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Dataflow Analysis: the Approach

Traditional form of program analysis

Idea: describe how analysis information flows through program

Distinctions:

direction of flow:
forward vs. backward analyses

procedures:
interprocedural vs. intraprocedural analyses

quantification over paths:
may (union) vs. must (intersection) analyses

dependence on statement order:
flow-sensitive vs. flow-insensitive analyses
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Labeled Programs

Goal: localization of analysis information

Dataflow information will be associated with
skip statements
assignments
tests in conditionals (if) and loops (while)

Assume set of labels L with meta variable l ∈ L (usually L = N)

Definition 2.1 (Labeled WHILE programs)

The syntax of labeled WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= [skip]l | [x := a]l | c1;c2 |

if [b]l then c1 else c2 | while [b]l do c ∈ Cmd

All labels in c ∈ Cmd assumed distinct, denoted by Lc

Labeled fragments of c called blocks, denoted by Blkc
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A WHILE Program

with Labels

Example 2.2

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1;
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A WHILE Program with Labels

Example 2.2

[x := 6]1;
[y := 7]2;
[z := 0]3;
while [x > 0]4 do

[x := x - 1]5;
[v := y]6;
while [v > 0]7 do

[v := v - 1]8;
[z := z + 1]9
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Representing Control Flow I

Every (labeled) statement has a single entry (given by the initial label) and
generally multiple exits (given by the final labels):

Definition 2.3 (Initial and final labels)

The mapping init : Cmd → L returns the initial label of a statement:
init([skip]l) := l

init([x := a]l) := l
init(c1;c2) := init(c1)

init(if [b]l then c1 else c2) := l
init(while [b]l do c) := l

The mapping final : Cmd → 2L returns the set of final labels of a
statement:

final([skip]l) := {l}
final([x := a]l) := {l}

final(c1;c2) := final(c2)
final(if [b]l then c1 else c2) := final(c1) ∪ final(c2)

final(while [b]l do c) := {l}
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Representing Control Flow II

Definition 2.4 (Flow relation)

Given a statement c ∈ Cmd , the (control) flow relation flow(c) ⊆ L× L is
defined by

flow([skip]l) := ∅
flow([x := a]l) := ∅

flow(c1;c2) := flow(c1) ∪ flow(c2) ∪
{(l , init(c2)) | l ∈ final(c1)}

flow(if [b]l then c1 else c2) := flow(c1) ∪ flow(c2) ∪
{(l , init(c1)), (l , init(c2))}

flow(while [b]l do c) := flow(c) ∪ {(l , init(c))} ∪
{(l ′, l) | l ′ ∈ final(c)}
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Representing Control Flow III

Example 2.5

c = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by
(control) flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4
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Representing Control Flow IV

To simplify the presentation we will often assume that the pro-
gram c ∈ Cmd under consideration has an isolated entry, meaning that

{l ∈ L | (l , init(c)) ∈ flow(c)} = ∅
(which is the case when c does not start with a while loop)

Similarly: c ∈ Cmd has isolated exits if
{l ′ ∈ L | (l , l ′) ∈ flow(c) for some l ∈ final(c)} = ∅

(which is the case when no final label identifies a loop header)

Example 2.6

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

has an isolated entry but not isolated exits
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Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

Can be used for Common Subexpression Elimination:
replace subexpression by variable that contains up-to-date value

Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do
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Formalizing Available Expressions Analysis I

Given a ∈ AExp, b ∈ BExp, c ∈ Cmd
Var a/Varb/Var c denotes the set of all variables occurring in a/b/c
AExpb/AExpc denote the sets of all complex arithmetic expressions
occurring in b/c

An expression a is killed in a block B if any of the variables in a is
modified in B
Formally: killAE : Blkc → 2AExpc is defined by

killAE([skip]l) := ∅
killAE([x := a]l) := {a′ ∈ AExpc | x ∈ Vara′}

killAE([b]l) := ∅

An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B
Formally: genAE : Blkc → 2AExpc is defined by

genAE([skip]l) := ∅
genAE([x := a]l) := {a | x /∈ Vara}

genAE([b]l) := AExpb
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Formalizing Available Expressions Analysis II

Example 2.8 (killAE/genAE functions)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

AExpc = {a+b, a*b, a+1}
Lc killAE(B l) genAE(B l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}
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The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Lc , AEl ⊆ AExpc represents the set of available
expressions at the entry of block B l

Formally, for c ∈ Cmd with isolated entry:

AEl =

{
∅ if l = init(c)⋂
{ϕl ′(AEl ′) | (l ′, l) ∈ flow(c)} otherwise

where ϕl ′ : 2AExpc → 2AExpc denotes the transfer function of block
B l ′ , given by

ϕl ′(A) := (A \ killAE(B l ′)) ∪ genAE(B l ′)

Characterization of analysis:

forward: starts in init(c) and proceeds downwards
must:

⋂
in equation for AEl

flow-sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose greatest one
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The Equation System II

Reminder: AEl =

{
∅ if l = init(c)⋂
{ϕl′(AEl′) | (l ′, l) ∈ flow(c)} otherwise

ϕl′(E ) = (E \ killAE(B l′)) ∪ genAE(B l′)

Example 2.9 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Lc killAE(B l) genAE(B l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅
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