

Static Program Analysis

Lecture 14: Abstract Interpretation III (Abstract Interpretation of WHILE Programs)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/spa11/>

Summer Semester 2011

- 1 Repetition: Abstract Semantics
- 2 More on Abstract Semantics
- 3 Abstract Interpretation of WHILE Programs

Definition

Let (α, γ) be a Galois connection with $\alpha : L \rightarrow M$ and $\gamma : M \rightarrow L$, and let $f : L^n \rightarrow L$ and $f^\# : M^n \rightarrow M$ be functions of rank $n \in \mathbb{N}$. Then $f^\#$ is called a **safe approximation** of f if, whenever $m_1, \dots, m_n \in M$,

$$\alpha(f(\gamma(m_1), \dots, \gamma(m_n))) \sqsubseteq_M f^\#(m_1, \dots, m_n).$$

Moreover it is called **most precise** safe approximation if the reverse inclusion is also true.

- **Interpretation:** the abstraction $f^\#$ of f covers all concrete results
- **Note:** monotonicity of f and/or $f^\#$ is *not* required (but usually given; see Lemma 13.5)

- **Reminder:** concrete semantics of WHILE
 - **states** $\Sigma := \{\sigma \mid \sigma : \text{Var} \rightarrow \mathbb{Z}\}$ (Definition 12.6)
 - **execution relation** $\rightarrow \subseteq (Cmd \times \Sigma) \times (Cmd \times \Sigma \cup \Sigma)$ (Definition 12.9)
- Yields **concrete domain** $L := 2^\Sigma$ and concrete transition function:

Definition (Concrete transition function)

The **concrete transition function** of WHILE is defined by the family of functions

$$\text{next}_{c,c'} : 2^\Sigma \rightarrow 2^\Sigma$$

where $c \in Cmd$, $c' \in Cmd \cup \{\downarrow\}$ and, for every $S \subseteq \Sigma$,

$$\begin{aligned}\text{next}_{c,c'}(S) &:= \{\sigma' \in \Sigma \mid c' \in Cmd, \exists \sigma \in S : \langle c, \sigma \rangle \rightarrow \langle c', \sigma' \rangle\} \text{ and} \\ \text{next}_{c,\downarrow}(S) &:= \{\sigma' \in \Sigma \mid \exists \sigma \in S : \langle c, \sigma \rangle \rightarrow \sigma'\}\end{aligned}$$

- **Reminder:** abstraction determined by **Galois connection** (α, γ) with $\alpha : L \rightarrow M$ and $\gamma : M \rightarrow L$
 - here: $L := 2^\Sigma$, M not fixed (usually $M = \text{Var} \rightarrow \dots$ or $M = 2^{\text{Var} \rightarrow \dots}$)
 - write *Abs* in place of M
 - thus $\alpha : 2^\Sigma \rightarrow \text{Abs}$ and $\gamma : \text{Abs} \rightarrow 2^\Sigma$
- Yields abstract semantics:

Definition (Abstract semantics of WHILE)

Given $\alpha : 2^\Sigma \rightarrow \text{Abs}$, an **abstract semantics** is defined by a family of functions

$$\text{next}_{c,c'}^\# : \text{Abs} \rightarrow \text{Abs}$$

where $c \in \text{Cmd}$, $c' \in \text{Cmd} \cup \{\downarrow\}$, and each $\text{next}_{c,c'}^\#$ is a safe approximation of $\text{next}_{c,c'}$, i.e.,

$$\alpha(\text{next}_{c,c'}(\gamma(\text{abs}))) \sqsubseteq_{\text{Abs}} \text{next}_{c,c'}^\#(\text{abs})$$

for every $\text{abs} \in \text{Abs}$. Notation:

- $\langle c, \text{abs} \rangle \Rightarrow \langle c', \text{abs}' \rangle$ for $\text{next}_{c,c'}^\#(\text{abs}) = \text{abs}'$ and
- $\langle c, \text{abs} \rangle \Rightarrow \text{abs}'$ for $\text{next}_{c,\downarrow}^\#(\text{a}) = \text{abs}'$

- 1 Repetition: Abstract Semantics
- 2 More on Abstract Semantics
- 3 Abstract Interpretation of WHILE Programs

Example 14.1 (Parity abstraction (cf. Example 12.2))

- $Abs = 2^{Var \rightarrow \{\text{even, odd}\}}$
- $Var = \{n\}$
- Notation: $[n \mapsto p] \in abs \in Abs$ for $p \in \{\text{even, odd}\}$
- Some abstract transitions:

$\langle n := 3 * n + 1, [n \mapsto \text{odd}] \rangle$	$\Rightarrow [n \mapsto \text{even}]$
$\langle n := 2 * n + 1, [n \mapsto \text{even}], [n \mapsto \text{odd}] \rangle$	$\Rightarrow [n \mapsto \text{odd}]$
$\langle \text{while } \neg(n=1) \text{ do } c, [n \mapsto \text{odd}] \rangle$	$\Rightarrow [n \mapsto \text{odd}]$
$\langle \text{while } \neg(n=1) \text{ do } c, [n \mapsto \text{odd}] \rangle$	\Rightarrow
$\langle c; \text{while } \neg(n=1) \text{ do } c, [n \mapsto \text{odd}] \rangle$	
$\langle \text{while } \neg(n=1) \text{ do } c, [n \mapsto \text{even}] \rangle$	$\not\Rightarrow [n \mapsto \text{even}]$
$\langle \text{while } \neg(n=1) \text{ do } c, [n \mapsto \text{even}] \rangle$	\Rightarrow
$\langle c; \text{while } \neg(n=1) \text{ do } c, [n \mapsto \text{even}] \rangle$	

Example: Hailstone Sequences

Example 14.2 (Hailstone Sequences)

```
[skip]1;  
while [¬(n = 1)]2 do  
  if [even(n)]3 then  
    [n := n / 2]4 ; [skip]5;  
  else  
    [n := 3 * n + 1]6 ; [skip]7;
```

- additional `skip` statements only for labels
- abstract transition system for $n \in \mathbb{Z}_{\text{odd}}$: on the board

- **Collatz Conjecture:** given any $n > 0$, the program finally returns 1 (that is, every Hailstone Sequence terminates with 1)
- see http://en.wikipedia.org/wiki/Collatz_conjecture
- AKA $3n + 1$ Conjecture, Ulam Conjecture, Kakutani's Problem, Thwaites' Conjecture, Hasse's Algorithm, or Syracuse Problem
- New proof attempt by Gerhard Opfer from Hamburg University (<http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf>)

- 1 Repetition: Abstract Semantics
- 2 More on Abstract Semantics
- 3 Abstract Interpretation of WHILE Programs

- **Problem:** most precise safe approximation not always definable

Example 14.3 (Fermat's Last Theorem)

Sign abstraction (cf. Example 12.3) on

```
<if n>2 ∧ x^n+y^n=z^n then n:=1 else n:=-1, [n, x, y, z ↦ +]>
```

- Result $n = 1$ possible iff there exist $n > 2$ and $x, y, z \geq 1$ such that $x^n + y^n = z^n$
- **Fermat's Last Theorem:** equation not solvable
- Final proof by Andrew Wiles and Richard Taylor in 1995

- More general: solvability of Diophantic equations undecidable
- Thus: resort to **possibly imprecise** safe approximations

- **Assumption:** abstraction determined by pointwise mapping of concrete elements
- If $L = 2^C$ and $M = 2^A$ with $\sqsubseteq_L = \sqsubseteq_M = \subseteq$, then $\beta : C \rightarrow A$ is called an **extraction function**
- β determines **Galois connection** (α, γ) where

$$\alpha : L \rightarrow M : I \mapsto \{\beta(c) \mid c \in I\}$$

and

$$\gamma : M \rightarrow L : m \mapsto \beta^{-1}(m) (= \{c \in C \mid \beta(c) \in m\})$$

Example 14.4

- ➊ Parity abstraction (cf. Example 12.2): $\beta : \mathbb{Z} \rightarrow \{\text{even, odd}\}$ where
$$\beta(z) := \begin{cases} \text{even} & \text{if } z \text{ even} \\ \text{odd} & \text{if } z \text{ odd} \end{cases}$$
- ➋ Sign abstraction (cf. Example 12.3): $\beta : \mathbb{Z} \rightarrow \{+, -, 0\}$ with $\beta = \text{sgn}$
- ➌ Interval abstraction (cf. Example 12.4): not definable by extraction function (as Int is not of the form 2^A)

Reminder: **safe approximation** condition (Definition 13.3)

$$\alpha(f(\gamma(m_1), \dots, \gamma(m_n))) \sqsubseteq_M f^\#(m_1, \dots, m_n).$$

Theorem 14.5

Let $L = 2^C$ and $M = 2^A$ with $\sqsubseteq_L = \sqsubseteq_M = \subseteq$, $\beta : C \rightarrow A$ be an extraction function, and $f : C^n \rightarrow C$. Then

$$\begin{aligned} f^\# : M^n &\rightarrow M : (m_1, \dots, m_n) \mapsto \\ &\quad \{\beta(f(c_1, \dots, c_n)) \mid \forall i \in \{1, \dots, n\} : c_i \in \beta^{-1}(m_i)\} \end{aligned}$$

is a safe approximation of f .

Proof.

on the board

Example 14.6 (Sign abstraction)

For $C = \mathbb{Z}$, $A = \{+, -, 0\}$, $\beta = \text{sgn}$:

$+\#$	$\{+\}$	$\{-\}$	$\{0\}$
$\{+\}$	$\{+\}$	$\{+, -, 0\}$	$\{+\}$
$\{-\}$	$\{+, -, 0\}$	$\{-\}$	$\{-\}$
$\{0\}$	$\{+\}$	$\{-\}$	$\{0\}$

$*\#$	$\{+\}$	$\{-\}$	$\{0\}$
$\{+\}$	$\{+\}$	$\{-\}$	$\{0\}$
$\{-\}$	$\{-\}$	$\{+\}$	$\{0\}$
$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$

and $\{+, 0\} * \# \{-\} = \{+\} * \# \{-\} \cup \{0\} * \# \{-\}$
 $= \{-\} \cup \{0\}$
 $= \{-, 0\}$

etc.

Example 14.7 (Sign abstraction)

① Relational operations:

- $C = \mathbb{Z} \cup \mathbb{B}$, $A = \{+, -, 0\} \cup \mathbb{B}$, $\beta = \text{sgn}$

- $=\#$

	$\{+\}$	$\{-\}$	$\{0\}$
$\{+\}$	{true, false}	{false}	{false}
$\{-\}$	{false}	{true, false}	{false}
$\{0\}$	{false}	{false}	{true}

- $>\#$

	$\{+\}$	$\{-\}$	$\{0\}$
$\{+\}$	{true, false}	{true}	{true}
$\{-\}$	{false}	{true, false}	{false}
$\{0\}$	{false}	{true}	{false}

- $\{+, 0\} =\# \{0\} = \{+\} =\# \{0\} \cup \{0\} =\# \{0\} = \{\text{false}\} \cup \{\text{true}\} = \{\text{true, false}\}$ etc.

② Boolean connectives:

- $C = A = \mathbb{B}$, $\neg\# = \neg$, $\wedge\# = \wedge$, ...
- $\{\text{true, false}\} \wedge\# \{\text{true}\} = \{\text{true}\} \wedge\# \{\text{true}\} \cup \{\text{false}\} \wedge\# \{\text{true}\} = \{\text{true}\} \cup \{\text{false}\} = \{\text{true, false}\}$ etc.

Now: take values of variables into account

Definition 14.8 (Abstract program state)

Let $\beta : \mathbb{Z} \rightarrow A$ be an extraction function.

- An **abstract (program) state** is an element of the set

$$\{\rho \mid \rho : \text{Var} \rightarrow A\},$$

called the **abstract state space**.

- The **abstract domain** is denoted by $\text{Abs} := 2^{\text{Var} \rightarrow A}$.
- The **abstraction function** $\alpha : 2^\Sigma \rightarrow \text{Abs}$ is given by

$$\alpha(S) := \{\beta \circ \sigma \mid \sigma \in S\}$$

for every $S \subseteq \Sigma$.

Abstract Evaluation of Expressions

Definition 14.9 (Abstract evaluation functions)

Let $\rho : Var \rightarrow A$ be an abstract state.

① $val_{\rho}^{\#} : AExp \rightarrow 2^A$ is determined by

$$val_{\rho}^{\#}(z) := \{\beta(z)\}$$

$$val_{\rho}^{\#}(x) := \{\rho(x)\}$$

$$val_{\rho}^{\#}(f(a_1, \dots, a_n)) := f^{\#}(val_{\rho}^{\#}(a_1), \dots, val_{\rho}^{\#}(a_n))$$

② $val_{\rho}^{\#} : BExp \rightarrow 2^B$ is determined by

$$val_{\rho}^{\#}(t) := \{t\}$$

$$val_{\rho}^{\#}(f(a_1, \dots, a_n)) := f^{\#}(val_{\rho}^{\#}(a_1), \dots, val_{\rho}^{\#}(a_n))$$

$$val_{\rho}^{\#}(g(b_1, \dots, b_n)) := g^{\#}(val_{\rho}^{\#}(b_1), \dots, val_{\rho}^{\#}(b_n))$$

Example 14.10 (Sign abstraction)

Let $\rho(x) = +$ and $\rho(y) = -$.

① $val_{\rho}^{\#}(2 * x + y) = \{+, -, 0\}$

② $val_{\rho}^{\#}(\neg(x + 1 > y)) = \{\text{false}\}$