Static Program Analysis

Lecture 17: Abstract Interpretation VI
(Predicate Abstraction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Informatik Sommerfest

Im Informatikzentrum 1. Juli 2011
AhornstraBBe 55

16:00 Beginn

16:30 Festakt (Aula 2)
Verleihung der Zeugnisse

danach Geselliges Feiern
(Parkplatz, Foyer E2)

RWTH

@ Overview: Abstraction Refinement Using Predicates

“w.rH Static Program Analysis Summer Semester 2011 17.3

Abstraction Refinement

@ Problem: desired program property cannot be shown using current
abstraction method

o Reasons:
@ program really violates property or
@ current abstraction is too coarse

Solutions:

@ fix the problem
@ refine abstraction

o Abstraction refinement: most successful (automatic) method based
on

e predicate abstraction and
e counterexamples

“er Static Program Analysis Summer Semester 2011 17.4

Counterexample-Guided Abstraction Refinement
CEGATR foop [Veriication successful

yes

‘{ Start with (coarse) }—)‘Property P satisfied in A?J

initial abstraction A

/ o

Remove counterexample - —
[by refining A] [Fmd run violating P]

spurious

[Analyze counterexample}

real

'm'rH Static Program Analysis Summer Semester 2011 17.5

Abstraction Refinement for Predicates

@ Extract predicates (i.e., logical formulae) from counterexample

@ Use Galois connection that classifies program states according to
validity of predicates (predicate abstraction)

© Compute new abstract semantics and search for new counterexamples

@ lterate until property satisfied or real counterexample found
(with increasing set of predicates)

“er Static Program Analysis Summer Semester 2011 17.6

© Predicate Abstraction

“er Static Program Analysis Summer Semester 2011 17.7

Predicate Abstraction |

Definition 17.1 (Predicate abstraction)

Let Var be a set of variables.

@ A predicate is a Boolean expression p € BExp over Var.
o A state o € X satisfies p € BExp (o |= p) if val,(p) = true.
e p implies g (p = q) if o = g whenever o = p
(or: p is stronger than q, g is weaker than p).
@ p and g are equivalent (p=q) if p|= g and g = p.
@ Let P={p1,...,pn} C BExp be a finite set of predicates, and let

=P :={=p1,...,7pn}. An element of P U =P is called a literal. The
predicate abstraction lattice is defined by:

Abs(py, ..., pn) = ({/\Q!QQPU—'P},):>.

Abbreviations: true := A\ 0, false:==...ApiA...A—piA...

Rer Static Program Analysis Summer Semester 2011 17.8

Predicate Abstraction I

Abs(p1, ..., pn) is a complete lattice with
o | =false, T = true
o 1llg2=q1Nq

@ q1Lqg>=q1 V q: where b:= N{q € Abs(p1,...,pn) | b= q}
(i.e., strongest formula in Abs(pi, ..., pn) that is implied by g1 V g2)

Example 17.3

Let P := {p1, p2, p3}-
@ For g1 ;== p1 A —po and g2 := —p> A p3, we obtain
Mg =qgNq@=ptA-pAp3
QU@ =qaVa=-pAPLVpE)=-p
@ For g1 := p1 A p2 and g := p1 A —p2, we obtain
g1 g = g1 N g = false
QU@ =qaVae=pAPpV-p)=pn)

Rer Static Program Analysis Summer Semester 2011 17.9

Predicate Abstraction lil

Definition 17.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by
o: 2% — Abs(py,...,ps) and 7 :Abs(py,...,p,) — 2%
with
o(S)=|Hgs [0 €S}t and ~(q):={oceX|okq}
where g; := A({pi | L <i<n,olptU{-pi|1<i<nolp}).

Example 17.5
o Let Var .= {x,y}
o Let P:={p1, p2, p3} where p; := (x<=y), p2 := (x=y), p3 := (x>y)
o If S={o1,00} CXwithoy=[x—1,y—2],00=[x—2,y— 2],
then a(S) = 9o, U g0,
= (pL A —p2 A =p3) U (p1 A p2 A —ps3)
= (pr A=p2 A=p3) V (p1 A p2 A —p3)
=p1Ap3
o If g=p1 A—p2 € Abs(p1,...,pn), then ¥(q) = {oc € £ | o(x) < o(y)}

v

Rer Static Program Analysis Summer Semester 2011 17.10

© Abstract Semantics for Predicate Abstraction

“er Static Program Analysis Summer Semester 2011 17.11

Abstract Semantics for Predicate Abstraction |

Definition 17.6 (Execution relation for predicate abstraction)

If c € Cmd and q € Abs(pa, ..., pn), then (c,q) is called an abstract
configuration. The execution relation for predicate abstraction is defined
by the following rules:

(skip) ; (asgn)
<Sk1p, q> =q <X 1= 4, q> = Ll{qa[vaalg(a)] ‘ o): q}
— {c1,9) = (e, 9) (se2) (c1,9) = ¢
(c1502,q9) = (c1;02,9) (crse2,q) = (2, q)

(if1) —
(if b then ¢ else &, q) = (c1,g A b)

(if2) —
(if b then ¢ else ¢2,q) = (c2,q A —b)

(wh1)

(while b do ¢,q) = (c;while bdo c,q A b)

(wh2)

(while b do c,q) = g A —b

Rer Static Program Analysis Summer Semester 2011 17.12

Abstract Semantics for Predicate Abstraction Il

Remarks:
o In Rule (asgn), | {do[x—svai,(a)] | o = g} denotes the strongest
postcondition of g w.r.t. statement x := a. It covers all states that are
obtained from a state satisfying g by applying the assignment x := a:

Abstract: (x :=a,q) = | Hdopsvat @) | 0 = a}
g IRY
Concrete: (x :=a,{c€X|oq}) — {o[x—val,(a)] | o = q}

o In Rules (if1, (if2), (whl), (wh2): if b = p; for some i € {1,...,n},
then g A [-]b € Abs(p1, ..., pn), and thus g A [-]b = g A []b

@ An abstract configuration of the form (c, false) represents an
unreachable configuration (as there is no o € ¥ such that o |- false)
and can therefore be omitted

o If P =((and thus Abs(P) = {true, false}) and if no b € BExp_ is a
contradiction, then the abstract transition system corresponds to the
control flow graph of ¢

RWTH Static Program Analysis Summer Semester 2011 17.13

Abstract Semantics for Predicate Abstraction IlI

Example 17.7

if [x > y]! then
: = 02

while [=(y = 0)3] do o Claim: label 7 not reachable

[x :=x - 1;]4; (as x > y is a loop invariant)

[y ==y - L%

if [x > y]° then @ Proof: by predicate abstraction with

[skip]®; p1:=(x > y)and pr:=(x >= y)
else o Abstract transition system: on the board
i 7 M . .
[skip]”; e Remark: p; := (x > y) alone not sufficient
else . (as not necessarily valid after label 3)
[skip]®;

RWTH Static Program Analysis Summer Semester 2011 17.14

Abstract Semantics for Predicate Abstraction IV

Problem: ¢’ generally not computable in
(asgn)

<X = a, q> = Ll{qa[xv—)va/g(a)] ’ g): q}

!

q
(due to undecidability of implication in certain logics)

Solutions:

@ Over-approximation: fall back to non-strongest postconditions
e in practice, (automatic) theorem proving
o forevery i € {1,...,n}, try to prove ¢’ = p; and ¢’ | —p;
e approximate g’ by conjunction of all provable literals

@ Restriction of programs:
o |= decidable for certain logics
o example: Presburger arithmetic (first-order theory of N with +)
e thus g’ computable for WHILE programs without multiplication

@ Restriction to finite domains:
o for example, binary numbers of fixed size
e thus everything (domain, Galois connection, ...) exactly computable
e problem: exponential blowup = solution: Binary Decision Diagrams

RWTH Static Program Analysis Summer Semester 2011 17.15

	Overview: Abstraction Refinement Using Predicates
	Predicate Abstraction
	Abstract Semantics for Predicate Abstraction

