Static Program Analysis

Lecture 1: Introduction to Program Analysis

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

© Preliminaries

“er Static Program Analysis Summer Semester 2011 1.2

@ Lectures: Thomas Noll

o Lehrstuhl fiir Informatik 2, Room 4211
@ noll@cs.rwth-aachen.de

@ Exercise classes:

o Jonathan Heinen (heinen@cs.rwth-aachen.de)
o Christina Jansen (christina.jansen@cs.rwth-aachen.de)

@ Student assistant:
o Stefan Breuer

“er Static Program Analysis Summer Semester 2011 1.3

noll@cs.rwth-aachen.de
heinen@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de

Target Audience

@ MSc Informatik:
o Theoretische Informatik

@ MSc Software Systems Engineering:
o Theoretical CS

e Specialization Formal Methods, Programming Languages and Software
Validation

@ Diplomstudiengang Informatik:

o Theoretische Informatik

o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung

e Combination with Katoen, Thomas, Vocking, ...

“er Static Program Analysis Summer Semester 2011 1.4

Expectations

o What you can expect:
e Foundations of static analysis of computer software
o Implementation and tool support
e Applications in, e.g., program optimization and software validation
@ What we expect: basic knowledge in
o Programming (essential concepts of imperative and object-oriented
programming languages and elementary programming techniques)
o helpful: Theory of Programming (such as Semantics of Programming
Languages or Software Verification)

RWTH Static Program Analysis Summer Semester 2011 1.5

@ Schedule:

Lecture Wed 10:00-11:30 AH 6 (starting April 6)

Lecture Thu 15:00-16:30 AH 5 (bi-weekly; starting April 14)
Exercise class Wed 10:00-11:30 AH 2 (starting April 18)

see overview at http://www-1i2.informatik.rwth-aachen.de/i2/spall/

Oth assignment sheet next week, presented April 18

Work on assignments in groups of three
@ Oral exam on appointment

o for MSc candidates (6 credits)
o for Diplom candidates (Ubungsschein)

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes “on demand”,
rest up to you

RWTH Static Program Analysis Summer Semester 2011 1.6

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

© Introduction

“er Static Program Analysis Summer Semester 2011 1.7

What Is It All About?

Static (Program) Analysis

Static analysis is a general method for automated reasoning on
requirements, design models, and programs.

Distinguishing features:
Static: based on source code, not on (dynamic) execution
(in contrast to testing or run-time verification)
Automated: “push-button” technology, i.e., little user intervention
(in contrast to theorem-proving approaches)

(Main) Applications:
Optimizing compilers: exploit program properties to improve runtime or
memory efficiency of generated code
(dead code elimination, constant propagation, ...)
Software validation: verify program correctness
(bytecode verification, shape analysis, ...)

“er Static Program Analysis Summer Semester 2011 1.8

Dream of Static Program Analysis

Program Analyzer Result

Property specification

“er Static Program Analysis Summer Semester 2011 1.9

Fundamental Limits

Theorem 1.1 (Theorem of Rice (1953))

All non-trivial semantic questions about programs from a universal
programming language are undecidable.

Example 1.2 (Detection of constants)

read(x); read(x);
if x > 0 then if x > 0 then
P; P;
y = X; ? y = X;
else ~ else
y :=1; W 8= ilg
end; end;
write(y); write(1);

write(y) can be equivalently replaced by some constant write(1)
iff program P does never terminate

Thus: constant detection is undecidable
RWTH Static Program Analysis Summer Semester 2011 1.10

Two Solutions

© Weaker models:
e employ abstract models of systems
o finite automata, labeled transition systems, ...
e perform exact analyses
@ model checking, theorem proving, ...
@ Weaker analyses (here)
e employ concrete models of systems
@ source code
e perform approximate analyses

o dataflow analysis, abstract interpretation, type checking, ...

“er Static Program Analysis Summer Semester 2011 1.11

Soundness vs. Completeness

@ Soundness:

o Predicted results must apply to every system execution
o Examples:

@ constant detection: replacing expression by appropriate constant does
not change program results

@ pointer analysis: analysis finds pointer variable x % 0
== no run-time exception when dereferencing x

o Absolutely mandatory for trustworthiness of analysis results!
o Completeness:

e Behavior of every system execution catched by analysis
o Examples:

@ program always terminates = analysis must be able to detect
@ value of variable in [0,255] = interval analysis finds out

e Usually not guaranteed due to approximation
o Degree of completeness determines quality of analysis
@ Correctness := Soundness A Completeness
(often for logical axiomatizations and such, usually not guaranteed for
program analyses)

RWTH Static Program Analysis Summer Semester 2011 1.12

9 The Imperative Model Language WHILE

“er Static Program Analysis Summer Semester 2011 1.13

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,-1,...} =z
Truth values B = {true, false} t
Variables Var = {x,y,...} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) ¢

RWTH Static Program Analysis Summer Semester 2011 1.14

Syntax of WHILE Programs

Definition 1.3 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a:; =z | X | aitas | ai—ar | ai*as € AEXp
b:=t|aj=ay|ai>a | b | b1 Aby| b1V by € BExp
c:=skip|x :=a|c;c | if b then ¢; else ¢ | while b do c € Cmd

v

Remarks: we assume that

@ the syntax of numbers, truth values and variables is predefined
(i.e., no "“lexical analysis")

@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

RWTH Static Program Analysis Summer Semester 2011 1.15

A WHILE Program and its Flow Diagram

y :=7;
ZhE;O; 04 % 3= 0 v o=y
while x > fo)
S QH‘F
vV =Y @
while v > 0 d |t
v :i=v - 1; v i=v - 1

z =z + 1

Effect: z := x x y = 42

v

RWTH Static Program Analysis Summer Semester 2011 1.16

e Overview of the Lecture

“er Static Program Analysis Summer Semester 2011 1.17

(Preliminary) Overview of Contents

© Introduction to Program Analysis
@ Dataflow analysis (DFA)

Available expressions problem
Live variables problem
The DFA framework
Solving DFA equations
The meet-over-all-paths (MOP) solution
Case study: the Java bytecode verifier
© Abstract interpretation (Al)
@ Working principle
@ Program semantics & correctness

© Galois connections
@ Applications (sign analysis, interval analysis, ...)

900000

Q Interprocedural analysis

© Pointer analysis

“er Static Program Analysis Summer Semester 2011 1.18

	Preliminaries
	Introduction
	The Imperative Model Language WHILE
	Overview of the Lecture

