
Static Program Analysis
Lecture 15: Abstract Interpretation IV
(Correctness of Abstract Semantics)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/


Outline

1 Repetition: Abstract Semantics

2 Abstract Semantics of WHILE

Static Program Analysis Summer Semester 2011 15.2



Safe Approximation of Execution Relation

Reminder: abstraction determined by Galois connection (α, γ) with
α : L→ M and γ : M → L

here: L := 2Σ, M not fixed (usually M = Var → . . . or M = 2Var→...)
write Abs in place of M
thus α : 2Σ → Abs and γ : Abs → 2Σ

Yields abstract semantics:

Definition (Abstract semantics of WHILE)

Given α : 2Σ → Abs, an abstract semantics is defined by a family of
functions

next#
c,c ′ : Abs → Abs

where c ∈ Cmd , c ′ ∈ Cmd ∪ {↓}, and each next#
c,c ′ is a safe

approximation of nextc,c ′ , i.e.,

α(nextc,c ′(γ(abs))) vAbs next#
c,c ′(abs)

for every abs ∈ Abs. Notation:

〈c , abs〉 ⇒ 〈c ′, abs ′〉 for next#
c,c′(abs) = abs ′ and

〈c , abs〉 ⇒ abs ′ for next#
c,↓(a) = abs ′

Static Program Analysis Summer Semester 2011 15.3



Extraction Functions

Assumption: abstraction determined by pointwise mapping of
concrete elements
If L = 2C and M = 2A with vL = vM = ⊆, then β : C → A is called
an extraction function
β determines Galois connection (α, γ) where

α : L→ M : l 7→ {β(c) | c ∈ l}
and

γ : M → L : m 7→ β−1(m) (= {c ∈ C | β(c) ∈ m})

Example

1 Parity abstraction (cf. Example 12.2): β : Z→ {even, odd} where

β(z) :=

{
even if z even
odd if z odd

2 Sign abstraction (cf. Example 12.3): β : Z→ {+,−, 0} with β = sgn

3 Interval abstraction (cf. Example 12.4): not definable by extraction
function (as Int is not of the form 2A)

Static Program Analysis Summer Semester 2011 15.4



Safe Approximation by Extraction Functions

Reminder: safe approximation condition (Definition 13.3)

α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn).

Theorem

Let L = 2C and M = 2A with vL = vM = ⊆, β : C → A be an extraction
function, and f : Cn → C. Then

f # : Mn → M : (m1, . . . ,mn) 7→
{β(f (c1, . . . , cn)) | ∀i ∈ {1, . . . , n} : ci ∈ β−1(mi )}

is a safe approximation of f .

Proof.

on the board

Static Program Analysis Summer Semester 2011 15.5



Abstract Program States

Now: take values of variables into account

Definition (Abstract program state)

Let β : Z→ A be an extraction function.

An abstract (program) state is an element of the set

{ρ | ρ : Var → A},

called the abstract state space.

The abstract domain is denoted by Abs := 2Var→A.

The abstraction function α : 2Σ → Abs is given by

α(S) := {β ◦ σ | σ ∈ S}

for every S ⊆ Σ.

Static Program Analysis Summer Semester 2011 15.6



Abstract Evaluation of Expressions

Definition (Abstract evaluation functions)

Let ρ : Var → A be an abstract state.

1 val#ρ : AExp → 2A is determined by

val#ρ (z) := {β(z)}
val#ρ (x) := {ρ(x)}

val#ρ (f (a1, . . . , an)) := f #(val#ρ (a1), . . . , val#ρ (an))
2 val#ρ : BExp → 2B is determined by

val#ρ (t) := {t}
val#ρ (f (a1, . . . , an)) := f #(val#ρ (a1), . . . , val#ρ (an))

val#ρ (g(b1, . . . , bn)) := g#(val#ρ (b1), . . . , val#ρ (bn))

Example (Sign abstraction)

Let ρ(x) = + and ρ(y) = −.

1 val#ρ (2 * x + y) = {+,−, 0}
2 val#ρ (¬(x + 1 > y)) = {false}

Static Program Analysis Summer Semester 2011 15.7



Outline

1 Repetition: Abstract Semantics

2 Abstract Semantics of WHILE

Static Program Analysis Summer Semester 2011 15.8



Abstract Semantics of WHILE I

Reminder: abstract domain is Abs := 2Var→A

Definition 15.1 (Abstract execution relation for statements)

If c ∈ Cmd and abs ∈ Abs, then 〈c , abs〉 is called an abstract
configuration. The abstract execution relation is defined by the following
rules:

(skip)
〈skip, abs〉 ⇒ abs

(asgn)
〈x := a, abs〉 ⇒ {ρ[x 7→ a′] | ρ ∈ abs, a′ ∈ val#ρ (a)}

(seq1)
〈c1, abs〉 ⇒ 〈c ′1, abs ′〉

〈c1;c2, abs〉 ⇒ 〈c ′1;c2, abs
′〉

(seq2)
〈c1, abs〉 ⇒ abs ′

〈c1;c2, abs〉 ⇒ 〈c2, abs
′〉

Static Program Analysis Summer Semester 2011 15.9



Abstract Semantics of WHILE II

Definition 15.1 (Abstract execution relation for statements; cont.)

(if1)
∃ρ ∈ abs : true ∈ val#ρ (b)

〈if b then c1 else c2, abs〉
⇒ 〈c1, abs \ {ρ ∈ abs | val#ρ (b) = {false}}〉

(if2)
∃ρ ∈ abs : false ∈ val#ρ (b)

〈if b then c1 else c2, abs〉
⇒ 〈c2, abs \ {ρ ∈ abs | val#ρ (b) = {true}}〉

(wh1)
∃ρ ∈ abs : true ∈ val#ρ (b)

〈while b do c , abs〉
⇒ 〈c;while b do c , abs \ {ρ ∈ abs | val#ρ (b) = {false}}〉

(wh2)
∃ρ ∈ abs : false ∈ val#ρ (b)

〈while b do c , abs〉 ⇒ abs \ {ρ ∈ abs | val#ρ (b) = {true}}
Static Program Analysis Summer Semester 2011 15.10



Abstract Semantics of WHILE III

Definition 15.2 (Abstract transition function)

The abstract transition function is defined by the family of mappings

next#
c,c ′ : Abs → Abs,

given by

next#
c,c ′(abs) :=

⋃
{abs ′ ∈ Abs | 〈c , abs〉 ⇒ 〈c ′, abs ′〉}

next#
c,↓(abs) :=

⋃
{abs ′ ∈ Abs | 〈c , abs〉 ⇒ abs ′}

Theorem 15.3 (Soundness of abstract semantics)

For each c ∈ Cmd and c ′ ∈ Cmd ∪ {↓}, next#
c,c ′ is a safe approximation of

nextc,c ′ , i.e., for every abs ∈ Abs,

α(nextc,c ′(γ(abs))) ⊆ next#
c,c ′(abs).

Static Program Analysis Summer Semester 2011 15.11



Abstract Semantics of WHILE III

The soundness proof employs the following auxiliary lemma.

Lemma 15.4 (Soundness of abstract evaluation)

Let β : Z→ A be an extraction function.

1 For every a ∈ AExp and σ ∈ Σ, β(valσ(a)) ∈ val#β◦σ(a).

2 For every b ∈ BExp and σ ∈ Σ, valσ(b) ∈ val#β◦σ(b).

Proof (Lemma 15.4).

omitted

Proof (Theorem 15.3).

on the board

Static Program Analysis Summer Semester 2011 15.12


	Repetition: Abstract Semantics
	Abstract Semantics of WHILE

