Static Program Analysis

Lecture 19: Extensions |
(Interprocedural Dataflow Analysis — MVP Solution)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Interprocedural Dataflow Analysis

“er Static Program Analysis Summer Semester 2011

@ So far: only intraprocedural analyses
(i.e., without user-defined functions or procedures)

Now: interprocedural dataflow analysis

Complications:
e correct matching between calls and returns
e parameter passing (aliasing effects)
o Here: simple setting
o only top-level declarations, no blocks or nested declarations
e mutual recursion
e one call-by-value and one call-by-result parameter
(extension to multiple and call-by-value-result parameters
straightforward)

“er Static Program Analysis Summer Semester 2011 19.3

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context-free grammar:

p ::= proc [P(val x,res y)]" is c [end]*;p | ¢ € PDec
c == [skip]' | [x := a]' | c1;c2 | if [b]' then ¢ else ¢, |
while [b]' do c | [call P(a,x)]f € Cmd
o All labels and procedure names in program p ¢ distinct

e In proc [P(val x,res y)]" is c [end]’, I, (I) refers to the entry
(exit) of P

e In [call P(a,x)];f, lc (I;) refers to the call of (return from) P
o First parameter call-by-value, second call-by-result

“er Static Program Analysis Summer Semester 2011 19.4

An Example

Example 19.1 (Fibonacci numbers)

(with extension by multiple call-by-value parameters)

proc [Fib(val x, y, res z)]! is
if [x<2]? then
[z := y+1P
else
[call Fib(x-1, y, 2)]&;
[call Fib(x-2, z, 2)]%;
[end]?;
[call Fib(5, 0, v)]3,

RWTH Static Program Analysis Summer Semester 2011 19.5

Procedure Flow Graphs

Definition 19.2 (Procedure flow graphs)
The auxiliary functions init, final, and flow are extended as follows:

init(proc [P(val x,res y)]" is c [end]*) := I,
final(proc [P(val x,res y)|" is c [end]*) := {/}
flow(proc [P(val x,res y)]" is ¢ [end]*) := {(/n, init(c))}
U flow(c)
U

{(I; 1) | I € final(c)}
init([call P(a,x)];‘) =l

final([call P(a,x)]*) == {1}

flow([call P(a,x)]¢) = {(lci ln), (i 1)}

if proc [P(val x,res y)|" is c [end]* is in p.
Moreover the interprocedural flow of a program p c is defined by
iflow := {(lc, In, Ix, I;) | p c contains [call P(a,x)];: and
proc [P(val x,res y)]|" is c [end]*} C L*

Rer Static Program Analysis Summer Semester 2011 19.6

Procedure Flow Graphs

Example 19.3 (Fibonacci numbers)
Flow graph of

proc [Fib(val x, y, res z)|! is
if [x<2]? then
e
else
[call Fib(x-1, y, 2)]¢;
[call Fib(x-2, z, z)]?;
[end]®;
[call Fib(5, 0, W3,

(on the board)

Here iflow = {(9, 1, 8,10),(4,1,8,5),(6,1,8,7)}

RWTH Static Program Analysis Summer Semester 2011 19.7

© Intraprocedural vs. Interprocedural Analysis

“er Static Program Analysis Summer Semester 2011 19.8

Naive Formulation |

o Attempt: directly transfer techniques from intraprocedural analysis
= treat (lc; In) like (Ic, In) and (k; I;) like (I, Ir)
e Given: dataflow system S = (L, E,F,(D,C),¢,)

@ For each procedure call [call P(a,x)];f:
transfer functions ¢, ¢, : D — D (definition later)

e For each procedure declaration proc [P(val x,res y)]" is ¢ [end]k:
transfer functions ¢, ¢, : D — D (definition later)

@ Induces equation system
Al = {L if I € E
LI{er(Aly) | (I')1) € For(I'']) € F} otherwise
e Problem: procedure calls (/; /,) and procedure returns (Iy; /) treated
like goto's
= nesting of calls and returns ignored
—> too many paths
— analysis information imprecise (but still correct)

RWTH Static Program Analysis Summer Semester 2011 19.9

Naive Formulation 1l

Example 19.4 (Fibonacci numbers)

proc [Fib(val x, y, res z)]! is
if [x<2]? then

E = y+1]3 o “Valid" path:
else [9,1,2,3,8,10]
[call Fib(x-1, vy, z)]‘5‘; @ “Invalid” path:
[8ca11 Fib(x-2, z, 2)]%; [9,1,2,4,1,2,3,8,10]
[end]®;

[call Fib(5, 0, M]3

RWTH Static Program Analysis Summer Semester 2011 19.10

Naive Formulation il

Example 19.5 (Impreciseness of constant propagation analysis)

proc [P(val x, res y)]l is Two “valid” and two “invalid” paths:
[y :=]2 o Valid: [4,5,1,2,3,6,7,11]
[end]3; \ = y =0 at label 11
if [y=10l] Pt(lien 15, e Valid: [4,8,1,2,3,9,10,11]
[ca » VI8 = y =0 at label 11

N
el[sye =y o Invalid: [4,5,1,2,3,9,10,11]
[call P(2, P]§; — y = —1 at label 11
[y := y-2]'% o Invalid: [4,8,1,2,3,6,7,11]
[skip]™ — y=1at label 11

— actually y = 0 at 11, but naive method yields y = T

RWTH Static Program Analysis Summer Semester 2011 19.11

© The MVP Solution

“er Static Program Analysis Summer Semester 2011 19.12

Valid Paths |

@ Consider only paths with correct nesting of procedure calls and returns

e Will yield MVP solution (Meet over all Valid Paths)

Definition 19.6 (Valid paths I)
Given a dataflow system S = (L, E, F,(D,C),¢,¢) and h, h € L, the set
of valid paths from /; to is generated by the nonterminal symbol P[/1, k]
according to the following productions:

Plh, k] — K whenever /1 = b
P[/l7 /3] — /1, P[I2, /3] whenever (/1, /2) €F
Plle, 1l = lc, P[ln, k], Pllr, 1] whenever (lc, In, I,) € iflow

RWTH Static Program Analysis Summer Semester 2011 19.13

Valid Paths I

Example 19.7 (Fibonacci numbers (cf. Example 19.4))

proc [Fib(val x, y, res z)]|! is Valid paths from 9 to 10:

if [x<2]? then
[z := y+iP
else
[call Fib(x-1, y, 2)]¢;
[call Fib(x-2, z, 2)]%;
[end]®;
[call Fib(5, 0, W]},

Reminder:
P[/l, /2] — /1
for Il = /2
Plh, 3] = h, Plk, k]
for (/1, /2) eF
Plle,] = Ie, Plln, k], P[lr, 1]

for (Ie, In, I, I;) € iflow

P[9,10] — 9, P[1,8], P[10, 10]

P[1,8] — 1, P[2,8]

P[2,8] — 2, P[3,8]

P[2,8] — 2, P[4,8]

P[3,8] — 3, P[8,8]

P[4,8] — 4, P[1,8], P[5, 8]
P[5,8] — 5, P[6, 8]

P[7,8] — 7, P[8, 8]

P[8,8] — 8

P[10,10] — 10

Thus [9,1,2,3,8,10] € L(P[9, 10]),
[9,1,2,4,1,2,3,8,10] ¢ L(P[9, 10])

v

Static Program Analysis

Summer Semester 2011

19.14

The MVP Solution |

Definition 19.8 (Valid paths II)

Let S=(L,E,F,(D,C),t,) be a dataflow system. For every / € L, the
set of valid paths up to / is given by

VPath(l) i= {[h, ..., k1] | k>1,h € E, I = I,
[h,...,] valid path from / to I}.

For a path p =[h, ..., lk—1] € VPath(l), we define the transfer function
¢p:D— D by
Pp =Pl ©...0py0idp

(so that ¢ = idp).

RWTH Static Program Analysis Summer Semester 2011 19.15

The MVP Solution |l

Definition 19.9 (MVP solution)

Let S=(L,E,F,(D,C),t,¢) be a dataflow system where
L={h,...,In}. The MVP solution for S is determined by
mvp(S) := (mvp(h),...,mvp(ly)) € D"
where, for every | € L,
mvp(/) := | {ep(e) | p € VPath(1)}.

Corollary 19.10

Q@ mvp(S) C mop(S)
@ The MVP solution is undecidable.)

@ since VPath(/) C Path(l) for every | € L

@ since mvp(S) = mop(S) in intraprocedural case, and by undecidability
of MOP solution (cf. Theorem 6.2)

Ol

v

Rer Static Program Analysis Summer Semester 2011 19.16

	Interprocedural Dataflow Analysis
	Intraprocedural vs. Interprocedural Analysis
	The MVP Solution

