
Static Program Analysis
Lecture 16: Abstract Interpretation V

(Application Example: 16-Bit Multiplication)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/


Outline

1 Repetition: Correctness of Abstract Semantics

2 Application Example: 16-Bit Multiplication

Static Program Analysis Summer Semester 2011 16.2



Abstract Semantics of WHILE I

Reminder: abstract domain is Abs := 2Var→A

Definition (Abstract execution relation for statements)

If c ∈ Cmd and abs ∈ Abs, then 〈c , abs〉 is called an abstract
configuration. The abstract execution relation is defined by the following
rules:

(skip)
〈skip, abs〉 ⇒ abs

(asgn)
〈x := a, abs〉 ⇒ {ρ[x 7→ a′] | ρ ∈ abs, a′ ∈ val#ρ (a)}

(seq1)
〈c1, abs〉 ⇒ 〈c ′1, abs ′〉

〈c1;c2, abs〉 ⇒ 〈c ′1;c2, abs
′〉

(seq2)
〈c1, abs〉 ⇒ abs ′

〈c1;c2, abs〉 ⇒ 〈c2, abs
′〉

Static Program Analysis Summer Semester 2011 16.3



Abstract Semantics of WHILE II

Definition (Abstract execution relation for statements; cont.)

(if1)
∃ρ ∈ abs : true ∈ val#ρ (b)

〈if b then c1 else c2, abs〉
⇒ 〈c1, abs \ {ρ ∈ abs | val#ρ (b) = {false}}〉

(if2)
∃ρ ∈ abs : false ∈ val#ρ (b)

〈if b then c1 else c2, abs〉
⇒ 〈c2, abs \ {ρ ∈ abs | val#ρ (b) = {true}}〉

(wh1)
∃ρ ∈ abs : true ∈ val#ρ (b)

〈while b do c , abs〉
⇒ 〈c;while b do c , abs \ {ρ ∈ abs | val#ρ (b) = {false}}〉

(wh2)
∃ρ ∈ abs : false ∈ val#ρ (b)

〈while b do c , abs〉 ⇒ abs \ {ρ ∈ abs | val#ρ (b) = {true}}
Static Program Analysis Summer Semester 2011 16.4



Abstract Semantics of WHILE III

Definition (Abstract transition function)

The abstract transition function is defined by the family of mappings

next#
c,c ′ : Abs → Abs,

given by

next#
c,c ′(abs) :=

⋃
{abs ′ ∈ Abs | 〈c , abs〉 ⇒ 〈c ′, abs ′〉}

next#
c,↓(abs) :=

⋃
{abs ′ ∈ Abs | 〈c , abs〉 ⇒ abs ′}

Theorem (Soundness of abstract semantics)

For each c ∈ Cmd and c ′ ∈ Cmd ∪ {↓}, next#
c,c ′ is a safe approximation of

nextc,c ′ , i.e., for every abs ∈ Abs,

α(nextc,c ′(γ(abs))) ⊆ next#
c,c ′(abs).

Static Program Analysis Summer Semester 2011 16.5



Outline

1 Repetition: Correctness of Abstract Semantics

2 Application Example: 16-Bit Multiplication

Static Program Analysis Summer Semester 2011 16.6



A 16-Bit Multiplier

Example 16.1 (16-bit multiplier)

c = [out := 0]1;
[ovf := 0]2;
while [¬(f1=0) ∧ ovf=0]3 do
if [lsb(f1)=1]4 then

[(ovf,out) := (out:17)+f2]5;
else

[skip]6;
[f1 := f1>>1]7;
if [¬(f1=0) ∧ ovf=0]8 then

[(ovf,f2) := (f2:17)<<1]9;
else

[skip]10;

f1, f2: 16-bit input factors

out: 16-bit result

ovf: overflow bit

lsb(z): least significant bit of z

(z:k): extension of z to k bits
by adding leading zeros

(x,y):=z : simultaneous
assignment with split of z

<<1/>>1: left/right shift

Procedure: in each iteration,
1 if LSB of f1 is set (4),

add f2 to out (5)
2 shift f1 right (7)
3 shift f2 left (9)

Expected result: if 〈c , σ〉 →+ σ′, then

σ′(out) = σ(f1) · σ(f2) or

σ′(ovf) = 1

(termination is trivial)

Example run: on the board
Static Program Analysis Summer Semester 2011 16.7



The Abstraction

(see E.M. Clarke, O. Grumberg, D.A. Peled: Model Checking, MIT Press, 1999, pp. 205)

f1: no abstraction (as f1 controls multiplication)

f2: congruence modulo m
(for specific values of m – see Theorem 16.4)

extraction function: β : Z→ {0, . . . ,m − 1} : z 7→ z mod m
(see Exercise 6.1)
congruence: z1 ≡ z2 (mod m) iff z1 mod m = z2 mod m

out: congruence modulo m

ovf: no abstraction (single bit)

Lemma 16.2 (Properties of modulo congruence)

For every z1, z2 ∈ Z and m ≥ 1,
(z1 + z2) mod m ≡ ((z1 mod m) + (z2 mod m)) mod m
(z1 − z2) mod m ≡ ((z1 mod m)− (z2 mod m)) mod m

(z1 · z2) mod m ≡ ((z1 mod m) · (z2 mod m)) mod m

Thus: modulo value of expression determined by modulo values of
subexpressions

Static Program Analysis Summer Semester 2011 16.8



Abstract Interpretation of Multiplier

Example 16.3 (Abstraction of 16-bit multiplier (cf. Example 16.1))

Abstract execution for

f1 = 1012 (= 5)

f2 = 10010102 (= 74)

m = 5, 74 mod 5 = 4

out, ovf initially undefined

=⇒ initial abstract value:

abs = {[f1 7→ 1012, f2 7→ 4, out 7→ r , ovf 7→ b] |
r ∈ {0, . . . , 4}, b ∈ B}

First transitions: on the board

Static Program Analysis Summer Semester 2011 16.9



Ensuring Completeness I

Theorem 16.4 (Chinese Remainder Theorem)

Let m1, . . . ,mk ≥ 1 be pairwise relatively prime (i.e., gcd(mi ,mj) = 1 for
1 ≤ i < j ≤ k). Let m := m1 · . . . ·mk , and let z1, . . . , zk ∈ Z. Then there
is a unique z ∈ Z such that

0 ≤ z < m and z ≡ zi (mod mi ) for all i ∈ {1, . . . , k}.

Application: for fixed initial (abstract) value of f1 and f2,

z = concrete final value of out
zi = abstract final value of out (mod mi )
k := 5, m1 := 5, m2 := 7, m3 := 9, m4 := 11, m5 := 32
(thus m = 5 · 7 · 9 · 11 · 32 = 110880 > 216)
Theorem 16.4 yields unique z < m with z ≡ zi (mod mi )
m > 216 =⇒ z is correct result of multiplication (see next slide)
thus termination implies correct result or overflow

Efficiency:

Exhaustive testing: 216 · 216 = 232 = 4.29 · 109 runs
Abstract interpretation: 216 · (5 + 7 + 9 + 11 + 32) = 4.19 · 106 runs

Static Program Analysis Summer Semester 2011 16.10



Ensuring Completeness II

Proof.

To show: ∀y1, y2 ∈ B16, σ, σ′ ∈ Σ :
σ(f1) = y1, σ(f2) = y2, 〈c, σ〉 →+ σ′, σ′(ovf) = 0
=⇒ σ′(out) = y1 · y2

Known: ∀i ∈ {1, . . . , 5}, y1, y2 ∈ B16, abs, abs ′ ∈ Abs :

abs = {[f1 7→ y1, f2 7→ y#
2 , out 7→ r , ovf 7→ b] |

r ∈ {0, . . . ,mi − 1}, b ∈ B}, 〈c, abs〉 ⇒+ abs ′

=⇒
(
∀ρ′ ∈ abs ′ : ρ′(ovf) = 0 =⇒ ρ′(out)

(∗)
= (y1 · y#

2 )#

)
(where x# := x mod mi )

Proof: Let y1, y2 ∈ B16, σ(f1) = y1, σ(f2) = y2, 〈c, σ〉 →+ σ′,
σ′(ovf) = 0, and zi := (y1 · y2)# for i ∈ {1, . . . , 5}
Theorem 16.4 yields unique z < m such that z ≡ zi
(mod mi ) for all i ∈ {1, . . . , 5}
On the other hand, correctness of modulo abstraction implies
ρ′(ovf) = 0 and

(σ′(out))# = ρ′(out) (correctness of abstraction)

= (y1 · y#
2 )# (∗)

= (y1 · y2)# (Lemma 16.2)
=⇒ σ′(out) = z = y1 · y2

Static Program Analysis Summer Semester 2011 16.11


	Repetition: Correctness of Abstract Semantics
	Application Example: 16-Bit Multiplication

