Static Program Analysis

Lecture 14: Abstract Interpretation |1l
(Abstract Interpretation of WHILE Programs)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Repetition: Abstract Semantics

“er Static Program Analysis Summer Semester 2011 14.2

Safe Approximation of Functions

Definition

Let (a,y) be a Galois connection with o : L — M and v: M — L, and let
f:L"— Land f#: M" — M be functions of rank n € N. Then f# is
called a safe approximation of f if, whenever my, ..., m, € M,

a(F(y(m),...,v(mn))) Ty 7 (my,..., my,).

Moreover it is called most precise safe approximation if the reverse
inclusion is also true.

o Interpretation: the abstraction f# of f covers all concrete results

e Note: monotonicity of f and/or f# is not required (but usually
given; see Lemma 13.5)

RWTH Static Program Analysis Summer Semester 2011 14.3

Safe Approximation of Execution Relation |

@ Reminder: concrete semantics of WHILE

o states ¥ := {0 | 0 : Var — Z} (Definition 12.6)
e execution relation —C (Cmd x X) x (Cmd x £ U X) (Definition 12.9)

@ VYields concrete domain L := 2* and concrete transition function:

Definition (Concrete transition function)
The concrete transition function of WHILE is defined by the family of

functions
nexte o : 2r o

where ¢ € Cmd, ¢’ € Cmd U {]} and, for every S C ¥,

nexte o (S) :={o' € X | € Cmd,Jo € S: (c,0) = (c',0')} and
nextc |(S) :={c' €X|Joe€S:(c,0) =o'}

RWTH Static Program Analysis Summer Semester 2011 14.4

Safe Approximation of Execution Relation Il

e Reminder: abstraction determined by Galois connection («,) with
a:L—-Mandy: M —= L
o here: L:=2% M not fixed (usually M = Var —» ... or M = 2‘/3’—’"')
e write Abs in place of M
o thus o : 2% — Abs and v : Abs — 2%

@ Yields abstract semantics:

Definition (Abstract semantics of WHILE)

Given « : 2% — Abs, an abstract semantics is defined by a family of
functions
nextfc, : Abs — Abs
where ¢ € Cmd, ¢’ € Cmd U {|}, and each nextfc, is a safe
approximation of next. ./, i.e.,
a(nextc or(7(abs))) Cas next? ,(abs)
for every abs € Abs. Notation:

o (c,abs) = (c’,abs’) for next” _,(abs) = abs’ and

c,c’

o (c,abs) = abs’ for nextf’i(a) = abs’

RWTH Static Program Analysis Summer Semester 2011 145

© More on Abstract Semantics

“er Static Program Analysis Summer Semester 2011 14.6

Safe Approximation of Execution Relation Ill

Example 14.1 (Parity abstraction (cf. Example 12.2))
o Abs — 2Var—{even,odd}
e Var ={n}
o Notation: [n +— p] € abs € Abs for p € {even,odd}

@ Some abstract transitions:

(n := 3 *n + 1{[n— odd]}) = {[n — even]}
(n := 2 *n + 1{[n~ even],[n+— odd]}) = {[n — odd]}

(while —(n=1) do c¢,{[n+— odd]}) = {[n — odd]}
(while —(n=1) do c¢,{[n+— odd]}) =

(c; while —(n=1) do c¢,{[n > odd]})
(while —(n=1) do c,{[n > even|}) # {[n > even|}
(while —(n=1) do c,{[n+> even|}) =

(c; while —(n=1) do c,{[n ~ even]})

v

RWTH Static Program Analysis Summer Semester 2011 14.7

Example: Hailstone Sequences

Example 14.2 (Hailstone Sequences)

[skip]!;
while [~(n = 1)]? do @ additional skip statements
if [even(n)]? foem only for labels
el[sne i=n / 2]";[skip]*; @ abstract transition system
ko= 5o m o A0 for n € Zodq: on the board

@ Collatz Conjecture: given any n > 0, the program finally returns 1
(that is, every Hailstone Sequence terminates with 1)

@ see http://en.wikipedia.org/wiki/Collatz_conjecture

@ AKA 3n+ 1 Conjecture, Ulam Conjecture, Kakutani's Problem, Thwaites'
Conjecture, Hasse's Algorithm, or Syracuse Problem

@ New proof attempt by Gerhard Opfer from Hamburg University
(http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf)

RWTH Static Program Analysis Summer Semester 2011 14.8

http://en.wikipedia.org/wiki/Collatz_conjecture
http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf

© Abstract Interpretation of WHILE Programs

“er Static Program Analysis Summer Semester 2011 14.9

Derivation of Abstract Semantics

@ Problem: most precise safe approximation not always definable

Example 14.3 (Fermat's Last Theorem)
Sign abstraction (cf. Example 12.3) on

(if n>2 A x"n+y"n=z"n then n:=1 else n:=-1,[n,x,y,z — +])

o Result n =1 possible iff there exist n > 2 and x, y,z > 1 such that
Xn + yn = zn

e Fermat’s Last Theorem: equation not solvable

o Final proof by Andrew Wiles and Richard Taylor in 1995

More general: solvability of Diophantic equations undecidable

@ Thus: resort to possibly imprecise safe approximations

RWTH Static Program Analysis Summer Semester 2011 14.10

Extraction Functions

@ Assumption: abstraction determined by pointwise mapping of
concrete elements

o lf L=2%and M =22 with C; = Cpy = C, then 8: C — Ais called
an extraction function

@ (3 determines Galois connection («,y) where

a:L—=>M:I—{p(c)|cel}
and
v:M—=L:mw 37Y(m) (= {ce C|B(c) e m})

Example 14.4

@ Parity abstraction (cf. Example 12.2): 3 : Z — {even,odd} where

__Jeven if z even
B2) = \odd if z odd

@ Sign abstraction (cf. Example 12.3): §:Z — {4+, —,0} with 3 = sgn

© Interval abstraction (cf. Example 12.4): not definable by extraction
function (as Int is not of the form 24)

v

RWTH Static Program Analysis Summer Semester 2011 14.11

Safe Approximation by Extraction Functions

Reminder: safe approximation condition (Definition 13.3)

a(f(y(m),...,v(mn))) CEum f#(ml, ceeymp).

Theorem 14.5

Let L=2C and M =24 withC;, = Cpy = C, B : C — A be an extraction
function, and f : C" — C. Then

fEM"— M:(my,...,m,)—
{B(f(ct,...,cn)) | Vie{L,...,n}:ci € B~ m)}

is a safe approximation of f.

on the board]

RWTH Static Program Analysis Summer Semester 2011 14.12

Safe Approximation of Arithmetic Operations

Example 14.6 (Sign abstraction)
For C=7Z, A={+,—,0}, 5 =sgn:

| {+} {=r {0 « [{+} {-} {0}
{+1] {++ {0 {+ {+H [{+r =} {0}
{=}|{+-0 {-} {3 (=} {3 {+} {0}
{0y | {+} =+ {0 {0} | {0} {0} {0}

and {+,0} ## {—} = {+} #* {-}U {0} +* {-}
= {-} u {0}

= {0}

etc.

RWTH Static Program Analysis Summer Semester 2011 14.13

Safe Approximation of Boolean Operations

Example 14.7 (Sign abstraction)

© Relational operations:
e C=ZUB, A={+,—,0} UB, 8 =sgn

o =¥ {+} {-} {o}
{+} | {true, false} {false} {false}
{-} {false} {true, false} {false}
{0} {false} {false} {true}

o[># {+} {-} {0}
{+} | {true, false} {true} {true}
{-} {false} {true, false} {false}
{0} {false} {true} {false}

o {+,0} =# {0} = {+} =# {0} U {0} =# {0} = {false} U {true} =

{true, false} etc.

@ Boolean connectives:
e C=A=B, ~#=-, A#*=A, ...

o {true,false} A# {true} = {true} A% {true} U {false} A% {true} =

{true} U {false} = {true, false} etc.

Static Program Analysis

Summer Semester 2011

14.14

Abstract Program States

Now: take values of variables into account

Definition 14.8 (Abstract program state)

Let 5 : Z — A be an extraction function.

@ An abstract (program) state is an element of the set
{p|p: Var - A},

called the abstract state space.
@ The abstract domain is denoted by Abs := 2Var—=4,

@ The abstraction function o : 2> — Abs is given by

a(S) ={foo|oceS}

for every S C Y.

RWTH Static Program Analysis Summer Semester 2011 14.15

Abstract Evaluation of Expressions

Definition 14.9 (Abstract evaluation functions)

Let p: Var — A be an abstract state.
Q val¥ : AExp — 2" is determined by

val’(z) := {B(2)}
Va/#() = {p(x)}
va/f(f(al,.. ap)) =" (val#(al) va/ff(an))
@ val¥ : BExp — 2% is determined by
val#(t) = {t}
va/#(f(al,.. ap)) = f#(va/#(al) va/#(n)

val#(g(bl,...,b) —g#(val#(bl) va/#(b,))

Example 14.10 (Sign abstraction

Let p(x) = + and p(y)
o va/f(2 * x +y)={+,—,0}
Q va/f(—'(x + 1 > y)) = {false}

“w.rH Static Program Analysis Summer Semester 2011 14.16

—~~
I
\
~
A

	Repetition: Abstract Semantics
	More on Abstract Semantics
	Abstract Interpretation of WHILE Programs

