

Static Program Analysis

Lecture 2: Dataflow Analysis I (Introduction & Available Expressions Analysis)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/spa11/>

Summer Semester 2011

- 1 Preliminaries on Dataflow Analysis
- 2 An Example: Available Expressions Analysis

- Traditional form of **program analysis**

- Traditional form of **program analysis**
- Idea: describe how analysis information **flows** through program

- Traditional form of **program analysis**
- Idea: describe how analysis information **flows** through program
- Distinctions:
 - direction of flow:
forward vs. **backward** analyses
 - procedures:
interprocedural vs. **intraprocedural** analyses
 - quantification over paths:
may (**union**) vs. **must** (**intersection**) analyses
 - dependence on statement order:
flow-sensitive vs. **flow-insensitive** analyses

- Goal: **localization** of analysis information

- Goal: **localization** of analysis information
- Dataflow information will be associated with
 - **skip** statements
 - assignments
 - tests in conditionals (**if**) and loops (**while**)

- Goal: **localization** of analysis information
- Dataflow information will be associated with
 - **skip** statements
 - assignments
 - tests in conditionals (**if**) and loops (**while**)
- Assume set of **labels** L with meta variable $l \in L$ (usually $L = \mathbb{N}$)

- Goal: **localization** of analysis information
- Dataflow information will be associated with
 - **skip** statements
 - assignments
 - tests in conditionals (**if**) and loops (**while**)
- Assume set of **labels** L with meta variable $l \in L$ (usually $L = \mathbb{N}$)

Definition 2.1 (Labeled WHILE programs)

The **syntax of labeled WHILE programs** is defined by the following context-free grammar:

$$\begin{aligned} a &::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp \\ b &::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \wedge b_2 \mid b_1 \vee b_2 \in BExp \\ c &::= [\text{skip}]' \mid [x := a]' \mid c_1 ; c_2 \mid \\ &\quad \text{if } [b]' \text{ then } c_1 \text{ else } c_2 \mid \text{while } [b]' \text{ do } c \in Cmd \end{aligned}$$

- All labels in $c \in Cmd$ assumed distinct, denoted by L_c
- Labeled fragments of c called **blocks**, denoted by Blk_c

Example 2.2

```
x := 6;  
y := 7;  
z := 0;  
while x > 0 do  
    x := x - 1;  
    v := y;  
    while v > 0 do  
        v := v - 1;  
        z := z + 1;
```

A WHILE Program with Labels

Example 2.2

```
[x := 6]1;  
[y := 7]2;  
[z := 0]3;  
while [x > 0]4 do  
    [x := x - 1]5;  
    [v := y]6;  
    while [v > 0]7 do  
        [v := v - 1]8;  
        [z := z + 1]9
```

Representing Control Flow I

Every (labeled) statement has a single entry (given by the initial label) and generally multiple exits (given by the final labels):

Definition 2.3 (Initial and final labels)

The mapping $\text{init} : \text{Cmd} \rightarrow L$ returns the **initial label** of a statement:

$$\begin{aligned}\text{init}([\text{skip}]') &:= l \\ \text{init}([x := a]') &:= l \\ \text{init}(c_1; c_2) &:= \text{init}(c_1) \\ \text{init}(\text{if } [b]' \text{ then } c_1 \text{ else } c_2) &:= l \\ \text{init}(\text{while } [b]' \text{ do } c) &:= l\end{aligned}$$

Representing Control Flow I

Every (labeled) statement has a single entry (given by the initial label) and generally multiple exits (given by the final labels):

Definition 2.3 (Initial and final labels)

The mapping $\text{init} : \text{Cmd} \rightarrow L$ returns the **initial label** of a statement:

$$\begin{aligned}\text{init}([\text{skip}]^l) &:= l \\ \text{init}([x := a]^l) &:= l \\ \text{init}(c_1; c_2) &:= \text{init}(c_1) \\ \text{init}(\text{if } [b]^l \text{ then } c_1 \text{ else } c_2) &:= l \\ \text{init}(\text{while } [b]^l \text{ do } c) &:= l\end{aligned}$$

The mapping $\text{final} : \text{Cmd} \rightarrow 2^L$ returns the set of **final labels** of a statement:

$$\begin{aligned}\text{final}([\text{skip}]^l) &:= \{l\} \\ \text{final}([x := a]^l) &:= \{l\} \\ \text{final}(c_1; c_2) &:= \text{final}(c_2) \\ \text{final}(\text{if } [b]^l \text{ then } c_1 \text{ else } c_2) &:= \text{final}(c_1) \cup \text{final}(c_2) \\ \text{final}(\text{while } [b]^l \text{ do } c) &:= \{l\}\end{aligned}$$

Definition 2.4 (Flow relation)

Given a statement $c \in Cmd$, the (control) flow relation $\text{flow}(c) \subseteq L \times L$ is defined by

$$\begin{aligned}\text{flow}([\text{skip}]^l) &:= \emptyset \\ \text{flow}([x := a]^l) &:= \emptyset \\ \text{flow}(c_1; c_2) &:= \text{flow}(c_1) \cup \text{flow}(c_2) \cup \\ &\quad \{(l, \text{init}(c_2)) \mid l \in \text{final}(c_1)\} \\ \text{flow}(\text{if } [b]^l \text{ then } c_1 \text{ else } c_2) &:= \text{flow}(c_1) \cup \text{flow}(c_2) \cup \\ &\quad \{(l, \text{init}(c_1)), (l, \text{init}(c_2))\} \\ \text{flow}(\text{while } [b]^l \text{ do } c) &:= \text{flow}(c) \cup \{(l, \text{init}(c))\} \cup \\ &\quad \{(l', l) \mid l' \in \text{final}(c)\}\end{aligned}$$

Example 2.5

```
c = [z := 1]1;  
    while [x > 0]2 do  
        [z := z*y]3;  
        [x := x-1]4
```

Example 2.5

```
c = [z := 1]1;  
    while [x > 0]2 do  
        [z := z*y]3;  
        [x := x-1]4
```

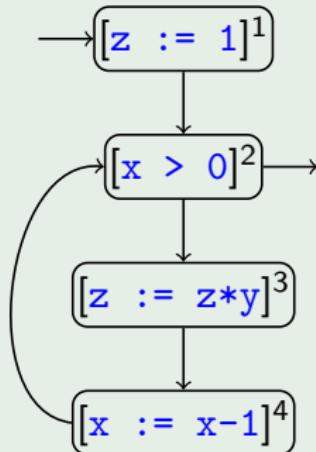
$\text{init}(c) = 1$
 $\text{final}(c) = \{2\}$
 $\text{flow}(c) = \{(1, 2), (2, 3), (3, 4), (4, 2)\}$

Example 2.5

```
c = [z := 1]1;  
    while [x > 0]2 do  
        [z := z*y]3;  
        [x := x-1]4
```

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by
(control) flow graph:



- To simplify the presentation we will often assume that the program $c \in Cmd$ under consideration has an **isolated entry**, meaning that
$$\{l \in L \mid (l, \text{init}(c)) \in \text{flow}(c)\} = \emptyset$$
(which is the case when c does not start with a `while` loop)

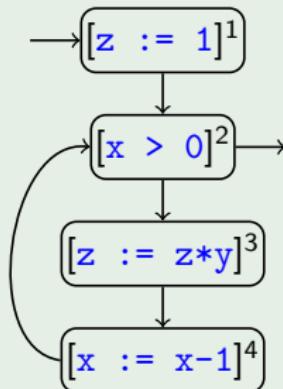
Representing Control Flow IV

- To simplify the presentation we will often assume that the program $c \in Cmd$ under consideration has an **isolated entry**, meaning that
$$\{l \in L \mid (l, \text{init}(c)) \in \text{flow}(c)\} = \emptyset$$
(which is the case when c does not start with a `while` loop)
- Similarly: $c \in Cmd$ has **isolated exits** if
$$\{l' \in L \mid (l, l') \in \text{flow}(c) \text{ for some } l \in \text{final}(c)\} = \emptyset$$
(which is the case when no final label identifies a loop header)

Representing Control Flow IV

- To simplify the presentation we will often assume that the program $c \in \text{Cmd}$ under consideration has an **isolated entry**, meaning that
$$\{l \in L \mid (l, \text{init}(c)) \in \text{flow}(c)\} = \emptyset$$
(which is the case when c does not start with a `while` loop)
- Similarly: $c \in \text{Cmd}$ has **isolated exits** if
$$\{l' \in L \mid (l, l') \in \text{flow}(c) \text{ for some } l \in \text{final}(c)\} = \emptyset$$
(which is the case when no final label identifies a loop header)

Example 2.6



has an isolated entry but not isolated exits

- 1 Preliminaries on Dataflow Analysis
- 2 An Example: Available Expressions Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- Can be used for **Common Subexpression Elimination**:
replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- Can be used for **Common Subexpression Elimination**:
replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- Can be used for **Common Subexpression Elimination**:
replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

• a+b available at label 3

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- Can be used for **Common Subexpression Elimination**:
replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

- a+b available at label 3
- a+b not available at label 5

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- Can be used for **Common Subexpression Elimination**:
replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

- $a+b$ available at label 3
- $a+b$ not available at label 5
- possible optimization:
 $while [y > x]³ do$

- Given $a \in AExp$, $b \in BExp$, $c \in Cmd$
 - $Var_a/Var_b/Var_c$ denotes the set of all variables occurring in $a/b/c$
 - $AExp_b/AExp_c$ denote the sets of all complex arithmetic expressions occurring in b/c

Formalizing Available Expressions Analysis I

- Given $a \in AExp$, $b \in BExp$, $c \in Cmd$
 - $Var_a/Var_b/Var_c$ denotes the set of all variables occurring in $a/b/c$
 - $AExp_b/AExp_c$ denote the sets of all complex arithmetic expressions occurring in b/c
- An expression a is **killed** in a block B if any of the variables in a is modified in B

Formalizing Available Expressions Analysis I

- Given $a \in AExp$, $b \in BExp$, $c \in Cmd$
 - $Var_a/Var_b/Var_c$ denotes the set of all variables occurring in $a/b/c$
 - $AExp_b/AExp_c$ denote the sets of all complex arithmetic expressions occurring in b/c
- An expression a is **killed** in a block B if any of the variables in a is modified in B
- Formally: $\text{kill}_{AE} : Blk_c \rightarrow 2^{AExp_c}$ is defined by

$$\begin{aligned}\text{kill}_{AE}([\text{skip}]') &:= \emptyset \\ \text{kill}_{AE}([x := a]') &:= \{a' \in AExp_c \mid x \in Var_{a'}\} \\ \text{kill}_{AE}([b]') &:= \emptyset\end{aligned}$$

- Given $a \in AExp$, $b \in BExp$, $c \in Cmd$
 - $Var_a/Var_b/Var_c$ denotes the set of all variables occurring in $a/b/c$
 - $AExp_b/AExp_c$ denote the sets of all complex arithmetic expressions occurring in b/c
- An expression a is **killed** in a block B if any of the variables in a is modified in B
- Formally: $\text{kill}_{AE} : Blk_c \rightarrow 2^{AExp_c}$ is defined by

$$\begin{aligned}\text{kill}_{AE}([\text{skip}]') &:= \emptyset \\ \text{kill}_{AE}([x := a]') &:= \{a' \in AExp_c \mid x \in Var_{a'}\} \\ \text{kill}_{AE}([b]') &:= \emptyset\end{aligned}$$

- An expression a is **generated** in a block B if it is evaluated in and none of its variables are modified by B

Formalizing Available Expressions Analysis I

- Given $a \in AExp$, $b \in BExp$, $c \in Cmd$
 - $Var_a/Var_b/Var_c$ denotes the set of all variables occurring in $a/b/c$
 - $AExp_b/AExp_c$ denote the sets of all complex arithmetic expressions occurring in b/c
- An expression a is **killed** in a block B if any of the variables in a is modified in B
- Formally: $\text{kill}_{AE} : Blk_c \rightarrow 2^{AExp_c}$ is defined by

$$\begin{aligned}\text{kill}_{AE}([\text{skip}]') &:= \emptyset \\ \text{kill}_{AE}([x := a]') &:= \{a' \in AExp_c \mid x \in Var_{a'}\} \\ \text{kill}_{AE}([b]') &:= \emptyset\end{aligned}$$

- An expression a is **generated** in a block B if it is evaluated in and none of its variables are modified by B
- Formally: $\text{gen}_{AE} : Blk_c \rightarrow 2^{AExp_c}$ is defined by

$$\begin{aligned}\text{gen}_{AE}([\text{skip}]') &:= \emptyset \\ \text{gen}_{AE}([x := a]') &:= \{a \mid x \notin Var_a\} \\ \text{gen}_{AE}([b]') &:= AExp_b\end{aligned}$$

Example 2.8 ($\text{kill}_{\text{AE}}/\text{gen}_{\text{AE}}$ functions)

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Example 2.8 ($\text{kill}_{\text{AE}}/\text{gen}_{\text{AE}}$ functions)

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

- $AExp_c = \{a+b, a*b, a+1\}$

Example 2.8 ($\text{kill}_{\text{AE}}/\text{gen}_{\text{AE}}$ functions)

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

- $AExp_c = \{a+b, a*b, a+1\}$
- $$\begin{array}{c|cc} L_c & \text{kill}_{\text{AE}}(B^l) & \text{gen}_{\text{AE}}(B^l) \\ \hline 1 & \emptyset & \{a+b\} \\ 2 & \emptyset & \{a*b\} \\ 3 & \emptyset & \{a+b\} \\ 4 & \{a+b, a*b, a+1\} & \emptyset \\ 5 & \emptyset & \{a+b\} \end{array}$$

- Analysis itself defined by setting up an **equation system**

- Analysis itself defined by setting up an **equation system**
- For each $l \in L_c$, $AE_l \subseteq AExp_c$ represents the **set of available expressions at the entry of block B^l**

- Analysis itself defined by setting up an **equation system**
- For each $I \in L_c$, $AE_I \subseteq AExp_c$ represents the **set of available expressions at the entry of block B^I**
- Formally, for $c \in Cmd$ with isolated entry:

$$AE_I = \begin{cases} \emptyset & \text{if } I = \text{init}(c) \\ \bigcap \{\varphi_{I'}(AE_{I'}) \mid (I', I) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{I'} : 2^{AExp_c} \rightarrow 2^{AExp_c}$ denotes the **transfer function** of block $B^{I'}$, given by

$$\varphi_{I'}(A) := (A \setminus \text{kill}_{AE}(B^{I'})) \cup \text{gen}_{AE}(B^{I'})$$

- Analysis itself defined by setting up an **equation system**
- For each $l \in L_c$, $AE_l \subseteq AExp_c$ represents the **set of available expressions at the entry of block B^l**
- Formally, for $c \in Cmd$ with isolated entry:

$$AE_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(AE_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{AExp_c} \rightarrow 2^{AExp_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(A) := (A \setminus \text{kill}_{AE}(B^{l'})) \cup \text{gen}_{AE}(B^{l'})$$

- Characterization of analysis:

forward: starts in $\text{init}(c)$ and proceeds downwards

must: \bigcap in equation for AE_l

flow-sensitive: results depending on order of assignments

- Analysis itself defined by setting up an **equation system**
- For each $l \in L_c$, $AE_l \subseteq AExp_c$ represents the **set of available expressions at the entry of block B^l**
- Formally, for $c \in Cmd$ with isolated entry:

$$AE_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(AE_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{AExp_c} \rightarrow 2^{AExp_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(A) := (A \setminus \text{kill}_{AE}(B^{l'})) \cup \text{gen}_{AE}(B^{l'})$$

- Characterization of analysis:

forward: starts in $\text{init}(c)$ and proceeds downwards

must: \bigcap in equation for AE_l

flow-sensitive: results depending on order of assignments

- Later: solution **not necessarily unique**

⇒ choose **greatest one**

The Equation System II

Reminder: $\text{AE}_I = \begin{cases} \emptyset & \text{if } I = \text{init}(c) \\ \bigcap \{\varphi_{I'}(\text{AE}_{I'}) \mid (I', I) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$

$$\varphi_{I'}(E) = (E \setminus \text{kill}_{\text{AE}}(B^{I'})) \cup \text{gen}_{\text{AE}}(B^{I'})$$

The Equation System II

Reminder: $\text{AE}_I = \begin{cases} \emptyset & \text{if } I = \text{init}(c) \\ \bigcap \{\varphi_{I'}(\text{AE}_{I'}) \mid (I', I) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$

$$\varphi_{I'}(E) = (E \setminus \text{kill}_{\text{AE}}(B^{I'})) \cup \text{gen}_{\text{AE}}(B^{I'})$$

Example 2.9 (AE equation system)

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

The Equation System II

Reminder: $\text{AE}_I = \begin{cases} \emptyset & \text{if } I = \text{init}(c) \\ \bigcap \{\varphi_{I'}(\text{AE}_{I'}) \mid (I', I) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$

$$\varphi_{I'}(E) = (E \setminus \text{kill}_{\text{AE}}(B^{I'})) \cup \text{gen}_{\text{AE}}(B^{I'})$$

Example 2.9 (AE equation system)

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

$I \in L_c$	$\text{kill}_{\text{AE}}(B^I)$	$\text{gen}_{\text{AE}}(B^I)$
1	\emptyset	$\{a+b\}$
2	\emptyset	$\{a*b\}$
3	\emptyset	$\{a+b\}$
4	$\{a+b, a*b, a+1\}$	\emptyset
5	\emptyset	$\{a+b\}$

The Equation System II

Reminder: $AE_I = \begin{cases} \emptyset & \text{if } I = \text{init}(c) \\ \bigcap \{\varphi_{I'}(AE_{I'}) \mid (I', I) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$

$$\varphi_{I'}(E) = (E \setminus \text{kill}_{AE}(B^{I'})) \cup \text{gen}_{AE}(B^{I'})$$

Example 2.9 (AE equation system)

```
c = [x := a+b]1;  
      [y := a*b]2;  
      while [y > a+b]3 do  
          [a := a+1]4;  
          [x := a+b]5
```

Equations:
 $AE_1 = \emptyset$
 $AE_2 = \varphi_1(AE_1) = AE_1 \cup \{a+b\}$
 $AE_3 = \varphi_2(AE_2) \cap \varphi_5(AE_5)$
 $= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\})$
 $AE_4 = \varphi_3(AE_3) = AE_3 \cup \{a+b\}$
 $AE_5 = \varphi_4(AE_4) = AE_4 \setminus \{a+b, a*b, a+1\}$

$I \in L_c$	$\text{kill}_{AE}(B^I)$	$\text{gen}_{AE}(B^I)$
1	\emptyset	$\{a+b\}$
2	\emptyset	$\{a*b\}$
3	\emptyset	$\{a+b\}$
4	$\{a+b, a*b, a+1\}$	\emptyset
5	\emptyset	$\{a+b\}$

The Equation System II

Reminder: $AE_I = \begin{cases} \emptyset & \text{if } I = \text{init}(c) \\ \bigcap \{\varphi_{I'}(AE_{I'}) \mid (I', I) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$

$$\varphi_{I'}(E) = (E \setminus \text{kill}_{AE}(B^{I'})) \cup \text{gen}_{AE}(B^{I'})$$

Example 2.9 (AE equation system)

```
c = [x := a+b]1;  
      [y := a*b]2;  
      while [y > a+b]3 do  
          [a := a+1]4;  
          [x := a+b]5
```

$I \in L_c$	$\text{kill}_{AE}(B^I)$	$\text{gen}_{AE}(B^I)$
1	\emptyset	$\{a+b\}$
2	\emptyset	$\{a*b\}$
3	\emptyset	$\{a+b\}$
4	$\{a+b, a*b, a+1\}$	\emptyset
5	\emptyset	$\{a+b\}$

Equations:

$$AE_1 = \emptyset$$

$$AE_2 = \varphi_1(AE_1) = AE_1 \cup \{a+b\}$$

$$AE_3 = \varphi_2(AE_2) \cap \varphi_5(AE_5) \\ = (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\})$$

$$AE_4 = \varphi_3(AE_3) = AE_3 \cup \{a+b\}$$

$$AE_5 = \varphi_4(AE_4) = AE_4 \setminus \{a+b, a*b, a+1\}$$

Solution: $AE_1 = \emptyset$

$$AE_2 = \{a+b\}$$

$$AE_3 = \{a+b\}$$

$$AE_4 = \{a+b\}$$

$$AE_5 = \emptyset$$