
Static Program Analysis
Lecture 19: Extensions I

(Interprocedural Dataflow Analysis – MVP Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Interprocedural Dataflow Analysis

2 Intraprocedural vs. Interprocedural Analysis

3 The MVP Solution

Static Program Analysis Summer Semester 2011 19.2

Overview

So far: only intraprocedural analyses
(i.e., without user-defined functions or procedures)

Now: interprocedural dataflow analysis

Complications:
correct matching between calls and returns
parameter passing (aliasing effects)

Here: simple setting

only top-level declarations, no blocks or nested declarations
mutual recursion
one call-by-value and one call-by-result parameter
(extension to multiple and call-by-value-result parameters
straightforward)

Static Program Analysis Summer Semester 2011 19.3

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context-free grammar:

p ::= proc [P(val x,res y)]ln is c [end]lx;p | ε ∈ PDec
c ::= [skip]l | [x := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [call P(a,x)]lclr ∈ Cmd

All labels and procedure names in program p c distinct

In proc [P(val x,res y)]ln is c [end]lx , ln (lx) refers to the entry
(exit) of P

In [call P(a,x)]lclr , lc (lr) refers to the call of (return from) P

First parameter call-by-value, second call-by-result

Static Program Analysis Summer Semester 2011 19.4

An Example

Example 19.1 (Fibonacci numbers)

(with extension by multiple call-by-value parameters)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

Static Program Analysis Summer Semester 2011 19.5

Procedure Flow Graphs

Definition 19.2 (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:

init(proc [P(val x,res y)]ln is c [end]lx) := ln
final(proc [P(val x,res y)]ln is c [end]lx) := {lx}
flow(proc [P(val x,res y)]ln is c [end]lx) := {(ln, init(c))}

∪ flow(c)
∪ {(l , lx) | l ∈ final(c)}

init([call P(a,x)]lclr) := lc
final([call P(a,x)]lclr) := {lr}
flow([call P(a,x)]lclr) := {(lc ; ln), (lx ; lr)}

if proc [P(val x,res y)]ln is c [end]lx is in p.

Moreover the interprocedural flow of a program p c is defined by
iflow := {(lc , ln, lx , lr) | p c contains [call P(a,x)]lclr and

proc [P(val x,res y)]ln is c [end]lx} ⊆ L4

Static Program Analysis Summer Semester 2011 19.6

Procedure Flow Graphs

Example 19.3 (Fibonacci numbers)

Flow graph of

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

(on the board)

Here iflow = {(9, 1, 8, 10), (4, 1, 8, 5), (6, 1, 8, 7)}

Static Program Analysis Summer Semester 2011 19.7

Outline

1 Interprocedural Dataflow Analysis

2 Intraprocedural vs. Interprocedural Analysis

3 The MVP Solution

Static Program Analysis Summer Semester 2011 19.8

Naive Formulation I

Attempt: directly transfer techniques from intraprocedural analysis
=⇒ treat (lc ; ln) like (lc , ln) and (lx ; lr) like (lx , lr)

Given: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

For each procedure call [call P(a,x)]lclr :
transfer functions ϕlc , ϕlr : D → D (definition later)

For each procedure declaration proc [P(val x,res y)]ln is c [end]lx :
transfer functions ϕln , ϕlx : D → D (definition later)

Induces equation system

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F or (l ′; l) ∈ F} otherwise

Problem: procedure calls (lc ; ln) and procedure returns (lx ; lr) treated
like goto’s
=⇒ nesting of calls and returns ignored
=⇒ too many paths
=⇒ analysis information imprecise (but still correct)

Static Program Analysis Summer Semester 2011 19.9

Naive Formulation II

Example 19.4 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

“Valid” path:
[9, 1, 2, 3, 8, 10]

“Invalid” path:
[9, 1, 2, 4, 1, 2, 3, 8, 10]

Static Program Analysis Summer Semester 2011 19.10

Naive Formulation III

Example 19.5 (Impreciseness of constant propagation analysis)

proc [P(val x, res y)]1 is

[y := x]2

[end]3;
if [y=0]4 then

[call P(1, y)]56;
[y := y-1]7

else

[call P(2, y)]89;
[y := y-2]10;

[skip]11

Two “valid” and two “invalid” paths:

Valid: [4, 5, 1, 2, 3, 6, 7, 11]
=⇒ y = 0 at label 11

Valid: [4, 8, 1, 2, 3, 9, 10, 11]
=⇒ y = 0 at label 11

Invalid: [4, 5, 1, 2, 3, 9, 10, 11]
=⇒ y = −1 at label 11

Invalid: [4, 8, 1, 2, 3, 6, 7, 11]
=⇒ y = 1 at label 11

=⇒ actually y = 0 at 11, but naive method yields y = >

Static Program Analysis Summer Semester 2011 19.11

Outline

1 Interprocedural Dataflow Analysis

2 Intraprocedural vs. Interprocedural Analysis

3 The MVP Solution

Static Program Analysis Summer Semester 2011 19.12

Valid Paths I

Consider only paths with correct nesting of procedure calls and returns

Will yield MVP solution (Meet over all Valid Paths)

Definition 19.6 (Valid paths I)

Given a dataflow system S = (L,E ,F , (D,v), ι, ϕ) and l1, l2 ∈ L, the set
of valid paths from l1 to l2 is generated by the nonterminal symbol P[l1, l2]
according to the following productions:

P[l1, l2] → l1 whenever l1 = l2
P[l1, l3] → l1,P[l2, l3] whenever (l1, l2) ∈ F
P[lc , l] → lc ,P[ln, lx],P[lr , l] whenever (lc , ln, lx , lr) ∈ iflow

Static Program Analysis Summer Semester 2011 19.13

Valid Paths II

Example 19.7 (Fibonacci numbers (cf. Example 19.4))

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

Reminder:

P[l1, l2] → l1
for l1 = l2

P[l1, l3] → l1,P[l2, l3]
for (l1, l2) ∈ F

P[lc , l] → lc ,P[ln, lx],P[lr , l]
for (lc , ln, lx , lr) ∈ iflow

Valid paths from 9 to 10:

P[9, 10] → 9,P[1, 8],P[10, 10]
P[1, 8] → 1,P[2, 8]
P[2, 8] → 2,P[3, 8]
P[2, 8] → 2,P[4, 8]
P[3, 8] → 3,P[8, 8]
P[4, 8] → 4,P[1, 8],P[5, 8]
P[5, 8] → 5,P[6, 8]
P[6, 8] → 6,P[1, 8],P[7, 8]
P[7, 8] → 7,P[8, 8]
P[8, 8] → 8

P[10, 10] → 10

Thus [9, 1, 2, 3, 8, 10] ∈ L(P[9, 10]),
[9, 1, 2, 4, 1, 2, 3, 8, 10] /∈ L(P[9, 10])

Static Program Analysis Summer Semester 2011 19.14

The MVP Solution I

Definition 19.8 (Valid paths II)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system. For every l ∈ L, the
set of valid paths up to l is given by

VPath(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E , lk = l ,
[l1, . . . , lk] valid path from l1 to lk}.

For a path p = [l1, . . . , lk−1] ∈ VPath(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Static Program Analysis Summer Semester 2011 19.15

The MVP Solution II

Definition 19.9 (MVP solution)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MVP solution for S is determined by

mvp(S) := (mvp(l1), . . . ,mvp(ln)) ∈ Dn

where, for every l ∈ L,
mvp(l) :=

⊔
{ϕp(ι) | p ∈ VPath(l)}.

Corollary 19.10

1 mvp(S) v mop(S)

2 The MVP solution is undecidable.

Proof.
1 since VPath(l) ⊆ Path(l) for every l ∈ L

2 since mvp(S) = mop(S) in intraprocedural case, and by undecidability
of MOP solution (cf. Theorem 6.2)

Static Program Analysis Summer Semester 2011 19.16

	Interprocedural Dataflow Analysis
	Intraprocedural vs. Interprocedural Analysis
	The MVP Solution

