

Static Program Analysis

Lecture 15: Abstract Interpretation IV (Correctness of Abstract Semantics)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/spa11/>

Summer Semester 2011

1 Repetition: Abstract Semantics

2 Abstract Semantics of WHILE

Safe Approximation of Execution Relation

- **Reminder:** abstraction determined by **Galois connection** (α, γ) with $\alpha : L \rightarrow M$ and $\gamma : M \rightarrow L$
 - here: $L := 2^\Sigma$, M not fixed (usually $M = \text{Var} \rightarrow \dots$ or $M = 2^{\text{Var} \rightarrow \dots}$)
 - write *Abs* in place of M
 - thus $\alpha : 2^\Sigma \rightarrow \text{Abs}$ and $\gamma : \text{Abs} \rightarrow 2^\Sigma$
- Yields abstract semantics:

Definition (Abstract semantics of WHILE)

Given $\alpha : 2^\Sigma \rightarrow \text{Abs}$, an **abstract semantics** is defined by a family of functions

$$\text{next}_{c,c'}^\# : \text{Abs} \rightarrow \text{Abs}$$

where $c \in \text{Cmd}$, $c' \in \text{Cmd} \cup \{\downarrow\}$, and each $\text{next}_{c,c'}^\#$ is a safe approximation of $\text{next}_{c,c'}$, i.e.,

$$\alpha(\text{next}_{c,c'}(\gamma(\text{abs}))) \sqsubseteq_{\text{Abs}} \text{next}_{c,c'}^\#(\text{abs})$$

for every $\text{abs} \in \text{Abs}$. Notation:

- $\langle c, \text{abs} \rangle \Rightarrow \langle c', \text{abs}' \rangle$ for $\text{next}_{c,c'}^\#(\text{abs}) = \text{abs}'$ and
- $\langle c, \text{abs} \rangle \Rightarrow \text{abs}'$ for $\text{next}_{c,\downarrow}^\#(\text{a}) = \text{abs}'$

- **Assumption:** abstraction determined by pointwise mapping of concrete elements
- If $L = 2^C$ and $M = 2^A$ with $\sqsubseteq_L = \sqsubseteq_M = \subseteq$, then $\beta : C \rightarrow A$ is called an **extraction function**
- β determines **Galois connection** (α, γ) where

$$\alpha : L \rightarrow M : I \mapsto \{\beta(c) \mid c \in I\}$$

and

$$\gamma : M \rightarrow L : m \mapsto \beta^{-1}(m) (= \{c \in C \mid \beta(c) \in m\})$$

Example

- ➊ Parity abstraction (cf. Example 12.2): $\beta : \mathbb{Z} \rightarrow \{\text{even, odd}\}$ where
$$\beta(z) := \begin{cases} \text{even} & \text{if } z \text{ even} \\ \text{odd} & \text{if } z \text{ odd} \end{cases}$$
- ➋ Sign abstraction (cf. Example 12.3): $\beta : \mathbb{Z} \rightarrow \{+, -, 0\}$ with $\beta = \text{sgn}$
- ➌ Interval abstraction (cf. Example 12.4): not definable by extraction function (as Int is not of the form 2^A)

Reminder: **safe approximation** condition (Definition 13.3)

$$\alpha(f(\gamma(m_1), \dots, \gamma(m_n))) \sqsubseteq_M f^\#(m_1, \dots, m_n).$$

Theorem

Let $L = 2^C$ and $M = 2^A$ with $\sqsubseteq_L = \sqsubseteq_M = \subseteq$, $\beta : C \rightarrow A$ be an extraction function, and $f : C^n \rightarrow C$. Then

$$\begin{aligned} f^\# : M^n &\rightarrow M : (m_1, \dots, m_n) \mapsto \\ &\quad \{\beta(f(c_1, \dots, c_n)) \mid \forall i \in \{1, \dots, n\} : c_i \in \beta^{-1}(m_i)\} \end{aligned}$$

is a safe approximation of f .

Proof.

on the board

Now: take values of variables into account

Definition (Abstract program state)

Let $\beta : \mathbb{Z} \rightarrow A$ be an extraction function.

- An **abstract (program) state** is an element of the set

$$\{\rho \mid \rho : \text{Var} \rightarrow A\},$$

called the **abstract state space**.

- The **abstract domain** is denoted by $\text{Abs} := 2^{\text{Var} \rightarrow A}$.
- The **abstraction function** $\alpha : 2^\Sigma \rightarrow \text{Abs}$ is given by

$$\alpha(S) := \{\beta \circ \sigma \mid \sigma \in S\}$$

for every $S \subseteq \Sigma$.

Abstract Evaluation of Expressions

Definition (Abstract evaluation functions)

Let $\rho : Var \rightarrow A$ be an abstract state.

① $val_{\rho}^{\#} : AExp \rightarrow 2^A$ is determined by

$$val_{\rho}^{\#}(z) := \{\beta(z)\}$$

$$val_{\rho}^{\#}(x) := \{\rho(x)\}$$

$$val_{\rho}^{\#}(f(a_1, \dots, a_n)) := f^{\#}(val_{\rho}^{\#}(a_1), \dots, val_{\rho}^{\#}(a_n))$$

② $val_{\rho}^{\#} : BExp \rightarrow 2^B$ is determined by

$$val_{\rho}^{\#}(t) := \{t\}$$

$$val_{\rho}^{\#}(f(a_1, \dots, a_n)) := f^{\#}(val_{\rho}^{\#}(a_1), \dots, val_{\rho}^{\#}(a_n))$$

$$val_{\rho}^{\#}(g(b_1, \dots, b_n)) := g^{\#}(val_{\rho}^{\#}(b_1), \dots, val_{\rho}^{\#}(b_n))$$

Example (Sign abstraction)

Let $\rho(\text{x}) = +$ and $\rho(\text{y}) = -$.

① $val_{\rho}^{\#}(2 * \text{x} + \text{y}) = \{+, -, 0\}$

② $val_{\rho}^{\#}(\neg(\text{x} + 1 > \text{y})) = \{\text{false}\}$

1 Repetition: Abstract Semantics

2 Abstract Semantics of WHILE

Abstract Semantics of WHILE I

Reminder: abstract domain is $Abs := 2^{Var \rightarrow A}$

Definition 15.1 (Abstract execution relation for statements)

If $c \in Cmd$ and $abs \in Abs$, then $\langle c, abs \rangle$ is called an **abstract configuration**. The **abstract execution relation** is defined by the following rules:

$$(skip) \frac{}{\langle \text{skip}, abs \rangle \Rightarrow abs}$$

$$(\text{asgn}) \frac{}{\langle x := a, abs \rangle \Rightarrow \{ \rho[x \mapsto a'] \mid \rho \in abs, a' \in val_\rho^\#(a) \}}$$

$$(\text{seq1}) \frac{\langle c_1, abs \rangle \Rightarrow \langle c'_1, abs' \rangle}{\langle c_1 ; c_2, abs \rangle \Rightarrow \langle c'_1 ; c_2, abs' \rangle}$$

$$(\text{seq2}) \frac{\langle c_1, abs \rangle \Rightarrow abs'}{\langle c_1 ; c_2, abs \rangle \Rightarrow \langle c_2, abs' \rangle}$$

Abstract Semantics of WHILE II

Definition 15.1 (Abstract execution relation for statements; cont.)

$$\text{(if1)} \frac{\exists \rho \in \text{abs} : \text{true} \in \text{val}_\rho^\#(b)}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \text{abs} \rangle} \Rightarrow \langle c_1, \text{abs} \setminus \{\rho \in \text{abs} \mid \text{val}_\rho^\#(b) = \{\text{false}\}\} \rangle$$

$$\text{(if2)} \frac{\exists \rho \in \text{abs} : \text{false} \in \text{val}_\rho^\#(b)}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \text{abs} \rangle} \Rightarrow \langle c_2, \text{abs} \setminus \{\rho \in \text{abs} \mid \text{val}_\rho^\#(b) = \{\text{true}\}\} \rangle$$

$$\text{(wh1)} \frac{\exists \rho \in \text{abs} : \text{true} \in \text{val}_\rho^\#(b)}{\langle \text{while } b \text{ do } c, \text{abs} \rangle} \Rightarrow \langle c; \text{while } b \text{ do } c, \text{abs} \setminus \{\rho \in \text{abs} \mid \text{val}_\rho^\#(b) = \{\text{false}\}\} \rangle$$

$$\text{(wh2)} \frac{\exists \rho \in \text{abs} : \text{false} \in \text{val}_\rho^\#(b)}{\langle \text{while } b \text{ do } c, \text{abs} \rangle} \Rightarrow \text{abs} \setminus \{\rho \in \text{abs} \mid \text{val}_\rho^\#(b) = \{\text{true}\}\}$$

Abstract Semantics of WHILE III

Definition 15.2 (Abstract transition function)

The **abstract transition function** is defined by the family of mappings

$$\text{next}_{c,c'}^\# : \text{Abs} \rightarrow \text{Abs},$$

given by

$$\begin{aligned}\text{next}_{c,c'}^\#(\text{abs}) &:= \bigcup \{ \text{abs}' \in \text{Abs} \mid \langle c, \text{abs} \rangle \Rightarrow \langle c', \text{abs}' \rangle \} \\ \text{next}_{c,\downarrow}^\#(\text{abs}) &:= \bigcup \{ \text{abs}' \in \text{Abs} \mid \langle c, \text{abs} \rangle \Rightarrow \text{abs}' \}\end{aligned}$$

Theorem 15.3 (Soundness of abstract semantics)

For each $c \in \text{Cmd}$ and $c' \in \text{Cmd} \cup \{\downarrow\}$, $\text{next}_{c,c'}^\#$ is a **safe approximation** of $\text{next}_{c,c'}$, i.e., for every $\text{abs} \in \text{Abs}$,

$$\alpha(\text{next}_{c,c'}(\gamma(\text{abs}))) \subseteq \text{next}_{c,c'}^\#(\text{abs}).$$

Abstract Semantics of WHILE III

The soundness proof employs the following auxiliary lemma.

Lemma 15.4 (Soundness of abstract evaluation)

Let $\beta : \mathbb{Z} \rightarrow A$ be an extraction function.

- ① For every $a \in AExp$ and $\sigma \in \Sigma$, $\beta(val_\sigma(a)) \in val_{\beta \circ \sigma}^\#(a)$.
- ② For every $b \in BExp$ and $\sigma \in \Sigma$, $val_\sigma(b) \in val_{\beta \circ \sigma}^\#(b)$.

Proof (Lemma 15.4).

omitted

Proof (Theorem 15.3).

on the board

