
Static Program Analysis
Lecture 18: Abstract Interpretation VII

(Counterexample-Guided Abstraction Refinement)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Repetition: Predicate Abstraction

2 Counterexample-Guided Abstraction Refinement

3 Final Remarks

Static Program Analysis Summer Semester 2011 18.2

Predicate Abstraction I

Definition (Predicate abstraction)

Let Var be a set of variables.

A predicate is a Boolean expression p ∈ BExp over Var .

A state σ ∈ Σ satisfies p ∈ BExp (σ |= p) if valσ(p) = true.

p implies q (p |= q) if σ |= q whenever σ |= p
(or: p is stronger than q, q is weaker than p).

p and q are equivalent (p ≡ q) if p |= q and q |= p.

Let P = {p1, . . . , pn} ⊆ BExp be a finite set of predicates, and let
¬P := {¬p1, . . . ,¬pn}. An element of P ∪ ¬P is called a literal. The
predicate abstraction lattice is defined by:

Abs(p1, . . . , pn) :=
({∧

Q | Q ⊆ P ∪ ¬P
}
, |=
)
.

Abbreviations: true :=
∧
∅, false := . . . ∧ pi ∧ . . . ∧ ¬pi ∧ . . .

Static Program Analysis Summer Semester 2011 18.3

Predicate Abstraction II

Lemma

Abs(p1, . . . , pn) is a complete lattice with

⊥ = false, > = true

q1 u q2 = q1 ∧ q2

q1 t q2 = q1 ∨ q2 where b :=
∧
{q ∈ Abs(p1, . . . , pn) | b |= q}

(i.e., strongest formula in Abs(p1, . . . , pn) that is implied by q1 ∨ q2)

Example

Let P := {p1, p2, p3}.
1 For q1 := p1 ∧ ¬p2 and q2 := ¬p2 ∧ p3, we obtain

q1 u q2 = q1 ∧ q2 ≡ p1 ∧ ¬p2 ∧ p3

q1 t q2 = q1 ∨ q2 ≡ ¬p2 ∧ (p1 ∨ p3) ≡ ¬p2

2 For q1 := p1 ∧ p2 and q2 := p1 ∧ ¬p2, we obtain
q1 u q2 = q1 ∧ q2 ≡ false

q1 t q2 = q1 ∨ q2 ≡ p1 ∧ (p2 ∨ ¬p2) ≡ p1

Static Program Analysis Summer Semester 2011 18.4

Predicate Abstraction III

Definition (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by
α : 2Σ → Abs(p1, . . . , pn) and γ : Abs(p1, . . . , pn)→ 2Σ

with
α(S) :=

⊔
{qσ | σ ∈ S} and γ(q) := {σ ∈ Σ | σ |= q}

where qσ :=
∧

({pi | 1 ≤ i ≤ n, σ |= pi} ∪ {¬pi | 1 ≤ i ≤ n, σ 6|= pi}).

Example

Let Var := {x, y}
Let P := {p1, p2, p3} where p1 := (x<=y), p2 := (x=y), p3 := (x>y)
If S = {σ1, σ2} ⊆ Σ with σ1 = [x 7→ 1, y 7→ 2], σ2 = [x 7→ 2, y 7→ 2],
then α(S) = qσ1 t qσ2

= (p1 ∧ ¬p2 ∧ ¬p3) t (p1 ∧ p2 ∧ ¬p3)

≡ (p1 ∧ ¬p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ ¬p3)
≡ p1 ∧ ¬p3

If q = p1 ∧ ¬p2 ∈ Abs(p1, . . . , pn), then γ(q) = {σ ∈ Σ | σ(x) < σ(y)}

Static Program Analysis Summer Semester 2011 18.5

Abstract Semantics for Predicate Abstraction

Definition (Execution relation for predicate abstraction)

If c ∈ Cmd and q ∈ Abs(p1, . . . , pn), then 〈c , q〉 is called an abstract
configuration. The execution relation for predicate abstraction is defined
by the following rules:
(skip)

〈skip, q〉 ⇒ q
(asgn)

〈x := a, q〉 ⇒
⊔
{qσ[x 7→valσ(a)] | σ |= q}

(seq1)
〈c1, q〉 ⇒ 〈c ′1, q′〉

〈c1;c2, q〉 ⇒ 〈c ′1;c2, q
′〉

(seq2)
〈c1, q〉 ⇒ q′

〈c1;c2, q〉 ⇒ 〈c2, q
′〉

(if1)
〈if b then c1 else c2, q〉 ⇒ 〈c1, q ∧ b〉

(if2)
〈if b then c1 else c2, q〉 ⇒ 〈c2, q ∧ ¬b〉

(wh1)
〈while b do c , q〉 ⇒ 〈c;while b do c , q ∧ b〉
(wh2)

〈while b do c , q〉 ⇒ q ∧ ¬b

Static Program Analysis Summer Semester 2011 18.6

Outline

1 Repetition: Predicate Abstraction

2 Counterexample-Guided Abstraction Refinement

3 Final Remarks

Static Program Analysis Summer Semester 2011 18.7

Reminder: CEGAR

Start with (coarse)
initial abstraction A

Property P satisfied in A?

Verification successful

Find run violating P

Analyze counterexample

Error found

Remove counterexample
by refining A

yes

no

real

spurious

Problems:

How to decide realness of
counterexample?
How to extract new predicates
from spurious counterexample?

Static Program Analysis Summer Semester 2011 18.8

Counterexamples

Typical properties of interest:

a certain program location is not reachable (dead code)

division by zero is excluded

the value of x never becomes negative

after program termination, the value of y is even

Definition 18.1 (Counterexample)

A counterexample is a sequence of abstract transitions of the form
〈c0, true〉 ⇒ 〈c1, q1〉 ⇒ . . .⇒ 〈ck , qk〉

where

k ≥ 1
c0, . . . , ck ∈ Cmd [or ck = ↓]
q1, . . . , qk ∈ Abs(p1, . . . , pn) with qk 6≡ false

It is called real if there exist concrete states σ0, . . . , σk ∈ Σ such that
〈c0, σ0〉 → 〈c1, σ1〉 → . . .→ 〈ck , σk〉

Otherwise it is called spurious.

Static Program Analysis Summer Semester 2011 18.9

Elimination of Spurious Counterexamples I

Lemma 18.2

If 〈c0, true〉 ⇒ 〈c1, q1〉 ⇒ . . .⇒ 〈ck , qk〉 is a spurious counterexample,
there exist predicates p0, . . . , pk such that p0 ≡ true, pk ≡ false, and

∀i ∈ {1, . . . , k}, σ, σ′ ∈ Σ : σ |= pi−1, 〈ci−1, σ〉 → 〈ci , σ′〉 =⇒ σ′ |= pi

Proof (idea).

Inductive definition of pi as strongest postconditions:

1 p0 := true

2 for i = 1, . . . , k : definition of pi depending on pi−1 and on (axiom)
transition rule applied in 〈ci−1, .〉 ⇒ 〈ci , .〉:

(skip) pi := pi−1

(asgn) pi := (pi−1[x 7→ x ′] ∧ x = a[x 7→ x ′])
(x ′ = previous value of x ; existentially quantified)

(if1) pi := pi−1 ∧ b

(if2) pi := pi−1 ∧ ¬b

(wh1) pi := pi−1 ∧ b

(wh2) pi := pi−1 ∧¬b

(yields pk ≡ false) Static Program Analysis Summer Semester 2011 18.10

Elimination of Spurious Counterexamples II

Example 18.3

Let c0 := [x := z]0;[z := z + 1]1;[y := z]2;
if [x = y]3 then [skip]4 else [skip]5

Interesting property: after termination, x 6= y, i.e., label 4 unreachable
Initial abstraction: P = ∅ (=⇒ Abs(P) = {true, false})
(Spurious) counterexample:
〈0, true〉 ⇒ 〈1, true〉 ⇒ 〈2, true〉 ⇒ 〈3, true〉 ⇒ 〈4, true〉
Forward construction of predicates:

p0 := true
(asgn) pi := (pi−1[x 7→ x ′] ∧ x = a[x 7→ x ′])
=⇒ p1 := (p0[x 7→ x’] ∧ x=z[x 7→ x’] ≡ (x=z)

(asgn) pi := (pi−1[x 7→ x ′] ∧ x = a[x 7→ x ′])
=⇒ p2 := (p1[z 7→ z’] ∧ z=z+1[z 7→ z’] ≡ (x=z’ ∧ z=z’+1)

(asgn) pi := (pi−1[x 7→ x ′] ∧ x = a[x 7→ x ′])
=⇒ p3 := (p2[y 7→ y’] ∧ y=z[y 7→ y’] ≡ (x=z’ ∧ z=z’+1 ∧ y=z)

(if1) pi := pi−1 ∧ b
=⇒ p4 := p3 ∧ (x=y) ≡ (x=z’ ∧ z=z’+1 ∧ y=z ∧ x=y) ≡ false

Static Program Analysis Summer Semester 2011 18.11

Abstraction Refinement I

Abstraction refinement step:

Using p1, . . . , pk−1 as computed before, let P ′ := P ∪ {p1, . . . , pk−1}
Refine Abs(P) to Abs(P ′)

Lemma 18.4

After refinement, the spurious counterexample
〈c0, true〉 ⇒ 〈c1, q1〉 ⇒ . . .⇒ 〈ck , qk〉 with qk 6≡ false does not exist
anymore.

Proof.

omitted

Static Program Analysis Summer Semester 2011 18.12

Abstraction Refinement II

Example 18.5 (cf. Example 18.3)

Let c0 := [x := z]0;[z := z + 1]1;[y := z]2;
if [x = y]3 then [skip]4 else [skip]5

P = ∅, P ′ = {x=z︸︷︷︸
p1

, x=z’∧ z=z’+1︸ ︷︷ ︸
p2

, x=z’∧ z=z’+1∧ y=z︸ ︷︷ ︸
p3

}

Refined abstract transitions:

〈0, true〉 ⇒ 〈1, p1 ∧ ¬p2 ∧ ¬p3〉
⇒ 〈2,¬p1 ∧ p2〉
⇒ 〈3,¬p1 ∧ p2 ∧ p3〉
⇒ 〈4,¬p1 ∧ p2 ∧ p3 ∧ x=y︸ ︷︷ ︸

≡false

〉

Static Program Analysis Summer Semester 2011 18.13

Another Example: Multiplication

Example 18.6

Let c0 := [z := 0]0;
while [x > 0]1 do

[z := z + y]2;
[x := x - 1]3;

if [z mod y = 0]4 then

[skip]5;
else

[skip]6;

Initial assumption: y > 0

Interesting property: label 6 unreachable

Initial abstraction: P = ∅ (=⇒ Abs(P) = {true, false})
Abstraction refinement: on the board

Static Program Analysis Summer Semester 2011 18.14

Where CEGAR Fails

Example 18.7

Let c0 := [x := a]0;
[y := b]1;
while [¬(x = 0)]2 do

[x := x - 1]3;
[y := y - 1]4;

if [a = b ∧ ¬(y = 0)]5 then

[skip]6;
else

[skip]7;
Interesting property: label 6 unreachable
Initial abstraction: P = ∅ (=⇒ Abs(P) = {true, false})
Abstraction refinement: on the board
Observation: iteration yields predicates of the form x = a-k and
y = b-k for all k ∈ N
Actually required: loop invariant a = b =⇒ x = y,
but x = y not generated in CEGAR loop

Static Program Analysis Summer Semester 2011 18.15

Outline

1 Repetition: Predicate Abstraction

2 Counterexample-Guided Abstraction Refinement

3 Final Remarks

Static Program Analysis Summer Semester 2011 18.16

Craig Interpolation

Problem: predicates often unnecessarily complex and involving
“irrelevant” variables

Idea: consider only variables that are relevant for previous and future
part of execution

Formally: if p |= r and r |= q with Var r ⊆ Varp ∪ Varq, then r is
called a Craig interpolant of p and q

Example 18.3:

〈x:=z; . . . , true〉 ⇒ 〈z:=z+1; . . . , x=z〉
⇒ 〈y:=z; . . . , x=z-1〉
⇒ 〈if x=y . . . , x=y-1〉
⇒ 〈skip, false〉

Static Program Analysis Summer Semester 2011 18.17

A CEGAR Implementation: BLAST

Berkeley Lazy Abstraction Software Verification Tool

Software model checker for C programs

Verifies that software satisfies behavioral requirements of associated
interfaces

Uses CEGAR with Craig interpolation

Sucessfully applied to C programs with > 130, 000 LOC

T.A. Henzinger, R. Jhala, R. Majumdar, K.L. McMillan: Abstractions
from Proofs, Proc. POPL 2004, 232–244

WWW: http://mtc.epfl.ch/software-tools/blast/

Static Program Analysis Summer Semester 2011 18.18

http://mtc.epfl.ch/software-tools/blast/

	Repetition: Predicate Abstraction
	Counterexample-Guided Abstraction Refinement
	Final Remarks

