
Static Program Analysis
Lecture 14: Abstract Interpretation III

(Abstract Interpretation of WHILE Programs)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/


Outline

1 Repetition: Abstract Semantics

2 More on Abstract Semantics

3 Abstract Interpretation of WHILE Programs

Static Program Analysis Summer Semester 2011 14.2



Safe Approximation of Functions

Definition

Let (α, γ) be a Galois connection with α : L→ M and γ : M → L, and let
f : Ln → L and f # : Mn → M be functions of rank n ∈ N. Then f # is
called a safe approximation of f if, whenever m1, . . . ,mn ∈ M,

α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn).

Moreover it is called most precise safe approximation if the reverse
inclusion is also true.

Interpretation: the abstraction f # of f covers all concrete results

Note: monotonicity of f and/or f # is not required (but usually
given; see Lemma 13.5)

Static Program Analysis Summer Semester 2011 14.3



Safe Approximation of Execution Relation I

Reminder: concrete semantics of WHILE

states Σ := {σ | σ : Var → Z} (Definition 12.6)
execution relation →⊆ (Cmd × Σ)× (Cmd × Σ ∪ Σ) (Definition 12.9)

Yields concrete domain L := 2Σ and concrete transition function:

Definition (Concrete transition function)

The concrete transition function of WHILE is defined by the family of
functions

nextc,c ′ : 2Σ → 2Σ

where c ∈ Cmd , c ′ ∈ Cmd ∪ {↓} and, for every S ⊆ Σ,

nextc,c ′(S) := {σ′ ∈ Σ | c ′ ∈ Cmd , ∃σ ∈ S : 〈c, σ〉 → 〈c ′, σ′〉} and
nextc,↓(S) := {σ′ ∈ Σ | ∃σ ∈ S : 〈c , σ〉 → σ′}

Static Program Analysis Summer Semester 2011 14.4



Safe Approximation of Execution Relation II

Reminder: abstraction determined by Galois connection (α, γ) with
α : L→ M and γ : M → L

here: L := 2Σ, M not fixed (usually M = Var → . . . or M = 2Var→...)
write Abs in place of M
thus α : 2Σ → Abs and γ : Abs → 2Σ

Yields abstract semantics:

Definition (Abstract semantics of WHILE)

Given α : 2Σ → Abs, an abstract semantics is defined by a family of
functions

next#
c,c ′ : Abs → Abs

where c ∈ Cmd , c ′ ∈ Cmd ∪ {↓}, and each next#
c,c ′ is a safe

approximation of nextc,c ′ , i.e.,

α(nextc,c ′(γ(abs))) vAbs next#
c,c ′(abs)

for every abs ∈ Abs. Notation:

〈c , abs〉 ⇒ 〈c ′, abs ′〉 for next#
c,c′(abs) = abs ′ and

〈c , abs〉 ⇒ abs ′ for next#
c,↓(a) = abs ′

Static Program Analysis Summer Semester 2011 14.5



Outline

1 Repetition: Abstract Semantics

2 More on Abstract Semantics

3 Abstract Interpretation of WHILE Programs

Static Program Analysis Summer Semester 2011 14.6



Safe Approximation of Execution Relation III

Example 14.1 (Parity abstraction (cf. Example 12.2))

Abs = 2Var→{even,odd}

Var = {n}
Notation: [n 7→ p] ∈ abs ∈ Abs for p ∈ {even, odd}
Some abstract transitions:

〈n := 3 * n + 1,{[n 7→ odd]}〉 ⇒ {[n 7→ even]}
〈n := 2 * n + 1,{[n 7→ even], [n 7→ odd]}〉 ⇒ {[n 7→ odd]}

〈while ¬(n=1) do c ,{[n 7→ odd]}〉 ⇒ {[n 7→ odd]}
〈while ¬(n=1) do c ,{[n 7→ odd]}〉 ⇒

〈c; while ¬(n=1) do c ,{[n 7→ odd]}〉
〈while ¬(n=1) do c ,{[n 7→ even]}〉 6⇒ {[n 7→ even]}
〈while ¬(n=1) do c ,{[n 7→ even]}〉 ⇒

〈c; while ¬(n=1) do c ,{[n 7→ even]}〉

Static Program Analysis Summer Semester 2011 14.7



Example: Hailstone Sequences

Example 14.2 (Hailstone Sequences)

[skip]1;
while [¬(n = 1)]2 do

if [even(n)]3 then

[n := n / 2]4;[skip]5;
else

[n := 3 * n + 1]6;[skip]7;

additional skip statements
only for labels

abstract transition system
for n ∈ Zodd: on the board

Collatz Conjecture: given any n > 0, the program finally returns 1
(that is, every Hailstone Sequence terminates with 1)

see http://en.wikipedia.org/wiki/Collatz_conjecture

AKA 3n + 1 Conjecture, Ulam Conjecture, Kakutani’s Problem, Thwaites’
Conjecture, Hasse’s Algorithm, or Syracuse Problem

New proof attempt by Gerhard Opfer from Hamburg University
(http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf)

Static Program Analysis Summer Semester 2011 14.8

http://en.wikipedia.org/wiki/Collatz_conjecture
http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2011-09.pdf


Outline

1 Repetition: Abstract Semantics

2 More on Abstract Semantics

3 Abstract Interpretation of WHILE Programs

Static Program Analysis Summer Semester 2011 14.9



Derivation of Abstract Semantics

Problem: most precise safe approximation not always definable

Example 14.3 (Fermat’s Last Theorem)

Sign abstraction (cf. Example 12.3) on

〈if n>2 ∧ x^n+y^n=z^n then n:=1 else n:=-1, [n, x, y, z 7→ +]〉

Result n = 1 possible iff there exist n > 2 and x , y , z ≥ 1 such that
xn + yn = zn

Fermat’s Last Theorem: equation not solvable

Final proof by Andrew Wiles and Richard Taylor in 1995

More general: solvability of Diophantic equations undecidable

Thus: resort to possibly imprecise safe approximations

Static Program Analysis Summer Semester 2011 14.10



Extraction Functions

Assumption: abstraction determined by pointwise mapping of
concrete elements
If L = 2C and M = 2A with vL = vM = ⊆, then β : C → A is called
an extraction function
β determines Galois connection (α, γ) where

α : L→ M : l 7→ {β(c) | c ∈ l}
and

γ : M → L : m 7→ β−1(m) (= {c ∈ C | β(c) ∈ m})

Example 14.4

1 Parity abstraction (cf. Example 12.2): β : Z→ {even, odd} where

β(z) :=

{
even if z even
odd if z odd

2 Sign abstraction (cf. Example 12.3): β : Z→ {+,−, 0} with β = sgn

3 Interval abstraction (cf. Example 12.4): not definable by extraction
function (as Int is not of the form 2A)

Static Program Analysis Summer Semester 2011 14.11



Safe Approximation by Extraction Functions

Reminder: safe approximation condition (Definition 13.3)

α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn).

Theorem 14.5

Let L = 2C and M = 2A with vL = vM = ⊆, β : C → A be an extraction
function, and f : Cn → C. Then

f # : Mn → M : (m1, . . . ,mn) 7→
{β(f (c1, . . . , cn)) | ∀i ∈ {1, . . . , n} : ci ∈ β−1(mi )}

is a safe approximation of f .

Proof.

on the board

Static Program Analysis Summer Semester 2011 14.12



Safe Approximation of Arithmetic Operations

Example 14.6 (Sign abstraction)

For C = Z, A = {+,−, 0}, β = sgn:

+# {+} {−} {0}
{+} {+} {+,−, 0} {+}
{−} {+,−, 0} {−} {−}
{0} {+} {−} {0}

*# {+} {−} {0}
{+} {+} {−} {0}
{−} {−} {+} {0}
{0} {0} {0} {0}

and {+, 0} *# {−} = {+} *# {−} ∪ {0} *# {−}
= {−} ∪ {0}
= {−, 0}

etc.

Static Program Analysis Summer Semester 2011 14.13



Safe Approximation of Boolean Operations

Example 14.7 (Sign abstraction)

1 Relational operations:

C = Z ∪ B, A = {+,−, 0} ∪ B, β = sgn

=# {+} {−} {0}
{+} {true, false} {false} {false}
{−} {false} {true, false} {false}
{0} {false} {false} {true}

># {+} {−} {0}
{+} {true, false} {true} {true}
{−} {false} {true, false} {false}
{0} {false} {true} {false}

{+, 0} =# {0} = {+} =# {0} ∪ {0} =# {0} = {false} ∪ {true} =
{true, false} etc.

2 Boolean connectives:

C = A = B, ¬# = ¬, ∧# = ∧, ...
{true, false} ∧# {true} = {true} ∧# {true} ∪ {false} ∧# {true} =
{true} ∪ {false} = {true, false} etc.

Static Program Analysis Summer Semester 2011 14.14



Abstract Program States

Now: take values of variables into account

Definition 14.8 (Abstract program state)

Let β : Z→ A be an extraction function.

An abstract (program) state is an element of the set

{ρ | ρ : Var → A},

called the abstract state space.

The abstract domain is denoted by Abs := 2Var→A.

The abstraction function α : 2Σ → Abs is given by

α(S) := {β ◦ σ | σ ∈ S}

for every S ⊆ Σ.

Static Program Analysis Summer Semester 2011 14.15



Abstract Evaluation of Expressions

Definition 14.9 (Abstract evaluation functions)

Let ρ : Var → A be an abstract state.

1 val#ρ : AExp → 2A is determined by

val#ρ (z) := {β(z)}
val#ρ (x) := {ρ(x)}

val#ρ (f (a1, . . . , an)) := f #(val#ρ (a1), . . . , val#ρ (an))
2 val#ρ : BExp → 2B is determined by

val#ρ (t) := {t}
val#ρ (f (a1, . . . , an)) := f #(val#ρ (a1), . . . , val#ρ (an))

val#ρ (g(b1, . . . , bn)) := g#(val#ρ (b1), . . . , val#ρ (bn))

Example 14.10 (Sign abstraction)

Let ρ(x) = + and ρ(y) = −.

1 val#ρ (2 * x + y) = {+,−, 0}
2 val#ρ (¬(x + 1 > y)) = {false}

Static Program Analysis Summer Semester 2011 14.16


	Repetition: Abstract Semantics
	More on Abstract Semantics
	Abstract Interpretation of WHILE Programs

