Static Program Analysis

Lecture 16: Abstract Interpretation V
(Application Example: 16-Bit Multiplication)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Repetition: Correctness of Abstract Semantics

“w.rH Static Program Analysis Summer Semester 2011 16.2

Abstract Semantics of WHILE |

Reminder: abstract domain is Abs := 2Var—A

Definition (Abstract execution relation for statements)

If c € Cmd and abs € Abs, then (c, abs) is called an abstract
configuration. The abstract execution relation is defined by the following
rules:

.
(skde) (skip, abs) = abs

(asgn) ; ; m
(x :=a,abs) = {p[x = a'] | p € abs, " € val"(a)}

(c1, abs) = (cf, abs’)

1
(seq) <C1;C2,ab5> — <c{;c2,abs'>

(cy, abs) = abs’
(c1;¢o,abs) = (cp, abs’)

(seq2)

Rer Static Program Analysis Summer Semester 2011 16.3

Abstract Semantics of WHILE Il

Definition (Abstract execution relation for statements; cont.)

dp € abs : true € valf(b)

ifl
(if1) (if b then cj else ¢y, abs)
= (cy,abs \ {p € abs | valf(b) = {false}})
dp € abs : false € valf(b)
(if2)

(if b then ¢ else ¢y, abs)
= (cp,abs \ {p € abs | va/f(b) = {true}})

dp € abs : true € val#(b)

(while b do c, abs)
= (c;while b do c,abs \ {p € abs | va/f(b) = {false}})

(wh1)

dp € abs : false € va/f(b)
(while b do c,abs) = abs \ {p € abs | valf(b) = {true}}

(wh2)

Rer Static Program Analysis Summer Semester 2011 16.4

Abstract Semantics of WHILE |1l

Definition (Abstract transition function)

The abstract transition function is defined by the family of mappings
next” , : Abs — Abs,
given by

next” ,(abs) := | J{abs’ € Abs | (c,abs) = (c’,abs’)}

c,c’

nextfi(abs) .= |J{abs’ € Abs | (c, abs) = abs'}

Theorem (Soundness of abstract semantics)

For each ¢ € Cmd and ¢’ € Cmd U {|}, nextfc, is a safe approximation of
nextc s, i.e., for every abs € Abs,

a(nextc o ((abs))) C next? (abs).

Rer Static Program Analysis Summer Semester 2011 16.5

© Application Example: 16-Bit Multiplication

“er Static Program Analysis Summer Semester 2011 16.6

A 16-Bit Multiplier

Example 16.1 (16-bit multiplier)

c = [out := 0]%;
[ovE := 0]?; @ f1, £2: 16-bit input factors
while [~(£1=0) A ov£=0]® do @ out: 16-bit result

if [1sb(£1)=1]* then o
[(ovE,out) := (out:17)+£2]%;
else @ 1sb(z): least significant bit of z
[skip]®; . @ (z:k): extension of z to k bits

[ffl[::ff1(>))>1]/\ ;o £=0]8 the by adding leading zeros
if [-(£f1= vi= n
[CovE,£2) := (£2:17)<<1]%;

ovf: overflow bit

@ (x,y):=z: simultaneous
assignment with split of z

else
[skip]®?; @ <<1/>>1: left/right shift
Procedure: in each iteration, Expected result: if (c,0) =T ¢/, then
Q if LSB of £1 is set (4), @ o'(out) = o(£f1) - o(£2) or
add £2 to out (5) @ d(ovE) =1
@ shift £1 right (7) (termination is trivial)

© shift £2 left (9) Example run: on the board
RWTH Static Program Analysis Summer Semester 2011 16.7

The Abstraction

(see E.M. Clarke, O. Grumberg, D.A. Peled: Model Checking, MIT Press, 1999, pp. 205)
e f1: no abstraction (as £1 controls multiplication)

@ £2: congruence modulo m
(for specific values of m — see Theorem 16.4)
e extraction function: :Z — {0,...,m—1} : z+— zmod m
(see Exercise 6.1)
e congruence: z; = z (mod m) iff zz mod m = z, mod m
@ out: congruence modulo m
ovf: no abstraction (single bit)

Lemma 16.2 (Properties of modulo congruence)

For every z1,zp0 € Z and m > 1,
(z1 + z2) mod m = ((z; mod m) + (z2 mod m)) mod m
(zi — z2) mod m = ((z1 mod m) — (z2 mod m)) mod m
(21 - z2) mod m = ((z1 mod m) - (z2 mod m)) mod m

Thus: modulo value of expression determined by modulo values of
subexpressions
RWTH Static Program Analysis Summer Semester 2011 16.8

Abstract Interpretation of Multiplier

Example 16.3 (Abstraction of 16-bit multiplier (cf. Example 16.1))

Abstract execution for
e f1 =101, (=5)
e £2 =1001010, (= 74)
e m=5 74 mod5=4
@ out, ovf initially undefined

— initial abstract value:

abs = {[f1 > 1015,£2 — 4,out — r,ovf — b] |
re{0,...,4},b e B}

First transitions: on the board

RWTH Static Program Analysis Summer Semester 2011 16.9

Ensuring Completeness |

Theorem 16.4 (Chinese Remainder Theorem)

Let my, ..., m > 1 be pairwise relatively prime (i.e., gcd(m;, m;) =1 for
1<i<j<k) Letm:=my-...-my, and let z1,...,zx € Z. Then there
is a unique z € Z such that

0<z<m and z=z (mod m;)foralliec{l,..., k}.

Application: for fixed initial (abstract) value of £1 and £2,
@ z = concrete final value of out
@ z; = abstract final value of out (mod mj;)
@ k:=5 m:=5 my:=7,m3:=9, mg =11, mgs := 32
(thus m=5-7-9-11-32 = 110880 > 216)
@ Theorem 16.4 yields unique z < m with z = z; (mod m;)
e m> 2% — 7z is correct result of multiplication (see next slide)
@ thus termination implies correct result or overflow
Efficiency:
o Exhaustive testing: 216 .216 =232 — 4.29.10° runs
@ Abstract interpretation: 216 (5 +7 +9+ 11 +32) = 4.19 - 10° runs

RWTH Static Program Analysis Summer Semester 2011 16.10

Ensuring Completeness |l

To show: Vy1,y» € B*® 0,0’ € X :
a(£1) = y1,0(£2) = y», (c,0) =1 o', 0'(ovE) = 0
= o'(out) =y1 -y
Known: Vi € {1,...,5},y1,y> € B® abs, abs’ € Abs :
abs = {[f1 — y1,£2 — yJ' out > r,ovf s b] |
re{0,...,m; —1},b € B}, (c, abs) =" abs’
= | Vp' € abs’: p'(ovE) =0 = p'(out) @ (n '}/2#)#)
(where x* := x mod m;)
Proof: @ Let yi,y» € B, a(£1) = y1, o(£2) = 2, {c,0) =T o,
o'(ovE) =0, and z := (y1 - yo)* for i € {1,...,5}
@ Theorem 16.4 yields unique z < m such that z = z
(mod my;) for all i € {1,...,5}
@ On the other hand, correctness of modulo abstraction implies
p'(ovt) =0 and
(o’ (out))* = p/(out) (correctness of abstraction)
-y (%)
= (y1-y2)* (Lemma 16.2)
= o'(out)=z=y1-y
Rer Static Program Analysis Summer Semester 2011 16.11

	Repetition: Correctness of Abstract Semantics
	Application Example: 16-Bit Multiplication

