Static Program Analysis

Lecture 15: Abstract Interpretation 1V
(Correctness of Abstract Semantics)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Repetition: Abstract Semantics

“er Static Program Analysis Summer Semester 2011

Safe Approximation of Execution Relation

e Reminder: abstraction determined by Galois connection («,) with
a:L—-Mandy: M —= L
o here: L:=2% M not fixed (usually M = Var —» ... or M = 2‘/3’—’"')
e write Abs in place of M
o thus o : 2% — Abs and v : Abs — 2%

@ Yields abstract semantics:

Definition (Abstract semantics of WHILE)

Given « : 2% — Abs, an abstract semantics is defined by a family of
functions
nextfc, : Abs — Abs
where ¢ € Cmd, ¢’ € Cmd U {|}, and each nextfc, is a safe
approximation of next. ./, i.e.,
a(nextc or(7(abs))) Cas next? ,(abs)
for every abs € Abs. Notation:

o (c,abs) = (c’,abs’) for next” _,(abs) = abs’ and

c,c’

o (c,abs) = abs’ for nextf’i(a) = abs’

RWTH Static Program Analysis Summer Semester 2011 15.3

Extraction Functions

@ Assumption: abstraction determined by pointwise mapping of
concrete elements

o lf L=2%and M =22 with C; = Cpy = C, then 8: C — Ais called
an extraction function

@ (3 determines Galois connection («,y) where

a:L—=>M:I—{p(c)|cel}
and
v:M—=L:mw 37Y(m) (= {ce C|B(c) e m})

Example

@ Parity abstraction (cf. Example 12.2): 3 : Z — {even,odd} where

__Jeven if z even
B2) = \odd if z odd

@ Sign abstraction (cf. Example 12.3): 8 :Z — {4+, —,0} with 3 = sgn

© Interval abstraction (cf. Example 12.4): not definable by extraction
function (as Int is not of the form 24)

RWTH Static Program Analysis Summer Semester 2011 15.4

Safe Approximation by Extraction Functions

Reminder: safe approximation condition (Definition 13.3)

a(f(y(m),...,v(mn))) CEum f#(ml, ceeymp).

Let L=2C and M =24 withC;, = Cpy = C, B : C — A be an extraction
function, and f : C" — C. Then

fEM"— M:(my,...,m,) —
{B(f(ct,...,cn)) | Vi€{L,...,n}:ci € B~H(m)}

is a safe approximation of f.

on the board O
RWTH Static Program Analysis Summer Semester 2011 15.5

Abstract Program States

Now: take values of variables into account

Definition (Abstract program state)
Let 5 : Z — A be an extraction function.

@ An abstract (program) state is an element of the set
{p|p: Var - A},

called the abstract state space.
@ The abstract domain is denoted by Abs := 2Var—=4,

@ The abstraction function o : 2> — Abs is given by

a(S) ={foo|oceS}

for every S C Y.

RWTH Static Program Analysis Summer Semester 2011 15.6

Abstract Evaluation of Expressions

Definition (Abstract evaluation functions)
Let p: Var — A be an abstract state.
Q vall’ : AExp — 2” is determined by

valf(z) := {6(2)}
Va/#() == {p(x)}
va/f(f(al,.. ap)) =" (val#(al)
@ vall’ : BExp — 2% is determined by
val#(t) .= {t}
va/#(f(al,.. ap)) = f#(va/#(al)

val#(g(bl,...,b)) = g#(val#(bl)

va/ff(an))

va/#(n)
val#(bn))

Example (Sign abstraction

Let p(x) = + and p(y)
o va/f(2 * x +y)={+,—,0}
Q va/f(—'(x + 1 > y)) = {false}

—
I .
\
~
A

“w.rH Static Program Analysis Summer Semester 2011 15.7

© Abstract Semantics of WHILE

“er Static Program Analysis Summer Semester 2011 15.8

Abstract Semantics of WHILE |

Reminder: abstract domain is Abs := 2Var—A

Definition 15.1 (Abstract execution relation for statements)

If c € Cmd and abs € Abs, then (c, abs) is called an abstract
configuration. The abstract execution relation is defined by the following
rules:

.
(skde) (skip, abs) = abs

(asgn) ; ; m
(x :=a,abs) = {p[x = a'] | p € abs, " € val"(a)}

(c1, abs) = (cf, abs’)

1
(seq) <C1;C2,ab5> — <c{;c2,abs'>

(cy, abs) = abs’
(c1;¢o,abs) = (cp, abs’)

(seq2)

Rer Static Program Analysis Summer Semester 2011 15.9

Abstract Semantics of WHILE Il

Definition 15.1 (Abstract execution relation for statements; cont.)

dp € abs : true € valf(b)

ifl
(if1) (if b then cj else ¢y, abs)
= (cy,abs \ {p € abs | valf(b) = {false}})
dp € abs : false € valf(b)
(if2)

(if b then ¢ else ¢y, abs)
= (cp,abs \ {p € abs | va/f(b) = {true}})

dp € abs : true € val#(b)

(while b do c, abs)
= (c;while b do c,abs \ {p € abs | va/f(b) = {false}})

(wh1)

dp € abs : false € va/f(b)
(while b do c,abs) = abs \ {p € abs | valf(b) = {true}}

(wh2)

Rer Static Program Analysis Summer Semester 2011 15.10

Abstract Semantics of WHILE |1l

Definition 15.2 (Abstract transition function)
The abstract transition function is defined by the family of mappings

next” , : Abs — Abs,
given by

next” ,(abs) := | J{abs’ € Abs | (c,abs) = (c’,abs’)}

c,c’

nextfi(abs) .= |J{abs’ € Abs | (c, abs) = abs'}

Theorem 15.3 (Soundness of abstract semantics)

For each ¢ € Cmd and ¢’ € Cmd U {|}, nextfc, is a safe approximation of
nextc s, i.e., for every abs € Abs,

a(nextc o ((abs))) C next? (abs).

Rer Static Program Analysis Summer Semester 2011 15.11

Abstract Semantics of WHILE |1l

The soundness proof employs the following auxiliary lemma.

Lemma 15.4 (Soundness of abstract evaluation)

Let 5 : 7Z — A be an extraction function.
Q For every a € AExp and o € ¥, (val,(a)) € va/?oa(a).

@ For every b € BExp and o € ¥, val,(b) € val’,,_(b).

Proof (Lemma 15.4).

omitted

Proof (Theorem 15.3).

on the board

Ol

RWTH Static Program Analysis Summer Semester 2011 15.12

	Repetition: Abstract Semantics
	Abstract Semantics of WHILE

