Static Program Analysis

Lecture 12: Abstract Interpretation |
(Theoretical Foundations)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Introduction to Abstract Interpretation

“er Static Program Analysis Summer Semester 2011

Abstract Interpretation |

@ Summary: a theory of sound approximation of the semantics of
programs

o Basic idea: execution of program on abstract values
(similar to type-level bytecode interpreter)

e Example: parity (even/odd) rather than concrete numbers

o Procedure: run program on finite set of abstract values that cover all
concrete inputs using abstract operations that cover all concrete
outputs

— soundness of approach

@ Preciseness of information again characterized by partial order

“er Static Program Analysis Summer Semester 2011 12.3

Abstract Interpretation Il

o Advantages:

o Abstract interpretation covers conditional branches (if /while)
without further extension

o Granularity of abstract domain influences precision and complexity of
analysis (mutual tradeoff)

e Numerous variants for different kinds of programs (functional,
concurrent, ...)

e Soundness is guaranteed if abstract operations are determined
according to theory

o Disadvantages:

o Complexity generally higher than with dataflow analysis
e Automatic derivation of abstract operations can be difficult

“er Static Program Analysis Summer Semester 2011 12.4

© Theoretical foundations (Galois connections)

@ (Concrete &) abstract semantics of WHILE programs

© Automatic derivation of abstract semantics

@ Application: verification of 16-bit multiplication

© Predicate abstraction

O CEGAR (CounterExample-Guided Abstraction Refinement)

“er Static Program Analysis Summer Semester 2011 12.5

© Theoretical Foundations of Abstract Interpretation

“er Static Program Analysis Summer Semester 2011

Galois Connections |

Definition 12.1 (Galois connection)

Let (L,C;) and (M, Cy) be complete lattices. A pair («,) of monotonic

functions
a:L—>M and vy:M—=L

is called a Galois connection if

VieL:1Cy(a(l)) and Vme M : a(y(m)) Ty m

Interpretation:

L = {sets of concrete values}, M = {sets of abstract values}
« = abstraction function, v = concretization function

I T v(a(l)): « yields over-approximation

a(y(m)) Ep m: no loss of precision by abstraction after
concretization

Usually: 1 # y(a(!)), a(y(m)) =m

RWTH Static Program Analysis Summer Semester 2011 12.7

Galois Connections |l

For A = {concrete values}, B = {abstract values}, L =24, M = 25:
VieL: 1T vy(a(l)) Vme M : a(y(m)) Ty m
(« yields over-approximation) (no loss of precision by

abstraction after concretization)

“er Static Program Analysis Summer Semester 2011 12.8

Galois Connections 11

Example 12.2 (Parity abstraction)

Concrete domain: L = (2%, Q) Abstract domain: M = (2{evenedd})
2% 2{even,odd}
0 if Z=0
) {even} if Z C Zeven
) k] if Z C Zogq

{even,odd} otherwise

o ofevenodd} _ oZ
v(P) == UpePZP

Zeven = {...,—2,0,2,...}
Zodd i =1...,—3,-1,1,3,...}
yields a Galois connection. For example,

1(a({1,3,7})) = v({odd}) = {.. -1,1,3,...} 2{1,3,7}
o a(y({even})) =a({..., —2,0,2, . }) = {even}

“w.rH Static Program Analysis Summer Semester 2011 12.9

where

v

Galois Connections IV

Example 12.3 (Sign abstraction)
Concrete domain: L = (2%, C) Abstract domain: M = (2{+:=0} Q)

a:2Z 5 2t+H=0}
a(Z) :={sgn(z) | z € Z}

2t =0 5 22
V(S) = Uses Zs

where

+ ifz>0
sgn(z) =< — ifz<0

0 otherwise

yields a Galois connection. For example,

o v(a({0,1,3})) = y({+,0}) = {0,1,2,3,...} 2 {0,1,3}
o a(y({+, —}) = a(Z\{0}) = {+, -}

Rer Static Program Analysis Summer Semester 2011 12.10

Galois Connections V

Example 12.4 (Interval abstraction (cf. Slide 8.5))
Concrete domain: L = (2%, C) Abstract domain: M = (Int,C)

a: 2% — Int
0 if Z=10
o) = {[H Z,| |Z] otherwise

v Int — 27
MW= zeZ|an<z<zn} ifl=][a,z]

yields a Galois connection. For example,
o v(a({1,3,5,...})) = v([1, +o]) = {1,2,3,4,5,...} D {1,3,5,...}
o a(y([-1,1])) = a({-1,0,1}) = [-1,1]

RWTH Static Program Analysis Summer Semester 2011 12.11

Properties of Galois Connections
Lemma 12.5

Let («,7y) be a Galois connection with a: L — M and v : M — L, and let
lel,LmeM,L'CL M CM.
Q a()Emm < I TLy(m)
@ 1~ is uniquely determined by « as follows:
v(m) =Ll e L]a(l) Ep m}
© « is uniquely determined by vy as follows:
a(l)=TKme M| TEL~v(m)}
Q « is completely distributive:
aULl) = Ha) | 1€ L'}
© ~ is completely multiplicative:

Y[TM') = [Hy(m) | m e M’}

on the board OJ

Rer Static Program Analysis Summer Semester 2011 12.12

© Excursus: Concrete Semantics of WHILE Programs

“er Static Program Analysis Summer Semester 2011 12.13

Reminder: Syntax of WHILE

The syntax of WHILE Programs is defined by the following context-free
grammar (cf. Definition 1.3):

=z | X | ait+ao ’ ai—ar ’ ai*xay € AEXP

a
b=t ’ ar=ar ’ ai>ap ’ —b ’ biAby ‘ bi1Vby € BExp
c:=skip|x :=a|c;c|if b then ¢ else ¢ | while b do c € Cmd

“er Static Program Analysis Summer Semester 2011 12.14

Program States

@ Meaning of expression = value (in the usual sense)

@ Depends on the values of the variables in the expression

Definition 12.6 (Program state)

A (program) state is an element of the set

Y ={o|o: Var - Z},

called the state space.

Thus o(x) denotes the value of x € Var in state o € .

RWTH Static Program Analysis Summer Semester 2011 12.15

Evaluation of Expressions

Definition 12.7 (Evaluation function)
Let o € ¥ be a state.

Q val, : AExp — Z : a — val,(a)
yields the value of a in state o
@ val, : BExp — B : b — val,(b)
yields the value of b in state o

Example 12.8

Let o(x) =1 and o(y) = 2.
Q val,(2 * x +y)=4
Q val,(—(x + 1 > y)) =true

RWTH Static Program Analysis Summer Semester 2011 12.16

Semantics of WHILE |

Definition employs derivation rules of the form

Premise(s)
Name————F—F
Conclusion

@ meaning: if every premise is fulfilled, then conclusion can be drawn

@ a rule with no premises is called an axiom

“er Static Program Analysis Summer Semester 2011 12.17

Semantics of WHILE Il

Definition 12.9 (Execution relation for statements)

If c € Cmd and o € %, then (c, o) is called a configuration. The execution
relation (on configurations and states) is defined by the following rules:

(skie) (skip,0) — 0

(asgn) <

x :=a,0) = o[x — val,(a)]

<C17 U) — <C17 UI>

(seql)
(c1;¢0,0) = (c];2,0")

(c1,0) =o'

S P P

“w.rH Static Program Analysis Summer Semester 2011 12.18

Semantics of WHILE IlI

Definition 12.9 (Execution relation for statements; continued)

val,(b) = true

ifl
(i) (if b then ¢ else ¢,0) — (c1,0)

val,(b) = false
(if b then ¢ else ¢,0) — (¢, 0)

(if2)

val,(b) = true

(wh1) . -
(while b do ¢,0) — (c;while b do c,0)

val,(b) = false
(while bdo c,0) — 0o

(wh2)

RWTH Static Program Analysis Summer Semester 2011 12.19

	Introduction to Abstract Interpretation
	Theoretical Foundations of Abstract Interpretation
	Excursus: Concrete Semantics of WHILE Programs

