
Static Program Analysis
Lecture 13: Abstract Interpretation II

(Abstract Semantics of WHILE)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/


 
 
 
                    Lehrstuhl für Informatik 2  
 
 
 
 

EINLADUNG 
 
 
 

Zeit: Mittwoch, 01. Juni 2011, 15.00 Uhr 

Ort: AH IV, Ahornstr. 55  
 
Referentin: Frau Prof. Dr. Barbara M. Terhal, 
 Institute for Quantum Information, FB1, 
 RWTH Aachen 
 
Titel:  Quantum Complexity Theory 

 
 
 

Abstract: 

We will discuss the model of quantum computation and the important differences be-
tween quantum and classical computation. We then review the quantum version of 
the classical Cook-Levin theorem due to Kitaev which proves that a quantum (or ma-
trix) version of the satisfiability problem is quantum NP or QMA-complete. We give an 
overview of more recent advances in quantum complexity theory and discuss various 
open questions. 

 

 

 

 

 

 

 

Es laden ein: Die Dozenten der Informatik 

 

Informatik-Kolloquium 
Fachgruppe Informatik 



Outline

1 Repetition: Abstract Interpretation

2 Repetition: Concrete Semantics of WHILE Programs

3 More on Concrete Semantics

4 Abstract Semantics

Static Program Analysis Summer Semester 2011 13.3



Abstract Interpretation

Summary: a theory of sound approximation of the semantics of
programs

Basic idea: execution of program on abstract values
(similar to type-level bytecode interpreter)

Example: parity (even/odd) rather than concrete numbers

Procedure: run program on finite set of abstract values that cover all
concrete inputs using abstract operations that cover all concrete
outputs
=⇒ soundness of approach

Preciseness of information again characterized by partial order

Static Program Analysis Summer Semester 2011 13.4



Galois Connections I

Definition (Galois connection)

Let (L,vL) and (M,vM) be complete lattices. A pair (α, γ) of monotonic
functions

α : L→ M and γ : M → L

is called a Galois connection if

∀l ∈ L : l vL γ(α(l)) and ∀m ∈ M : α(γ(m)) vM m

Interpretation:

L = {sets of concrete values}, M = {sets of abstract values}
α = abstraction function, γ = concretization function

l vL γ(α(l)): α yields over-approximation

α(γ(m)) vM m: no loss of precision by abstraction after
concretization

Usually: l 6= γ(α(l)), α(γ(m)) = m

Static Program Analysis Summer Semester 2011 13.5



Outline

1 Repetition: Abstract Interpretation

2 Repetition: Concrete Semantics of WHILE Programs

3 More on Concrete Semantics

4 Abstract Semantics

Static Program Analysis Summer Semester 2011 13.6



Semantics of WHILE I

Definition (Execution relation for statements)

If c ∈ Cmd and σ ∈ Σ, then 〈c, σ〉 is called a configuration. The execution
relation (on configurations and states) is defined by the following rules:

(skip)
〈skip, σ〉 → σ

(asgn)
〈x := a, σ〉 → σ[x 7→ valσ(a)]

(seq1)
〈c1, σ〉 → 〈c ′

1, σ
′〉

〈c1;c2, σ〉 → 〈c ′
1;c2, σ

′〉

(seq2)
〈c1, σ〉 → σ′

〈c1;c2, σ〉 → 〈c2, σ
′〉

Static Program Analysis Summer Semester 2011 13.7



Semantics of WHILE II

Definition (Execution relation for statements; continued)

(if1)
valσ(b) = true

〈if b then c1 else c2, σ〉 → 〈c1, σ〉

(if2)
valσ(b) = false

〈if b then c1 else c2, σ〉 → 〈c2, σ〉

(wh1)
valσ(b) = true

〈while b do c , σ〉 → 〈c;while b do c, σ〉

(wh2)
valσ(b) = false

〈while b do c , σ〉 → σ

Static Program Analysis Summer Semester 2011 13.8



Outline

1 Repetition: Abstract Interpretation

2 Repetition: Concrete Semantics of WHILE Programs

3 More on Concrete Semantics

4 Abstract Semantics

Static Program Analysis Summer Semester 2011 13.9



An Execution Example

Example 13.1

c := y := 1; while¬(x=1)︸ ︷︷ ︸
b

do y := y*x︸ ︷︷ ︸
c1

; x := x-1︸ ︷︷ ︸
c2︸ ︷︷ ︸

c0

Claim: 〈c , σ〉 →+ σ1,6 for every σ ∈ Σ with σ(x) = 3

Notation: σi ,j means σ(x) = i , σ(y) = j

Derivation: on the board

Static Program Analysis Summer Semester 2011 13.10



Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem 13.2

The execution relation for statements is deterministic, i.e., whenever
c ∈ Cmd, σ ∈ Σ and κ1, κ2 ∈ Cmd × Σ ∪ Σ such that 〈c , σ〉 → κ1 and
〈c , σ〉 → κ2, then κ1 = κ2.

Proof.

omitted

Static Program Analysis Summer Semester 2011 13.11



Outline

1 Repetition: Abstract Interpretation

2 Repetition: Concrete Semantics of WHILE Programs

3 More on Concrete Semantics

4 Abstract Semantics

Static Program Analysis Summer Semester 2011 13.12



Safe Approximation of Functions I

Definition 13.3

Let (α, γ) be a Galois connection with α : L→ M and γ : M → L, and let
f : Ln → L and f # : Mn → M be functions of rank n ∈ N. Then f # is
called a safe approximation of f if, whenever m1, . . . ,mn ∈ M,

α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn).

Moreover it is called most precise safe approximation if the reverse
inclusion is also true.

Interpretation: the abstraction f # of f covers all concrete results

Note: monotonicity of f and/or f # is not required (but usually
given; see Lemma 13.5)

Static Program Analysis Summer Semester 2011 13.13



Safe Approximation of Functions II

Example 13.4

1 Parity abstraction (cf. Example 12.2): most precise approximations

n = 0: 1# = {odd}
n = 1: −#(P) = P, (−1)#({even}) = {odd}
n = 2: {even}+# {odd} = {odd}, {even} ·# {odd} = {even}

2 Sign abstraction (cf. Example 12.3): most precise approximations

n = 0: 1# = {+}
n = 1: −#({+}) = {−}, (−1)#({+}) = {+, 0}
n = 2: {+}+# {+} = {+}, {+}+# {−} = {+,−, 0}
{+} ·# {−} = {−}

3 Interval abstraction (cf. Example 12.4): most precise approximations

n = 0: z# = [z , z ]
n = 1: −#([z1, z2]) = [−z2,−z1], (−1)#([z1, z2]) = [z1 − 1, z2 − 1]
n = 2:

[y1, y2] +
# [z1, z2] = [y1 + z1, y2 + z2]

[y1, y2]−# [z1, z2] = [y1 − z2, y2 − z1]

Static Program Analysis Summer Semester 2011 13.14



Safe Approximation of Functions III

Lemma 13.5

If f : Ln → L and f # : Mn → M are monotonic, then f # is a safe
approximation of f iff, for all l1, . . . , ln ∈ L,

α(f (l1, . . . , ln)) vM f #(α(l1), . . . , α(ln)).

Proof.

on the board

Static Program Analysis Summer Semester 2011 13.15



Safe Approximation of Execution Relation I

Reminder: concrete semantics of WHILE

states Σ := {σ | σ : Var → Z} (Definition 12.6)
execution relation →⊆ (Cmd × Σ)× (Cmd × Σ ∪ Σ) (Definition 12.9)

Yields concrete domain L := 2Σ and concrete transition function:

Definition 13.6 (Concrete transition function)

The concrete transition function of WHILE is defined by the family of
functions

nextc,c ′ : 2Σ → 2Σ

where c ∈ Cmd , c ′ ∈ Cmd ∪ {↓} and, for every S ⊆ Σ,

nextc,c ′(S) := {σ′ ∈ Σ | c ′ ∈ Cmd , ∃σ ∈ S : 〈c, σ〉 → 〈c ′, σ′〉} and
nextc,↓(S) := {σ′ ∈ Σ | ∃σ ∈ S : 〈c , σ〉 → σ′}

Static Program Analysis Summer Semester 2011 13.16



Safe Approximation of Execution Relation II

Reminder: abstraction determined by Galois connection (α, γ) with
α : L→ M and γ : M → L

here: L := 2Σ, M not fixed (usually M = Var → . . . or M = 2Var→...)
write Abs in place of M
thus α : 2Σ → Abs and γ : Abs → 2Σ

Yields abstract semantics:

Definition 13.7 (Abstract semantics of WHILE)

Given α : 2Σ → Abs, an abstract semantics is defined by a family of
functions

next#
c,c ′ : Abs → Abs

where c ∈ Cmd , c ′ ∈ Cmd ∪ {↓}, and each next#
c,c ′ is a safe

approximation of nextc,c ′ , i.e.,

α(nextc,c ′(γ(abs))) vAbs next#
c,c ′(abs)

for every abs ∈ Abs. Notation:

〈c , abs〉 ⇒ 〈c ′, abs ′〉 for next#
c,c′(abs) = abs ′ and

〈c , abs〉 ⇒ abs ′ for next#
c,↓(a) = abs ′

Static Program Analysis Summer Semester 2011 13.17


	Repetition: Abstract Interpretation
	Repetition: Concrete Semantics of WHILE Programs
	More on Concrete Semantics
	Abstract Semantics

