

Static Program Analysis

Lecture 17: Abstract Interpretation VI (Predicate Abstraction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/spa11/>

Summer Semester 2011

Informatik Sommerfest

Im Informatikzentrum
Ahornstraße 55

1. Juli 2011

16:00 **Beginn**

16:30 **Festakt (Aula 2)**
Verleihung der Zeugnisse

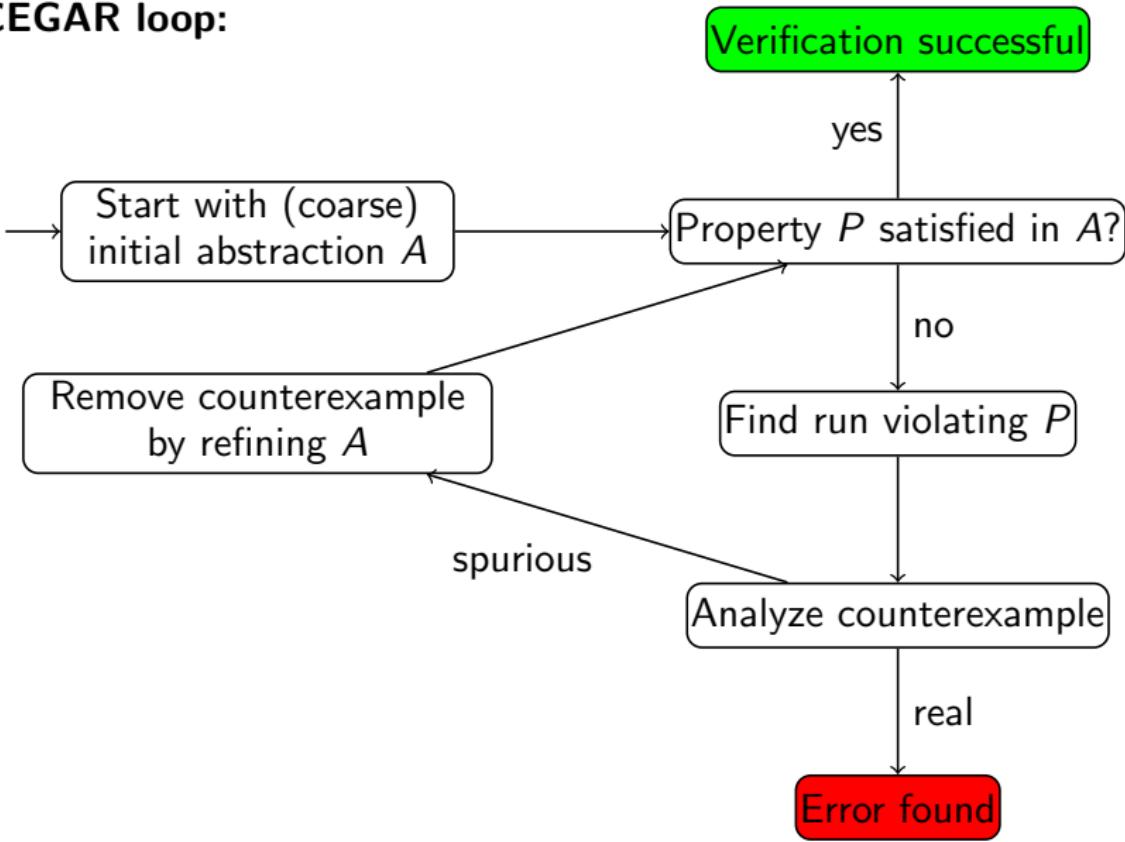
danach **Geselliges Feiern**
(Parkplatz, Foyer E2)

- 1 Overview: Abstraction Refinement Using Predicates
- 2 Predicate Abstraction
- 3 Abstract Semantics for Predicate Abstraction

- **Problem:** desired program property cannot be shown using current abstraction method
- **Reasons:**
 - ① program really violates property or
 - ② current abstraction is **too coarse**
- **Solutions:**
 - ① fix the problem
 - ② **refine abstraction**
- **Abstraction refinement:** most successful (automatic) method based on
 - **predicate abstraction** and
 - **counterexamples**

Counterexample-Guided Abstraction Refinement

CEGAR loop:



- ① Extract **predicates** (i.e., logical formulae) from counterexample
- ② Use **Galois connection** that classifies program states according to validity of predicates (**predicate abstraction**)
- ③ Compute new **abstract semantics** and search for new **counterexamples**
- ④ **Iterate** until property satisfied or real counterexample found
(with increasing set of predicates)

- 1 Overview: Abstraction Refinement Using Predicates
- 2 Predicate Abstraction
- 3 Abstract Semantics for Predicate Abstraction

Definition 17.1 (Predicate abstraction)

Let Var be a set of variables.

- A **predicate** is a Boolean expression $p \in BExp$ over Var .
- A state $\sigma \in \Sigma$ **satisfies** $p \in BExp$ ($\sigma \models p$) if $val_\sigma(p) = \text{true}$.
- p **implies** q ($p \models q$) if $\sigma \models q$ whenever $\sigma \models p$
(or: p is **stronger than** q , q is **weaker than** p).
- p and q are **equivalent** ($p \equiv q$) if $p \models q$ and $q \models p$.
- Let $P = \{p_1, \dots, p_n\} \subseteq BExp$ be a finite set of predicates, and let $\neg P := \{\neg p_1, \dots, \neg p_n\}$. An element of $P \cup \neg P$ is called a **literal**. The **predicate abstraction** lattice is defined by:

$$Abs(p_1, \dots, p_n) := \left(\left\{ \bigwedge Q \mid Q \subseteq P \cup \neg P \right\}, \models \right).$$

Abbreviations: $\text{true} := \bigwedge \emptyset$, $\text{false} := \dots \wedge p_i \wedge \dots \wedge \neg p_i \wedge \dots$

Lemma 17.2

$\text{Abs}(p_1, \dots, p_n)$ is a *complete lattice* with

- $\perp = \text{false}$, $\top = \text{true}$
- $q_1 \sqcap q_2 = q_1 \wedge q_2$
- $q_1 \sqcup q_2 = \overline{q_1 \vee q_2}$ where $\overline{b} := \bigwedge \{q \in \text{Abs}(p_1, \dots, p_n) \mid b \models q\}$
(i.e., strongest formula in $\text{Abs}(p_1, \dots, p_n)$ that is implied by $q_1 \vee q_2$)

Example 17.3

Let $P := \{p_1, p_2, p_3\}$.

① For $q_1 := p_1 \wedge \neg p_2$ and $q_2 := \neg p_2 \wedge p_3$, we obtain

$$\begin{aligned} q_1 \sqcap q_2 &= q_1 \wedge q_2 \equiv p_1 \wedge \neg p_2 \wedge p_3 \\ q_1 \sqcup q_2 &= \overline{q_1 \vee q_2} \equiv \neg p_2 \wedge (p_1 \vee p_3) \equiv \neg p_2 \end{aligned}$$

② For $q_1 := p_1 \wedge p_2$ and $q_2 := p_1 \wedge \neg p_2$, we obtain

$$\begin{aligned} q_1 \sqcap q_2 &= q_1 \wedge q_2 \equiv \text{false} \\ q_1 \sqcup q_2 &= \overline{q_1 \vee q_2} \equiv \overline{p_1 \wedge (p_2 \vee \neg p_2)} \equiv p_1 \end{aligned}$$

Definition 17.4 (Galois connection for predicate abstraction)

The **Galois connection for predicate abstraction** is determined by

$$\alpha : 2^\Sigma \rightarrow \text{Abs}(p_1, \dots, p_n) \quad \text{and} \quad \gamma : \text{Abs}(p_1, \dots, p_n) \rightarrow 2^\Sigma$$

with

$$\alpha(S) := \bigsqcup \{q_\sigma \mid \sigma \in S\} \quad \text{and} \quad \gamma(q) := \{\sigma \in \Sigma \mid \sigma \models q\}$$

where $q_\sigma := \bigwedge (\{p_i \mid 1 \leq i \leq n, \sigma \models p_i\} \cup \{\neg p_i \mid 1 \leq i \leq n, \sigma \not\models p_i\})$.

Example 17.5

- Let $\text{Var} := \{\mathbf{x}, \mathbf{y}\}$
- Let $P := \{p_1, p_2, p_3\}$ where $p_1 := (\mathbf{x} <= \mathbf{y})$, $p_2 := (\mathbf{x} = \mathbf{y})$, $p_3 := (\mathbf{x} > \mathbf{y})$
- If $S = \{\sigma_1, \sigma_2\} \subseteq \Sigma$ with $\sigma_1 = [\mathbf{x} \mapsto 1, \mathbf{y} \mapsto 2]$, $\sigma_2 = [\mathbf{x} \mapsto 2, \mathbf{y} \mapsto 2]$, then
$$\begin{aligned}\alpha(S) &= q_{\sigma_1} \sqcup q_{\sigma_2} \\ &= (p_1 \wedge \neg p_2 \wedge \neg p_3) \sqcup (p_1 \wedge p_2 \wedge \neg p_3) \\ &\equiv (p_1 \wedge \neg p_2 \wedge \neg p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3) \\ &\equiv p_1 \wedge \neg p_3\end{aligned}$$
- If $q = p_1 \wedge \neg p_2 \in \text{Abs}(p_1, \dots, p_n)$, then $\gamma(q) = \{\sigma \in \Sigma \mid \sigma(\mathbf{x}) < \sigma(\mathbf{y})\}$

- 1 Overview: Abstraction Refinement Using Predicates
- 2 Predicate Abstraction
- 3 Abstract Semantics for Predicate Abstraction

Abstract Semantics for Predicate Abstraction I

Definition 17.6 (Execution relation for predicate abstraction)

If $c \in Cmd$ and $q \in Abs(p_1, \dots, p_n)$, then $\langle c, q \rangle$ is called an **abstract configuration**. The **execution relation for predicate abstraction** is defined by the following rules:

$$(skip) \frac{}{\langle \text{skip}, q \rangle \Rightarrow q} \quad (\text{asgn}) \frac{}{\langle x := a, q \rangle \Rightarrow \bigcup \{ q_{\sigma[x \mapsto \text{val}_{\sigma}(a)]} \mid \sigma \models q \}}$$

$$(\text{seq1}) \frac{\langle c_1, q \rangle \Rightarrow \langle c'_1, q' \rangle}{\langle c_1 ; c_2, q \rangle \Rightarrow \langle c'_1 ; c_2, q' \rangle} \quad (\text{seq2}) \frac{\langle c_1, q \rangle \Rightarrow q'}{\langle c_1 ; c_2, q \rangle \Rightarrow \langle c_2, q' \rangle}$$

$$(\text{if1}) \frac{}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, q \rangle \Rightarrow \langle c_1, \overline{q \wedge b} \rangle}$$

$$(\text{if2}) \frac{}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, q \rangle \Rightarrow \langle c_2, \overline{q \wedge \neg b} \rangle}$$

$$(\text{wh1}) \frac{}{\langle \text{while } b \text{ do } c, q \rangle \Rightarrow \langle c ; \text{while } b \text{ do } c, \overline{q \wedge b} \rangle}$$

$$(\text{wh2}) \frac{}{\langle \text{while } b \text{ do } c, q \rangle \Rightarrow \overline{q \wedge \neg b}}$$

Remarks:

- In Rule (asgn), $\bigcup\{q_{\sigma[x \mapsto \text{val}_\sigma(a)]} \mid \sigma \models q\}$ denotes the **strongest postcondition** of q w.r.t. statement $x := a$. It covers all states that are obtained from a state satisfying q by applying the assignment $x := a$:

$$\begin{array}{ccc} \text{Abstract:} & \langle x := a, q \rangle & \Rightarrow \bigcup\{q_{\sigma[x \mapsto \text{val}_\sigma(a)]} \mid \sigma \models q\} \\ & \downarrow \gamma & \uparrow \alpha \\ \text{Concrete:} & \langle x := a, \{\sigma \in \Sigma \mid \sigma \models q\} \rangle & \rightarrow \{\sigma[x \mapsto \text{val}_\sigma(a)] \mid \sigma \models q\} \end{array}$$

- In Rules (if1, (if2), (wh1), (wh2)): if $b = p_i$ for some $i \in \{1, \dots, n\}$, then $q \wedge \neg b \in \text{Abs}(p_1, \dots, p_n)$, and thus $q \wedge \neg b = q \wedge \neg b$
- An abstract configuration of the form $\langle c, \text{false} \rangle$ represents an **unreachable** configuration (as there is no $\sigma \in \Sigma$ such that $\sigma \models \text{false}$) and can therefore be omitted
- If $P = \emptyset$ (and thus $\text{Abs}(P) = \{\text{true}, \text{false}\}$) and if no $b \in BExp_c$ is a contradiction, then the abstract transition system corresponds to the **control flow graph** of c

Example 17.7

```
if [x > y]1 then
  while [¬(y = 0)]2 do
    [x := x - 1;]3;
    [y := y - 1;]4;
  if [x > y]5 then
    [skip];6
  else
    [skip];7;
else
  [skip];8;
```

- **Claim:** label 7 not reachable
(as $x > y$ is a loop invariant)
- **Proof:** by predicate abstraction with
 $p_1 := (x > y)$ and $p_2 := (x \geq y)$
- **Abstract transition system:** on the board
- **Remark:** $p_1 := (x > y)$ alone not sufficient
(as not necessarily valid after label 3)

Problem: q' generally **not computable** in

$$\text{(asgn)} \frac{}{\langle x := a, q \rangle \Rightarrow \underbrace{\bigcup \{ q_{\sigma[x \mapsto \text{val}_{\sigma}(a)]} \mid \sigma \models q \}}_{q'}}$$

(due to undecidability of implication in certain logics)

Solutions:

- **Over-approximation:** fall back to non-strongest postconditions
 - in practice, (automatic) theorem proving
 - for every $i \in \{1, \dots, n\}$, try to prove $q' \models p_i$ and $q' \models \neg p_i$
 - approximate q' by conjunction of all provable literals
- **Restriction of programs:**
 - \models decidable for certain logics
 - example: Presburger arithmetic (first-order theory of \mathbb{N} with $+$)
 - thus q' computable for WHILE programs without multiplication
- **Restriction to finite domains:**
 - for example, binary numbers of fixed size
 - thus everything (domain, Galois connection, ...) exactly computable
 - problem: exponential blowup \implies solution: Binary Decision Diagrams