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@ Lectures: Thomas Noll

o Lehrstuhl fiir Informatik 2, Room 4211
@ noll@cs.rwth-aachen.de

@ Exercise classes:

o Jonathan Heinen (heinen@cs.rwth-aachen.de)
o Christina Jansen (christina.jansen@cs.rwth-aachen.de)

@ Student assistant:
o Stefan Breuer
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Target Audience

@ MSc Informatik:
o Theoretische Informatik

@ MSc Software Systems Engineering:
o Theoretical CS

e Specialization Formal Methods, Programming Languages and Software
Validation

@ Diplomstudiengang Informatik:

o Theoretische Informatik

o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung

e Combination with Katoen, Thomas, Vocking, ...
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Expectations

o What you can expect:
e Foundations of static analysis of computer software
o Implementation and tool support
e Applications in, e.g., program optimization and software validation
@ What we expect: basic knowledge in
o Programming (essential concepts of imperative and object-oriented
programming languages and elementary programming techniques)
o helpful: Theory of Programming (such as Semantics of Programming
Languages or Software Verification)
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@ Schedule:

Lecture Wed 10:00-11:30 AH 6 (starting April 6)

Lecture Thu 15:00-16:30 AH 5 (bi-weekly; starting April 14)
Exercise class Wed 10:00-11:30 AH 2 (starting April 18)

see overview at http://www-1i2.informatik.rwth-aachen.de/i2/spall/

Oth assignment sheet next week, presented April 18

Work on assignments in groups of three
@ Oral exam on appointment

o for MSc candidates (6 credits)
o for Diplom candidates (Ubungsschein)

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes “on demand”,
rest up to you
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What Is It All About?

Static (Program) Analysis

Static analysis is a general method for automated reasoning on
requirements, design models, and programs.

Distinguishing features:
Static: based on source code, not on (dynamic) execution
(in contrast to testing or run-time verification)
Automated: “push-button” technology, i.e., little user intervention
(in contrast to theorem-proving approaches)

(Main) Applications:
Optimizing compilers: exploit program properties to improve runtime or
memory efficiency of generated code
(dead code elimination, constant propagation, ...)
Software validation: verify program correctness
(bytecode verification, shape analysis, ...)
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Dream of Static Program Analysis

Program Analyzer Result

Property specification
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Fundamental Limits

Theorem 1.1 (Theorem of Rice (1953))

All non-trivial semantic questions about programs from a universal
programming language are undecidable.

Example 1.2 (Detection of constants)

read(x); read(x);
if x > 0 then if x > 0 then
P; P;
y = X; ? y = X;
else ~ else
y :=1; W 8= ilg
end; end;
write(y); write(1);

write(y) can be equivalently replaced by some constant write(1)
iff program P does never terminate

Thus: constant detection is undecidable
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Two Solutions

© Weaker models:
e employ abstract models of systems
o finite automata, labeled transition systems, ...
e perform exact analyses
@ model checking, theorem proving, ...
@ Weaker analyses (here)
e employ concrete models of systems
@ source code
e perform approximate analyses

o dataflow analysis, abstract interpretation, type checking, ...
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Soundness vs. Completeness

@ Soundness:

o Predicted results must apply to every system execution
o Examples:

@ constant detection: replacing expression by appropriate constant does
not change program results

@ pointer analysis: analysis finds pointer variable x % 0
== no run-time exception when dereferencing x

o Absolutely mandatory for trustworthiness of analysis results!
o Completeness:

e Behavior of every system execution catched by analysis
o Examples:

@ program always terminates = analysis must be able to detect
@ value of variable in [0,255] = interval analysis finds out

e Usually not guaranteed due to approximation
o Degree of completeness determines quality of analysis
@ Correctness := Soundness A Completeness
(often for logical axiomatizations and such, usually not guaranteed for
program analyses)
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9 The Imperative Model Language WHILE
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Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,-1,...} =z
Truth values B = {true, false} t
Variables Var = {x,y,...}  x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) ¢
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Syntax of WHILE Programs

Definition 1.3 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a:; =z | X | aitas | ai—ar | ai*as € AEXp
b:=t|aj=ay|ai>a | b | b1 Aby| b1V by € BExp
c:=skip|x :=a|c;c | if b then ¢; else ¢ | while b do c € Cmd

v

Remarks: we assume that

@ the syntax of numbers, truth values and variables is predefined
(i.e., no "“lexical analysis")

@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)
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A WHILE Program and its Flow Diagram

y :=7;
ZhE;O; 04 % 3= 0 v o=y
while x > fo)
S QH‘F
vV =Y @
while v > 0 d |t
v :i=v - 1; v i=v - 1

z =z + 1

Effect: z := x x y = 42

v
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e Overview of the Lecture
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(Preliminary) Overview of Contents

© Introduction to Program Analysis
@ Dataflow analysis (DFA)

Available expressions problem
Live variables problem
The DFA framework
Solving DFA equations
The meet-over-all-paths (MOP) solution
Case study: the Java bytecode verifier
© Abstract interpretation (Al)
@ Working principle
@ Program semantics & correctness

© Galois connections
@ Applications (sign analysis, interval analysis, ...)

900000

Q Interprocedural analysis

© Pointer analysis
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