion

meaning: if every premise is fulfilled, then conclusion can be drawn

a rule with no premises is called an axiom

Static Program Analysis Summer Semester 2011 12.17

Semantics of WHILE II

Definition 12.9 (Execution relation for statements)

If c ∈ Cmd and σ ∈ Σ, then 〈c, σ〉 is called a configuration. The execution
relation (on configurations and states) is defined by the following rules:

(skip)
〈skip, σ〉 → σ

(asgn)
〈x := a, σ〉 → σ[x 7→ valσ(a)]

(seq1)
〈c1, σ〉 → 〈c ′1, σ′〉

〈c1;c2, σ〉 → 〈c ′1;c2, σ
′〉

(seq2)
〈c1, σ〉 → σ′

〈c1;c2, σ〉 → 〈c2, σ
′〉

Static Program Analysis Summer Semester 2011 12.18

Semantics of WHILE III

Definition 12.9 (Execution relation for statements; continued)

(if1)
valσ(b) = true

〈if b then c1 else c2, σ〉 → 〈c1, σ〉

(if2)
valσ(b) = false

〈if b then c1 else c2, σ〉 → 〈c2, σ〉

(wh1)
valσ(b) = true

〈while b do c , σ〉 → 〈c;while b do c, σ〉

(wh2)
valσ(b) = false

〈while b do c , σ〉 → σ

Static Program Analysis Summer Semester 2011 12.19

	Introduction to Abstract Interpretation
	Theoretical Foundations of Abstract Interpretation
	Excursus: Concrete Semantics of WHILE Programs

