
Static Program Analysis
Lecture 17: Abstract Interpretation VI

(Predicate Abstraction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Overview: Abstraction Refinement Using Predicates

2 Predicate Abstraction

3 Abstract Semantics for Predicate Abstraction

Static Program Analysis Summer Semester 2011 17.3

Abstraction Refinement

Problem: desired program property cannot be shown using current
abstraction method

Reasons:
1 program really violates property or
2 current abstraction is too coarse

Solutions:
1 fix the problem
2 refine abstraction

Abstraction refinement: most successful (automatic) method based
on

predicate abstraction and
counterexamples

Static Program Analysis Summer Semester 2011 17.4

Counterexample-Guided Abstraction Refinement

CEGAR loop:

Start with (coarse)
initial abstraction A

Property P satisfied in A?

Verification successful

Find run violating P

Analyze counterexample

Error found

Remove counterexample
by refining A

yes

no

real

spurious

Static Program Analysis Summer Semester 2011 17.5

Abstraction Refinement for Predicates

1 Extract predicates (i.e., logical formulae) from counterexample

2 Use Galois connection that classifies program states according to
validity of predicates (predicate abstraction)

3 Compute new abstract semantics and search for new counterexamples

4 Iterate until property satisfied or real counterexample found
(with increasing set of predicates)

Static Program Analysis Summer Semester 2011 17.6

Outline

1 Overview: Abstraction Refinement Using Predicates

2 Predicate Abstraction

3 Abstract Semantics for Predicate Abstraction

Static Program Analysis Summer Semester 2011 17.7

Predicate Abstraction I

Definition 17.1 (Predicate abstraction)

Let Var be a set of variables.

A predicate is a Boolean expression p ∈ BExp over Var .

A state σ ∈ Σ satisfies p ∈ BExp (σ |= p) if valσ(p) = true.

p implies q (p |= q) if σ |= q whenever σ |= p
(or: p is stronger than q, q is weaker than p).

p and q are equivalent (p ≡ q) if p |= q and q |= p.

Let P = {p1, . . . , pn} ⊆ BExp be a finite set of predicates, and let
¬P := {¬p1, . . . ,¬pn}. An element of P ∪ ¬P is called a literal. The
predicate abstraction lattice is defined by:

Abs(p1, . . . , pn) :=
({∧

Q | Q ⊆ P ∪ ¬P
}
, |=
)
.

Abbreviations: true :=
∧
∅, false := . . . ∧ pi ∧ . . . ∧ ¬pi ∧ . . .

Static Program Analysis Summer Semester 2011 17.8

Predicate Abstraction II

Lemma 17.2

Abs(p1, . . . , pn) is a complete lattice with

⊥ = false, > = true

q1 u q2 = q1 ∧ q2

q1 t q2 = q1 ∨ q2 where b :=
∧
{q ∈ Abs(p1, . . . , pn) | b |= q}

(i.e., strongest formula in Abs(p1, . . . , pn) that is implied by q1 ∨ q2)

Example 17.3

Let P := {p1, p2, p3}.
1 For q1 := p1 ∧ ¬p2 and q2 := ¬p2 ∧ p3, we obtain

q1 u q2 = q1 ∧ q2 ≡ p1 ∧ ¬p2 ∧ p3

q1 t q2 = q1 ∨ q2 ≡ ¬p2 ∧ (p1 ∨ p3) ≡ ¬p2

2 For q1 := p1 ∧ p2 and q2 := p1 ∧ ¬p2, we obtain
q1 u q2 = q1 ∧ q2 ≡ false

q1 t q2 = q1 ∨ q2 ≡ p1 ∧ (p2 ∨ ¬p2) ≡ p1

Static Program Analysis Summer Semester 2011 17.9

Predicate Abstraction III

Definition 17.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by
α : 2Σ → Abs(p1, . . . , pn) and γ : Abs(p1, . . . , pn)→ 2Σ

with
α(S) :=

⊔
{qσ | σ ∈ S} and γ(q) := {σ ∈ Σ | σ |= q}

where qσ :=
∧

({pi | 1 ≤ i ≤ n, σ |= pi} ∪ {¬pi | 1 ≤ i ≤ n, σ 6|= pi}).

Example 17.5

Let Var := {x, y}
Let P := {p1, p2, p3} where p1 := (x<=y), p2 := (x=y), p3 := (x>y)
If S = {σ1, σ2} ⊆ Σ with σ1 = [x 7→ 1, y 7→ 2], σ2 = [x 7→ 2, y 7→ 2],
then α(S) = qσ1 t qσ2

= (p1 ∧ ¬p2 ∧ ¬p3) t (p1 ∧ p2 ∧ ¬p3)

≡ (p1 ∧ ¬p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ ¬p3)
≡ p1 ∧ ¬p3

If q = p1 ∧ ¬p2 ∈ Abs(p1, . . . , pn), then γ(q) = {σ ∈ Σ | σ(x) < σ(y)}

Static Program Analysis Summer Semester 2011 17.10

Outline

1 Overview: Abstraction Refinement Using Predicates

2 Predicate Abstraction

3 Abstract Semantics for Predicate Abstraction

Static Program Analysis Summer Semester 2011 17.11

Abstract Semantics for Predicate Abstraction I

Definition 17.6 (Execution relation for predicate abstraction)

If c ∈ Cmd and q ∈ Abs(p1, . . . , pn), then 〈c , q〉 is called an abstract
configuration. The execution relation for predicate abstraction is defined
by the following rules:
(skip)

〈skip, q〉 ⇒ q
(asgn)

〈x := a, q〉 ⇒
⊔
{qσ[x 7→valσ(a)] | σ |= q}

(seq1)
〈c1, q〉 ⇒ 〈c ′1, q′〉

〈c1;c2, q〉 ⇒ 〈c ′1;c2, q
′〉

(seq2)
〈c1, q〉 ⇒ q′

〈c1;c2, q〉 ⇒ 〈c2, q
′〉

(if1)
〈if b then c1 else c2, q〉 ⇒ 〈c1, q ∧ b〉

(if2)
〈if b then c1 else c2, q〉 ⇒ 〈c2, q ∧ ¬b〉

(wh1)
〈while b do c , q〉 ⇒ 〈c;while b do c , q ∧ b〉
(wh2)

〈while b do c , q〉 ⇒ q ∧ ¬b
Static Program Analysis Summer Semester 2011 17.12

Abstract Semantics for Predicate Abstraction II

Remarks:

In Rule (asgn),
⊔
{qσ[x 7→valσ(a)] | σ |= q} denotes the strongest

postcondition of q w.r.t. statement x := a. It covers all states that are
obtained from a state satisfying q by applying the assignment x := a:

Abstract: 〈x := a, q〉 ⇒
⊔
{qσ[x 7→valσ(a)] | σ |= q}

↓ γ ↑ α
Concrete: 〈x := a, {σ ∈ Σ | σ |= q}〉 → {σ[x 7→ valσ(a)] | σ |= q}

In Rules (if1, (if2), (wh1), (wh2): if b = pi for some i ∈ {1, . . . , n},
then q ∧ [¬]b ∈ Abs(p1, . . . , pn), and thus q ∧ [¬]b = q ∧ [¬]b

An abstract configuration of the form 〈c, false〉 represents an
unreachable configuration (as there is no σ ∈ Σ such that σ |= false)
and can therefore be omitted

If P = ∅ (and thus Abs(P) = {true, false}) and if no b ∈ BExpc is a
contradiction, then the abstract transition system corresponds to the
control flow graph of c

Static Program Analysis Summer Semester 2011 17.13

Abstract Semantics for Predicate Abstraction III

Example 17.7

if [x > y]1 then

while [¬(y = 0)]2 do

[x := x - 1;]3;
[y := y - 1;]4;

if [x > y]5 then

[skip]6;
else

[skip]7;
else

[skip]8;

Claim: label 7 not reachable
(as x > y is a loop invariant)

Proof: by predicate abstraction with
p1 := (x > y) and p2 := (x >= y)

Abstract transition system: on the board

Remark: p1 := (x > y) alone not sufficient
(as not necessarily valid after label 3)

Static Program Analysis Summer Semester 2011 17.14

Abstract Semantics for Predicate Abstraction IV

Problem: q′ generally not computable in
(asgn)

〈x := a, q〉 ⇒
⊔
{qσ[x 7→valσ(a)] | σ |= q}︸ ︷︷ ︸

q′

(due to undecidability of implication in certain logics)

Solutions:
Over-approximation: fall back to non-strongest postconditions

in practice, (automatic) theorem proving
for every i ∈ {1, . . . , n}, try to prove q′ |= pi and q′ |= ¬pi
approximate q′ by conjunction of all provable literals

Restriction of programs:
|= decidable for certain logics
example: Presburger arithmetic (first-order theory of N with +)
thus q′ computable for WHILE programs without multiplication

Restriction to finite domains:
for example, binary numbers of fixed size
thus everything (domain, Galois connection, ...) exactly computable
problem: exponential blowup =⇒ solution: Binary Decision Diagrams

Static Program Analysis Summer Semester 2011 17.15

	Overview: Abstraction Refinement Using Predicates
	Predicate Abstraction
	Abstract Semantics for Predicate Abstraction

