Static Program Analysis

Lecture 18: Abstract Interpretation VII
(Counterexample-Guided Abstraction Refinement)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Repetition: Predicate Abstraction

“er Static Program Analysis Summer Semester 2011 18.2

Predicate Abstraction |

Definition (Predicate abstraction)

Let Var be a set of variables.
@ A predicate is a Boolean expression p € BExp over Var.
o A state 0 € X satisfies p € BExp (o |= p) if val,(p) = true.
e p implies g (p = q) if o = g whenever o = p
(or: p is stronger than g, g is weaker than p).
@ p and g are equivalent (p=q) if p|= g and g = p.
@ Let P={p1,...,pn} C BExp be a finite set of predicates, and let

=P :={=p1,...,7pn}. An element of P U =P is called a literal. The
predicate abstraction lattice is defined by:

Abs(py, ..., pn) = ({/\Q!QQPU—'P},):>.

Abbreviations: true := A\ 0, false:==...ApiA... A—piA...

Rer Static Program Analysis Summer Semester 2011 18.3

Predicate Abstraction I

Abs(p1, ..., pn) is a complete lattice with
o | =false, T = true
o 1llg2=q1Nq

@ q1Lqg>=q1 V q: where b:= N{q € Abs(p1,...,pn) | b= q}
(i.e., strongest formula in Abs(pi, ..., pn) that is implied by g1 V g2)

Let P := {p1, p2, p3}-
@ For g1 ;== p1 A —po and g2 := —p> A p3, we obtain
Mg =qgNq@=ptA-pAp3
QU@ =qaVa=-pAPLVpE)=-p
@ For g1 := p1 A p2 and g := p1 A —p2, we obtain
g1 g = g1 N\ go = false
QU@ =qaVae=pAPpV-p)=pn)

Rer Static Program Analysis Summer Semester 2011 18.4

Predicate Abstraction lil

Definition (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by
o: 2% — Abs(py,...,ps) and 7 :Abs(py,...,p,) — 2%
with
o(S)=|Hgs [0 €S}t and ~(q):={oceX|okq}
where g; := A({pi | L <i<n,olptU{-pi|1<i<nolp}).

Example
o Let Var .= {x,y}
o Let P:={p1, p2, p3} where p; := (x<=y), p2 := (x=y), p3 := (x>y)
o If S={o1,00} CXwithoy=[x—1,y—2],00=[x—2,y— 2],
then a(S) = 9o, U g0,
= (PL A —p2 A =p3) U (p1 A p2 A —ps3)
= (pr A=p2 A=p3) V (p1 A p2 A —p3)
=p1Ap3
o If g=p1 A—p2 € Abs(p1,...,pn), then y(q) = {oc € £ | o(x) < o(y)}

v

Rer Static Program Analysis Summer Semester 2011 18.5

Abstract Semantics for Predicate Abstraction

Definition (Execution relation for predicate abstraction)

If c € Cmd and q € Abs(pa, ..., pn), then (c,q) is called an abstract
configuration. The execution relation for predicate abstraction is defined
by the following rules:

(skip) ; (asgn)
<Sk1p, q> =q <X 1= 4, q> = Ll{qa[vaalg(a)] ‘ o): q}
— {c1,9) = (e, 9) (se2) (c1,9) = ¢
(c1502,q9) = (c1;02,9) (crse2,q) = (2, q)

(if1) —
(if b then ¢ else &, q) = (c1,g A b)

(if2) —
(if b then ¢ else ¢2,q) = (c2,q A —b)

(wh1)

(while b do ¢,q) = (c;while bdo c,q A b)

(wh2)

(while b do c,q) = g A —b

Rer Static Program Analysis Summer Semester 2011 18.6

© Counterexample-Guided Abstraction Refinement

“w.rH Static Program Analysis Summer Semester 2011 18.7

Reminder: CEGAR

yes

‘{ Start with (coarse) }—)‘Property P satisfied in A?J

initial abstraction A

/ o

[Remove counterexample] [Find run violating P]

by refining A
‘m

[Analyze counterexampIeJ

Problems:
@ How to decide realness of real

counterexample?
@ How to extract new predicates -
from spurious counterexample?

mH Static Program Analysis Summer Semester 2011 18.8

Counterexamples

Typical properties of interest:
@ a certain program location is not reachable (dead code)
@ division by zero is excluded
@ the value of x never becomes negative

o after program termination, the value of y is even

Definition 18.1 (Counterexample)

@ A counterexample is a sequence of abstract transitions of the form
(co,true) = (c1,q1) = ... = (Ck, Gk)

where
o k>1
® Cp,...,Ck € Cmd [or ¢, = |]
® q1,...,qk € Abs(py, ..., pn) with qx # false
@ It is called real if there exist concrete states og,...,0x € such that

<C0,0'0> = <C1,01> = oo =7 <Ck,0k>

@ Otherwise it is called spurious.

v

RWTH Static Program Analysis Summer Semester 2011 18.9

Elimination of Spurious Counterexamples |

Lemma 18.2
If (co, true) = (c1,q1) = ... = (ck, qk) is a spurious counterexample,
there exist predicates po, ..., px such that py = true, px = false, and

ViG{1,...,/(},0,0”6220):p;_1,<C,'_1,U> —><C,',J,> — o):p,'

Proof (idea).

Inductive definition of p; as strongest postconditions:

Q po ;= true
@ for i=1,..., k: definition of p; depending on p;_; and on (axiom)
transition rule applied in (¢i_1,.) = (ci,.):

¢ (Sklp) Pi == Pi-1] (If2) Pi ‘= Pi—1 A —b

o(agn)p,.—(p, 1[x = X' A x = a[x — x']) hD) b — b« A b
(x" = previous value of x; existentially quantified) O () o= i

o (ifl) pj:=pi_1 A b) g5 = prg A5k

Rer Static Program Analysis Summer Semester 2011 18.10

Elimination of Spurious Counterexamples ||

Example 18.3

o Let ¢ =[x := z]%[z := z + 1]};[y := 2]*%;
if [x = y]® then [skip]* else [skip]®
@ Interesting property: after termination, x # y, i.e., label 4 unreachable
o Initial abstraction: P = (= Abs(P) = {true, false})
(Spurious) counterexample:
(0, true) = (1,true) = (2,true) = (3,true) = (4, true)
Forward construction of predicates:

(]

@ po := true
o (asgn) p; := (pi—1[x — X1 A x = a[x — X'])
= p1:= (po[x — x’] Ax=2z[x — x’] = (x=2)
o (asgn) pi := (pi—1[x — X1 A x = a[x — x'])
= po:=(pi[z— 2’| Az=z+l[z — 2’| = (x=2’ A z=z’+1)
o (asgn) pi := (pi—i[x — X'] A x = alx — x'])
= p3 = (p2ly = ¥’ Ay=zly = y’] = (x=2’ Az=z’+1 A y=2)
° (Ifl) pi:=pi—1A\b
= ps = p3 A (x=y) = (x=2’ Az=2’+1 A y=z A x=y) = false

v

RWTH Static Program Analysis Summer Semester 2011 18.11

Abstraction Refinement |

Abstraction refinement step:
@ Using p1,..., pxk—1 as computed before, let P":= PU{p1,...,px—1}
o Refine Abs(P) to Abs(P")

Lemma 18.4

After refinement, the spurious counterexample
(co,true) = (c1,q1) = ... = (ck, k) with qi # false does not exist
anymore.

omitted

RWTH Static Program Analysis Summer Semester 2011 18.12

Abstraction Refinement IlI

Example 18.5 (cf. Example 18.3)
o Let ¢ =[x := z]%[z := z + 1]};[y := 2]*%;
if [x = y]® then [skip]* else [skip]®
o P=0, PP ={x=z,x=2’ Nz=z’+1,x=2’ Nz=z’+1 Ay=z}
P1 P2 P3

@ Refined abstract transitions:
(0,true) = (1, p1 A —p2 A —p3)

(2,7=p1 A p2)

(3,7p1 A p2 A p3)

(4,=p1 A p2 A p3 A x=y)

=false

RWTH Static Program Analysis Summer Semester 2011 18.13

Another Example: Multiplication
Example 18.6

o Let ¢ :=[z := 0]°;
while [x > 0]' do

[z =z + y]?;
[x :=x - 1]3;
if [z mod y = 0]* then
[skip]®;
else
[skip]®;

Initial assumption: y > 0
Interesting property: label 6 unreachable
Initial abstraction: P =0 (= Abs(P) = {true, false})

Abstraction refinement: on the board

RWTH Static Program Analysis Summer Semester 2011 18.14

Where CEGAR Fails

o Let ¢o:=[x := a]%
[y := B
while [-(x = 0)]? do
[x := x - 1]3;
[y =y - 1%
if [a = b A —(y = 0)]° then
[skip]®;
else
[skip]”;
@ Interesting property: label 6 unreachable
e Initial abstraction: P = (= Abs(P) = {true, false})
@ Abstraction refinement: on the board
@ Observation: iteration yields predicates of the form x = a-k and
y = b-k forall k e N
o Actually required: loop invarianta = b = x =y,
but x = y not generated in CEGAR loop

RWTH Static Program Analysis Summer Semester 2011 18.15

© Final Remarks

“er Static Program Analysis Summer Semester 2011 18.16

Craig Interpolation

Problem: predicates often unnecessarily complex and involving
“irrelevant” variables

Idea: consider only variables that are relevant for previous and future
part of execution

Formally: if p = r and r |= g with Var, C Var, U Varg, then r is
called a Craig interpolant of p and g

Example 18.3:

(z:=2z+1; ...,%x=2)
(yi=z;...,x=2z-1)
(if x=y...,x=y-1)
(skip, false)

(x:=z;...,true)

“er Static Program Analysis Summer Semester 2011 18.17

A CEGAR Implementation: BLAST

Berkeley Lazy Abstraction Software Verification Tool

Software model checker for C programs

Verifies that software satisfies behavioral requirements of associated
interfaces

Uses CEGAR with Craig interpolation

Sucessfully applied to C programs with > 130,000 LOC

e T.A. Henzinger, R. Jhala, R. Majumdar, K.L. McMillan: Abstractions
from Proofs, Proc. POPL 2004, 232-244

o WWW: http://mtc.epfl.ch/software-tools/blast/

“er Static Program Analysis Summer Semester 2011 18.18

http://mtc.epfl.ch/software-tools/blast/

	Repetition: Predicate Abstraction
	Counterexample-Guided Abstraction Refinement
	Final Remarks

