
Static Program Analysis
Lecture 1: Introduction to Program Analysis

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

4 Overview of the Lecture

Static Program Analysis Summer Semester 2011 1.2

People

Lectures: Thomas Noll

Lehrstuhl für Informatik 2, Room 4211
noll@cs.rwth-aachen.de

Exercise classes:

Jonathan Heinen (heinen@cs.rwth-aachen.de)
Christina Jansen (christina.jansen@cs.rwth-aachen.de)

Student assistant:

Stefan Breuer

Static Program Analysis Summer Semester 2011 1.3

noll@cs.rwth-aachen.de
heinen@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de

Target Audience

MSc Informatik:

Theoretische Informatik

MSc Software Systems Engineering:

Theoretical CS
Specialization Formal Methods, Programming Languages and Software
Validation

Diplomstudiengang Informatik:

Theoretische Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung
Combination with Katoen, Thomas, Vöcking, ...

Static Program Analysis Summer Semester 2011 1.4

Expectations

What you can expect:

Foundations of static analysis of computer software
Implementation and tool support
Applications in, e.g., program optimization and software validation

What we expect: basic knowledge in

Programming (essential concepts of imperative and object-oriented
programming languages and elementary programming techniques)
helpful: Theory of Programming (such as Semantics of Programming
Languages or Software Verification)

Static Program Analysis Summer Semester 2011 1.5

Organization

Schedule:

Lecture Wed 10:00–11:30 AH 6 (starting April 6)
Lecture Thu 15:00–16:30 AH 5 (bi-weekly; starting April 14)
Exercise class Wed 10:00–11:30 AH 2 (starting April 18)
see overview at http://www-i2.informatik.rwth-aachen.de/i2/spa11/

0th assignment sheet next week, presented April 18

Work on assignments in groups of three

Oral exam on appointment

for MSc candidates (6 credits)
for Diplom candidates (Übungsschein)

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes “on demand”,
rest up to you

Static Program Analysis Summer Semester 2011 1.6

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

4 Overview of the Lecture

Static Program Analysis Summer Semester 2011 1.7

What Is It All About?

Static (Program) Analysis

Static analysis is a general method for automated reasoning on
requirements, design models, and programs.

Distinguishing features:

Static: based on source code, not on (dynamic) execution
(in contrast to testing or run-time verification)

Automated: “push-button” technology, i.e., little user intervention
(in contrast to theorem-proving approaches)

(Main) Applications:

Optimizing compilers: exploit program properties to improve runtime or
memory efficiency of generated code
(dead code elimination, constant propagation, ...)

Software validation: verify program correctness
(bytecode verification, shape analysis, ...)

Static Program Analysis Summer Semester 2011 1.8

Dream of Static Program Analysis

Program Analyzer Result

−→ −→

↑

Property specification

Static Program Analysis Summer Semester 2011 1.9

Fundamental Limits

Theorem 1.1 (Theorem of Rice (1953))

All non-trivial semantic questions about programs from a universal
programming language are undecidable.

Example 1.2 (Detection of constants)

read(x);
if x > 0 then

P;
y := x;

else
y := 1;

end;
write(y);

?∼

read(x);
if x > 0 then

P;
y := x;

else
y := 1;

end;
write(1);

write(y) can be equivalently replaced by some constant write(1)
iff program P does never terminate

Thus: constant detection is undecidable
Static Program Analysis Summer Semester 2011 1.10

Two Solutions

1 Weaker models:
employ abstract models of systems

finite automata, labeled transition systems, ...

perform exact analyses

model checking, theorem proving, ...

2 Weaker analyses (here)
employ concrete models of systems

source code

perform approximate analyses

dataflow analysis, abstract interpretation, type checking, ...

Static Program Analysis Summer Semester 2011 1.11

Soundness vs. Completeness

Soundness:
Predicted results must apply to every system execution
Examples:

constant detection: replacing expression by appropriate constant does
not change program results
pointer analysis: analysis finds pointer variable x 6= 0
=⇒ no run-time exception when dereferencing x

Absolutely mandatory for trustworthiness of analysis results!

Completeness:
Behavior of every system execution catched by analysis
Examples:

program always terminates =⇒ analysis must be able to detect
value of variable in [0, 255] =⇒ interval analysis finds out

Usually not guaranteed due to approximation
Degree of completeness determines quality of analysis

Correctness := Soundness ∧ Completeness
(often for logical axiomatizations and such, usually not guaranteed for
program analyses)

Static Program Analysis Summer Semester 2011 1.12

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

4 Overview of the Lecture

Static Program Analysis Summer Semester 2011 1.13

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c

Static Program Analysis Summer Semester 2011 1.14

Syntax of WHILE Programs

Definition 1.3 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

Static Program Analysis Summer Semester 2011 1.15

A WHILE Program and its Flow Diagram

Example 1.4

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

x := 6 x > 0?

z := 0

v := v − 1

z := z + 1

x := x − 1y := 7

v := y

v > 0?

STOP

T

F

T

F

Effect: z := x * y = 42

Static Program Analysis Summer Semester 2011 1.16

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

4 Overview of the Lecture

Static Program Analysis Summer Semester 2011 1.17

(Preliminary) Overview of Contents

1 Introduction to Program Analysis
2 Dataflow analysis (DFA)

1 Available expressions problem
2 Live variables problem
3 The DFA framework
4 Solving DFA equations
5 The meet-over-all-paths (MOP) solution
6 Case study: the Java bytecode verifier

3 Abstract interpretation (AI)
1 Working principle
2 Program semantics & correctness
3 Galois connections
4 Applications (sign analysis, interval analysis, ...)

4 Interprocedural analysis

5 Pointer analysis

Static Program Analysis Summer Semester 2011 1.18

	Preliminaries
	Introduction
	The Imperative Model Language WHILE
	Overview of the Lecture

