

Static Program Analysis

Lecture 18: Abstract Interpretation VII (Counterexample-Guided Abstraction Refinement)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/spa11/>

Summer Semester 2011

- 1 Repetition: Predicate Abstraction
- 2 Counterexample-Guided Abstraction Refinement
- 3 Final Remarks

Definition (Predicate abstraction)

Let Var be a set of variables.

- A **predicate** is a Boolean expression $p \in BExp$ over Var .
- A state $\sigma \in \Sigma$ **satisfies** $p \in BExp$ ($\sigma \models p$) if $val_\sigma(p) = \text{true}$.
- p **implies** q ($p \models q$) if $\sigma \models q$ whenever $\sigma \models p$
(or: p is **stronger than** q , q is **weaker than** p).
- p and q are **equivalent** ($p \equiv q$) if $p \models q$ and $q \models p$.
- Let $P = \{p_1, \dots, p_n\} \subseteq BExp$ be a finite set of predicates, and let $\neg P := \{\neg p_1, \dots, \neg p_n\}$. An element of $P \cup \neg P$ is called a **literal**. The **predicate abstraction** lattice is defined by:

$$Abs(p_1, \dots, p_n) := \left(\left\{ \bigwedge Q \mid Q \subseteq P \cup \neg P \right\}, \models \right).$$

Abbreviations: $\text{true} := \bigwedge \emptyset$, $\text{false} := \dots \wedge p_i \wedge \dots \wedge \neg p_i \wedge \dots$

Lemma

$\text{Abs}(p_1, \dots, p_n)$ is a *complete lattice* with

- $\perp = \text{false}$, $\top = \text{true}$
- $q_1 \sqcap q_2 = q_1 \wedge q_2$
- $q_1 \sqcup q_2 = \overline{q_1 \vee q_2}$ where $\overline{b} := \bigwedge \{q \in \text{Abs}(p_1, \dots, p_n) \mid b \models q\}$
(i.e., strongest formula in $\text{Abs}(p_1, \dots, p_n)$ that is implied by $q_1 \vee q_2$)

Example

Let $P := \{p_1, p_2, p_3\}$.

① For $q_1 := p_1 \wedge \neg p_2$ and $q_2 := \neg p_2 \wedge p_3$, we obtain

$$\begin{aligned} q_1 \sqcap q_2 &= q_1 \wedge q_2 \equiv p_1 \wedge \neg p_2 \wedge p_3 \\ q_1 \sqcup q_2 &= \overline{q_1 \vee q_2} \equiv \neg p_2 \wedge (p_1 \vee p_3) \equiv \neg p_2 \end{aligned}$$

② For $q_1 := p_1 \wedge p_2$ and $q_2 := p_1 \wedge \neg p_2$, we obtain

$$\begin{aligned} q_1 \sqcap q_2 &= q_1 \wedge q_2 \equiv \text{false} \\ q_1 \sqcup q_2 &= \overline{q_1 \vee q_2} \equiv \overline{p_1 \wedge (p_2 \vee \neg p_2)} \equiv p_1 \end{aligned}$$

Definition (Galois connection for predicate abstraction)

The **Galois connection for predicate abstraction** is determined by

$$\alpha : 2^\Sigma \rightarrow \text{Abs}(p_1, \dots, p_n) \quad \text{and} \quad \gamma : \text{Abs}(p_1, \dots, p_n) \rightarrow 2^\Sigma$$

with

$$\alpha(S) := \bigsqcup \{q_\sigma \mid \sigma \in S\} \quad \text{and} \quad \gamma(q) := \{\sigma \in \Sigma \mid \sigma \models q\}$$

where $q_\sigma := \bigwedge (\{p_i \mid 1 \leq i \leq n, \sigma \models p_i\} \cup \{\neg p_i \mid 1 \leq i \leq n, \sigma \not\models p_i\})$.

Example

- Let $\text{Var} := \{\text{x}, \text{y}\}$
- Let $P := \{p_1, p_2, p_3\}$ where $p_1 := (\text{x} <= \text{y})$, $p_2 := (\text{x} = \text{y})$, $p_3 := (\text{x} > \text{y})$
- If $S = \{\sigma_1, \sigma_2\} \subseteq \Sigma$ with $\sigma_1 = [\text{x} \mapsto 1, \text{y} \mapsto 2]$, $\sigma_2 = [\text{x} \mapsto 2, \text{y} \mapsto 2]$, then
$$\begin{aligned}\alpha(S) &= q_{\sigma_1} \sqcup q_{\sigma_2} \\ &= (p_1 \wedge \neg p_2 \wedge \neg p_3) \sqcup (p_1 \wedge p_2 \wedge \neg p_3) \\ &\equiv (p_1 \wedge \neg p_2 \wedge \neg p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3) \\ &\equiv p_1 \wedge \neg p_3\end{aligned}$$
- If $q = p_1 \wedge \neg p_2 \in \text{Abs}(p_1, \dots, p_n)$, then $\gamma(q) = \{\sigma \in \Sigma \mid \sigma(\text{x}) < \sigma(\text{y})\}$

Abstract Semantics for Predicate Abstraction

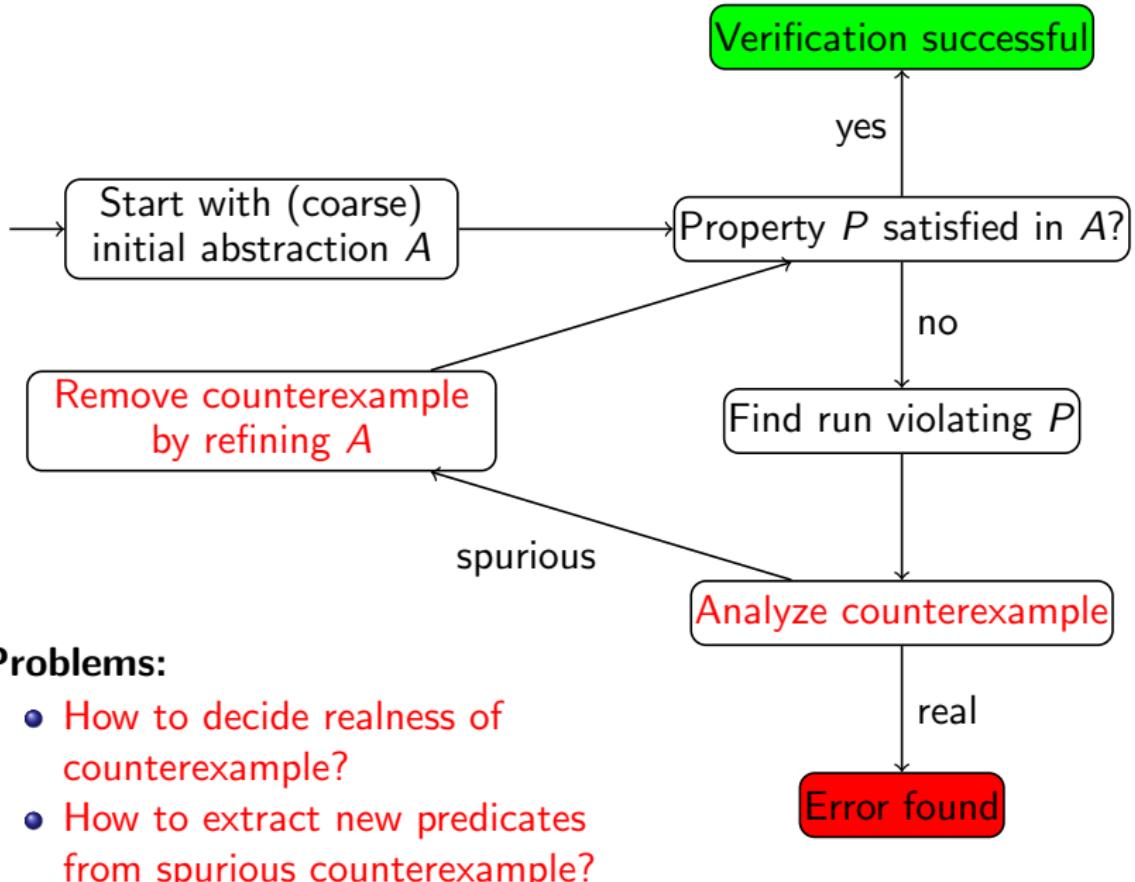
Definition (Execution relation for predicate abstraction)

If $c \in Cmd$ and $q \in Abs(p_1, \dots, p_n)$, then $\langle c, q \rangle$ is called an **abstract configuration**. The **execution relation for predicate abstraction** is defined by the following rules:

$$\begin{array}{c} (\text{skip}) \frac{}{\langle \text{skip}, q \rangle \Rightarrow q} \quad (\text{asgn}) \frac{}{\langle x := a, q \rangle \Rightarrow \bigcup \{ q_{\sigma[x \mapsto \text{val}_{\sigma}(a)]} \mid \sigma \models q \}} \\ \\ (\text{seq1}) \frac{\langle c_1, q \rangle \Rightarrow \langle c'_1, q' \rangle}{\langle c_1 ; c_2, q \rangle \Rightarrow \langle c'_1 ; c_2, q' \rangle} \quad (\text{seq2}) \frac{\langle c_1, q \rangle \Rightarrow q'}{\langle c_1 ; c_2, q \rangle \Rightarrow \langle c_2, q' \rangle} \\ \\ (\text{if1}) \frac{}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, q \rangle \Rightarrow \langle c_1, \overline{q \wedge b} \rangle} \\ (\text{if2}) \frac{}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, q \rangle \Rightarrow \langle c_2, \overline{q \wedge \neg b} \rangle} \\ \\ (\text{wh1}) \frac{}{\langle \text{while } b \text{ do } c, q \rangle \Rightarrow \langle c ; \text{while } b \text{ do } c, \overline{q \wedge b} \rangle} \\ (\text{wh2}) \frac{}{\langle \text{while } b \text{ do } c, q \rangle \Rightarrow \overline{q \wedge \neg b}} \end{array}$$

- 1 Repetition: Predicate Abstraction
- 2 Counterexample-Guided Abstraction Refinement
- 3 Final Remarks

Reminder: CEGAR



Typical properties of interest:

- a certain program location is not reachable (dead code)
- division by zero is excluded
- the value of x never becomes negative
- after program termination, the value of y is even

Definition 18.1 (Counterexample)

- A **counterexample** is a sequence of abstract transitions of the form
$$\langle c_0, \text{true} \rangle \Rightarrow \langle c_1, q_1 \rangle \Rightarrow \dots \Rightarrow \langle c_k, q_k \rangle$$
where
 - $k \geq 1$
 - $c_0, \dots, c_k \in \text{Cmd}$ [or $c_k = \downarrow$]
 - $q_1, \dots, q_k \in \text{Abs}(p_1, \dots, p_n)$ with $q_k \not\equiv \text{false}$
- It is called **real** if there exist concrete states $\sigma_0, \dots, \sigma_k \in \Sigma$ such that
$$\langle c_0, \sigma_0 \rangle \rightarrow \langle c_1, \sigma_1 \rangle \rightarrow \dots \rightarrow \langle c_k, \sigma_k \rangle$$
- Otherwise it is called **spurious**.

Elimination of Spurious Counterexamples I

Lemma 18.2

If $\langle c_0, \text{true} \rangle \Rightarrow \langle c_1, q_1 \rangle \Rightarrow \dots \Rightarrow \langle c_k, q_k \rangle$ is a spurious counterexample, there exist predicates p_0, \dots, p_k such that $p_0 \equiv \text{true}$, $p_k \equiv \text{false}$, and

$$\forall i \in \{1, \dots, k\}, \sigma, \sigma' \in \Sigma : \sigma \models p_{i-1}, \langle c_{i-1}, \sigma \rangle \rightarrow \langle c_i, \sigma' \rangle \implies \sigma' \models p_i$$

Proof (idea).

Inductive definition of p_i as **strongest postconditions**:

- ① $p_0 := \text{true}$
- ② for $i = 1, \dots, k$: definition of p_i depending on p_{i-1} and on (axiom) transition rule applied in $\langle c_{i-1}, \cdot \rangle \Rightarrow \langle c_i, \cdot \rangle$:
 - (skip) $p_i := p_{i-1}$
 - (asgn) $p_i := (p_{i-1}[x \mapsto x'] \wedge x = a[x \mapsto x'])$
(x' = previous value of x ; existentially quantified)
 - (if1) $p_i := p_{i-1} \wedge b$
 - (if2) $p_i := p_{i-1} \wedge \neg b$
 - (wh1) $p_i := p_{i-1} \wedge b$
 - (wh2) $p_i := p_{i-1} \wedge \neg b$

Example 18.3

- Let $c_0 := [x := z]^0; [z := z + 1]^1; [y := z]^2;$
if $[x = y]^3$ then [skip]⁴ else [skip]⁵
- Interesting property: after termination, $x \neq y$, i.e., label 4 unreachable
- Initial abstraction: $P = \emptyset$ ($\implies \text{Abs}(P) = \{\text{true}, \text{false}\}$)
- (Spurious) counterexample:
 $\langle 0, \text{true} \rangle \Rightarrow \langle 1, \text{true} \rangle \Rightarrow \langle 2, \text{true} \rangle \Rightarrow \langle 3, \text{true} \rangle \Rightarrow \langle 4, \text{true} \rangle$
- Forward construction of predicates:
 - $p_0 := \text{true}$
 - (asgn) $p_i := (p_{i-1}[x \mapsto x'] \wedge x = a[x \mapsto x'])$
 $\implies p_1 := (p_0[x \mapsto x'] \wedge x = z[x \mapsto x'] \equiv (x = z))$
 - (asgn) $p_i := (p_{i-1}[x \mapsto x'] \wedge x = a[x \mapsto x'])$
 $\implies p_2 := (p_1[z \mapsto z'] \wedge z = z + 1[z \mapsto z'] \equiv (x = z' \wedge z = z' + 1))$
 - (asgn) $p_i := (p_{i-1}[x \mapsto x'] \wedge x = a[x \mapsto x'])$
 $\implies p_3 := (p_2[y \mapsto y'] \wedge y = z[y \mapsto y'] \equiv (x = z' \wedge z = z' + 1 \wedge y = z))$
 - (if1) $p_i := p_{i-1} \wedge b$
 $\implies p_4 := p_3 \wedge (x = y) \equiv (x = z' \wedge z = z' + 1 \wedge y = z \wedge x = y) \equiv \text{false}$

Abstraction refinement step:

- Using p_1, \dots, p_{k-1} as computed before, let $P' := P \cup \{p_1, \dots, p_{k-1}\}$
- Refine $\text{Abs}(P)$ to $\text{Abs}(P')$

Lemma 18.4

After refinement, the spurious counterexample

$\langle c_0, \text{true} \rangle \Rightarrow \langle c_1, q_1 \rangle \Rightarrow \dots \Rightarrow \langle c_k, q_k \rangle$ with $q_k \not\equiv \text{false}$ does not exist anymore.

Proof.

omitted

Example 18.5 (cf. Example 18.3)

- Let $c_0 := [x := z]^0; [z := z + 1]^1; [y := z]^2;$
 $\quad \text{if } [x = y]^3 \text{ then } [\text{skip}]^4 \text{ else } [\text{skip}]^5$
- $P = \emptyset, P' = \{ \underbrace{x=z}_{p_1}, \underbrace{x=z' \wedge z=z'+1}_{p_2}, \underbrace{x=z' \wedge z=z'+1 \wedge y=z}_{p_3} \}$
- Refined abstract transitions:

$$\begin{aligned}\langle 0, \text{true} \rangle &\Rightarrow \langle 1, p_1 \wedge \neg p_2 \wedge \neg p_3 \rangle \\ &\Rightarrow \langle 2, \neg p_1 \wedge p_2 \rangle \\ &\Rightarrow \langle 3, \neg p_1 \wedge p_2 \wedge p_3 \rangle \\ &\Rightarrow \langle 4, \underbrace{\neg p_1 \wedge p_2 \wedge p_3 \wedge x=y}_{\equiv \text{false}} \rangle\end{aligned}$$

Example 18.6

- Let $c_0 := [z := 0]^0;$
 while $[x > 0]^1$ do
 $[z := z + y]^2;$
 $[x := x - 1]^3;$
 if $[z \bmod y = 0]^4$ then
 [skip]⁵;
 else
 [skip]⁶;

- Initial assumption: $y > 0$
- Interesting property: label 6 unreachable
- Initial abstraction: $P = \emptyset$ ($\implies \text{Abs}(P) = \{\text{true}, \text{false}\}$)
- Abstraction refinement: on the board

Where CEGAR Fails

Example 18.7

- Let $c_0 := [x := a]^0;$
 $[y := b]^1;$
 $\text{while } [\neg(x = 0)]^2 \text{ do}$
 $[x := x - 1]^3;$
 $[y := y - 1]^4;$
 $\text{if } [a = b \wedge \neg(y = 0)]^5 \text{ then}$
 $[\text{skip}]^6;$
 else
 $[\text{skip}]^7;$

- Interesting property:** label 6 unreachable
- Initial abstraction:** $P = \emptyset$ ($\implies \text{Abs}(P) = \{\text{true}, \text{false}\}$)
- Abstraction refinement:** on the board
- Observation:** iteration yields predicates of the form $x = a - k$ and $y = b - k$ for all $k \in \mathbb{N}$
- Actually required:** loop invariant $a = b \implies x = y$,
but $x = y$ not generated in CEGAR loop

- 1 Repetition: Predicate Abstraction
- 2 Counterexample-Guided Abstraction Refinement
- 3 Final Remarks

- **Problem:** predicates often unnecessarily complex and involving “irrelevant” variables
- **Idea:** consider only variables that are relevant for previous *and* future part of execution
- **Formally:** if $p \models r$ and $r \models q$ with $Var_r \subseteq Var_p \cup Var_q$, then r is called a **Craig interpolant** of p and q
- **Example 18.3:**

$$\begin{aligned}\langle x := z; \dots, \text{true} \rangle &\Rightarrow \langle z := z+1; \dots, x = z \rangle \\ &\Rightarrow \langle y := z; \dots, x = z-1 \rangle \\ &\Rightarrow \langle \text{if } x = y \dots, x = y-1 \rangle \\ &\Rightarrow \langle \text{skip}, \text{false} \rangle\end{aligned}$$

- Berkeley Lazy Abstraction Software Verification Tool
- Software model checker for C programs
- Verifies that software satisfies behavioral requirements of associated interfaces
- Uses CEGAR with Craig interpolation
- Successfully applied to C programs with > 130,000 LOC
 - T.A. Henzinger, R. Jhala, R. Majumdar, K.L. McMillan: *Abstractions from Proofs*, Proc. POPL 2004, 232–244
- WWW: <http://mtc.epfl.ch/software-tools/blast/>