
Static Program Analysis
Lecture 15: Abstract Interpretation IV
(Correctness of Abstract Semantics)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/


Outline

1 Repetition: Abstract Semantics

2 Abstract Semantics of WHILE

Static Program Analysis Summer Semester 2011 15.2



Safe Approximation of Execution Relation

Reminder: abstraction determined by Galois connection (α, γ) with
α : L→ M and γ : M → L

here: L := 2Σ, M not fixed (usually M = Var → . . . or M = 2Var→...)
write Abs in place of M
thus α : 2Σ → Abs and γ : Abs → 2Σ

Yields abstract semantics:

Definition (Abstract semantics of WHILE)

Given α : 2Σ → Abs, an abstract semantics is defined by a family of
functions

next#
c,c ′ : Abs → Abs

where c ∈ Cmd , c ′ ∈ Cmd ∪ {↓}, and each next#
c,c ′ is a safe

approximation of nextc,c ′ , i.e.,

α(nextc,c ′(γ(abs))) vAbs next#
c,c ′(abs)

for every abs ∈ Abs. Notation:

〈c , abs〉 ⇒ 〈c ′, abs ′〉 for next#
c,c′(abs) = abs ′ and

〈c , abs〉 ⇒ abs ′ for next#
c,↓(a) = abs ′

Static Program Analysis Summer Semester 2011 15.3



Extraction Functions

Assumption: abstraction determined by pointwise mapping of
concrete elements
If L = 2C and M = 2A with vL = vM = ⊆, then β : C → A is called
an extraction function
β determines Galois connection (α, γ) where

α : L→ M : l 7→ {β(c) | c ∈ l}
and

γ : M → L : m 7→ β−1(m) (= {c ∈ C | β(c) ∈ m})

Example

1 Parity abstraction (cf. Example 12.2): β : Z→ {even, odd} where

β(z) :=

{
even if z even
odd if z odd

2 Sign abstraction (cf. Example 12.3): β : Z→ {+,−, 0} with β = sgn

3 Interval abstraction (cf. Example 12.4): not definable by extraction
function (as Int is not of the form 2A)

Static Program Analysis Summer Semester 2011 15.4



Safe Approximation by Extraction Functions

Reminder: safe approximation condition (Definition 13.3)

α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn).

Theorem

Let L = 2C and M = 2A with vL = vM = ⊆, β : C → A be an extraction
function, and f : Cn → C. Then

f # : Mn → M : (m1, . . . ,mn) 7→
{β(f (c1, . . . , cn)) | ∀i ∈ {1, . . . , n} : ci ∈ β−1(mi )}

is a safe approximation of f .

Proof.

on the board

Static Program Analysis Summer Semester 2011 15.5



Abstract Program States

Now: take values of variables into account

Definition (Abstract program state)

Let β : Z→ A be an extraction function.

An abstract (program) state is an element of the set

{ρ | ρ : Var → A},

called the abstract state space.

The abstract domain is denoted by Abs := 2Var→A.

The abstraction function α : 2Σ → Abs is given by

α(S) := {β ◦ σ | σ ∈ S}

for every S ⊆ Σ.

Static Program Analysis Summer Semester 2011 15.6



Abstract Evaluation of Expressions

Definition (Abstract evaluation functions)

Let ρ : Var → A be an abstract state.

1 val#ρ : AExp → 2A is determined by

val#ρ (z) := {β(z)}
val#ρ (x) := {ρ(x)}

val#ρ (f (a1, . . . , an)) := f #(val#ρ (a1), . . . , val#ρ (an))
2 val#ρ : BExp → 2B is determined by

val#ρ (t) := {t}
val#ρ (f (a1, . . . , an)) := f #(val#ρ (a1), . . . , val#ρ (an))

val#ρ (g(b1, . . . , bn)) := g#(val#ρ (b1), . . . , val#ρ (bn))

Example (Sign abstraction)

Let ρ(x) = + and ρ(y) = −.

1 val#ρ (2 * x + y) = {+,−, 0}
2 val#ρ (¬(x + 1 > y)) = {false}

Static Program Analysis Summer Semester 2011 15.7



Outline

1 Repetition: Abstract Semantics

2 Abstract Semantics of WHILE

Static Program Analysis Summer Semester 2011 15.8



Abstract Semantics of WHILE I

Reminder: abstract domain is Abs := 2Var→A

Definition 15.1 (Abstract execution relation for statements)

If c ∈ Cmd and abs ∈ Abs, then 〈c , abs〉 is called an abstract
configuration. The abstract execution relation is defined by the following
rules:

(skip)
〈skip, abs〉 ⇒ abs

(asgn)
〈x := a, abs〉 ⇒ {ρ[x 7→ a′] | ρ ∈ abs, a′ ∈ val#ρ (a)}

(seq1)
〈c1, abs〉 ⇒ 〈c ′1, abs ′〉

〈c1;c2, abs〉 ⇒ 〈c ′1;c2, abs
′〉

(seq2)
〈c1, abs〉 ⇒ abs ′

〈c1;c2, abs〉 ⇒ 〈c2, abs
′〉

Static Program Analysis Summer Semester 2011 15.9



Abstract Semantics of WHILE II

Definition 15.1 (Abstract execution relation for statements; cont.)

(if1)
∃ρ ∈ abs : true ∈ val#ρ (b)

〈if b then c1 else c2, abs〉
⇒ 〈c1, abs \ {ρ ∈ abs | val#ρ (b) = {false}}〉

(if2)
∃ρ ∈ abs : false ∈ val#ρ (b)

〈if b then c1 else c2, abs〉
⇒ 〈c2, abs \ {ρ ∈ abs | val#ρ (b) = {true}}〉

(wh1)
∃ρ ∈ abs : true ∈ val#ρ (b)

〈while b do c , abs〉
⇒ 〈c;while b do c , abs \ {ρ ∈ abs | val#ρ (b) = {false}}〉

(wh2)
∃ρ ∈ abs : false ∈ val#ρ (b)

〈while b do c , abs〉 ⇒ abs \ {ρ ∈ abs | val#ρ (b) = {true}}
Static Program Analysis Summer Semester 2011 15.10



Abstract Semantics of WHILE III

Definition 15.2 (Abstract transition function)

The abstract transition function is defined by the family of mappings

next#
c,c ′ : Abs → Abs,

given by

next#
c,c ′(abs) :=

⋃
{abs ′ ∈ Abs | 〈c , abs〉 ⇒ 〈c ′, abs ′〉}

next#
c,↓(abs) :=

⋃
{abs ′ ∈ Abs | 〈c , abs〉 ⇒ abs ′}

Theorem 15.3 (Soundness of abstract semantics)

For each c ∈ Cmd and c ′ ∈ Cmd ∪ {↓}, next#
c,c ′ is a safe approximation of

nextc,c ′ , i.e., for every abs ∈ Abs,

α(nextc,c ′(γ(abs))) ⊆ next#
c,c ′(abs).

Static Program Analysis Summer Semester 2011 15.11



Abstract Semantics of WHILE III

Definition 15.2 (Abstract transition function)

The abstract transition function is defined by the family of mappings

next#
c,c ′ : Abs → Abs,

given by

next#
c,c ′(abs) :=

⋃
{abs ′ ∈ Abs | 〈c , abs〉 ⇒ 〈c ′, abs ′〉}

next#
c,↓(abs) :=

⋃
{abs ′ ∈ Abs | 〈c , abs〉 ⇒ abs ′}

Theorem 15.3 (Soundness of abstract semantics)

For each c ∈ Cmd and c ′ ∈ Cmd ∪ {↓}, next#
c,c ′ is a safe approximation of

nextc,c ′ , i.e., for every abs ∈ Abs,

α(nextc,c ′(γ(abs))) ⊆ next#
c,c ′(abs).

Static Program Analysis Summer Semester 2011 15.11



Abstract Semantics of WHILE III

The soundness proof employs the following auxiliary lemma.

Lemma 15.4 (Soundness of abstract evaluation)

Let β : Z→ A be an extraction function.

1 For every a ∈ AExp and σ ∈ Σ, β(valσ(a)) ∈ val#β◦σ(a).

2 For every b ∈ BExp and σ ∈ Σ, valσ(b) ∈ val#β◦σ(b).

Proof (Lemma 15.4).

omitted

Proof (Theorem 15.3).

on the board

Static Program Analysis Summer Semester 2011 15.12



Abstract Semantics of WHILE III

The soundness proof employs the following auxiliary lemma.

Lemma 15.4 (Soundness of abstract evaluation)

Let β : Z→ A be an extraction function.

1 For every a ∈ AExp and σ ∈ Σ, β(valσ(a)) ∈ val#β◦σ(a).

2 For every b ∈ BExp and σ ∈ Σ, valσ(b) ∈ val#β◦σ(b).

Proof (Lemma 15.4).

omitted

Proof (Theorem 15.3).

on the board

Static Program Analysis Summer Semester 2011 15.12


	Repetition: Abstract Semantics
	Abstract Semantics of WHILE

