
Static Program Analysis
Lecture 20: Extensions II

(Interprocedural Dataflow Analysis – Fixpoint Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Repetition: Interprocedural Dataflow Analysis

2 The Interprocedural Fixpoint Solution

3 The Equation System

4 Context-Sensitive Interprocedural Dataflow Analysis

Static Program Analysis Summer Semester 2011 20.2

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context-free grammar:

p ::= proc [P(val x,res y)]ln is c [end]lx;p | ε ∈ PDec
c ::= [skip]l | [x := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [call P(a,x)]lclr ∈ Cmd

All labels and procedure names in program p c distinct

In proc [P(val x,res y)]ln is c [end]lx , ln (lx) refers to the entry
(exit) of P

In [call P(a,x)]lclr , lc (lr) refers to the call of (return from) P

First parameter call-by-value, second call-by-result

Static Program Analysis Summer Semester 2011 20.3

Procedure Flow Graphs

Definition (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:

init(proc [P(val x,res y)]ln is c [end]lx) := ln
final(proc [P(val x,res y)]ln is c [end]lx) := {lx}
flow(proc [P(val x,res y)]ln is c [end]lx) := {(ln, init(c))}

∪ flow(c)
∪ {(l , lx) | l ∈ final(c)}

init([call P(a,x)]lclr) := lc
final([call P(a,x)]lclr) := {lr}

flow([call P(a,x)]lclr) := {(lc ; ln), (lx ; lr)}

if proc [P(val x,res y)]ln is c [end]lx is in p.

Moreover the interprocedural flow of a program p c is defined by
iflow := {(lc , ln, lx , lr) | p c contains [call P(a,x)]lclr and

proc [P(val x,res y)]ln is c [end]lx } ⊆ L4

Static Program Analysis Summer Semester 2011 20.4

Naive Formulation

Attempt: directly transfer techniques from intraprocedural analysis
=⇒ treat (lc ; ln) like (lc , ln) and (lx ; lr) like (lx , lr)

Given: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

For each procedure call [call P(a,x)]lclr :
transfer functions ϕlc , ϕlr : D → D (definition later)

For each procedure declaration proc [P(val x,res y)]ln is c [end]lx :
transfer functions ϕln , ϕlx : D → D (definition later)

Induces equation system

AIl =

{

ι if l ∈ E
⊔

{ϕl ′(AIl ′) | (l
′, l) ∈ F or (l ′; l) ∈ F} otherwise

Problem: procedure calls (lc ; ln) and procedure returns (lx ; lr) treated
like goto’s
=⇒ nesting of calls and returns ignored
=⇒ too many paths
=⇒ analysis information imprecise (but still correct)

Static Program Analysis Summer Semester 2011 20.5

Valid Paths

Consider only paths with correct nesting of procedure calls and returns

Will yield MVP solution (Meet over all Valid Paths)

Definition (Valid paths I)

Given a dataflow system S = (L,E ,F , (D,v), ι, ϕ) and l1, l2 ∈ L, the set
of valid paths from l1 to l2 is generated by the nonterminal symbol P [l1, l2]
according to the following productions:

P [l1, l2] → l1 whenever l1 = l2
P [l1, l3] → l1,P [l2, l3] whenever (l1, l2) ∈ F
P [lc , l] → lc ,P [ln, lx],P [lr , l] whenever (lc , ln, lx , lr) ∈ iflow

Static Program Analysis Summer Semester 2011 20.6

The MVP Solution I

Definition (Valid paths II)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system. For every l ∈ L, the
set of valid paths up to l is given by

VPath(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E , lk = l ,
[l1, . . . , lk] valid path from l1 to lk}.

For a path p = [l1, . . . , lk−1] ∈ VPath(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Static Program Analysis Summer Semester 2011 20.7

The MVP Solution II

Definition (MVP solution)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MVP solution for S is determined by

mvp(S) := (mvp(l1), . . . ,mvp(ln)) ∈ Dn

where, for every l ∈ L,
mvp(l) :=

⊔

{ϕp(ι) | p ∈ VPath(l)}.

Corollary

1 mvp(S) v mop(S)

2 The MVP solution is undecidable.

Proof.
1 since VPath(l) ⊆ Path(l) for every l ∈ L

2 since mvp(S) = mop(S) in intraprocedural case, and by undecidability
of MOP solution (cf. Theorem 6.2)

Static Program Analysis Summer Semester 2011 20.8

Outline

1 Repetition: Interprocedural Dataflow Analysis

2 The Interprocedural Fixpoint Solution

3 The Equation System

4 Context-Sensitive Interprocedural Dataflow Analysis

Static Program Analysis Summer Semester 2011 20.9

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks D+ as dataflow version of runtime stack)

Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

call: computes new topmost entry from current and pushes it

return: removes topmost entry and combines it with underlying
(= call-site) entry

Static Program Analysis Summer Semester 2011 20.10

The Interprocedural Extension I

Definition 20.1 (Interprocedural extension (forward analysis))

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system. The interprocedural
extension of S is given by

Ŝ := (L,E ,F , (D̂ , v̂), ι̂, ϕ̂)
where

D̂ := D+

d1 . . . dn v̂ d ′

1 . . . d
′
n iff di v d ′

i for every 1 ≤ i ≤ n

ι̂ := ι ∈ D+

ϕ̂l : D
+ → D+ where

for each l ∈ L \ {lc , lr | (lc , ln, lx , lr) ∈ iflow}:

ϕ̂l (dw) := ϕl(d)w

for each (lc , ln, lx , lr) ∈ iflow and l ∈ {lc , lr}:

ϕ̂lc (dw) := ϕlc (d)dw
ϕ̂lr (d

′dw) := ϕlr (d
′, d)w

Static Program Analysis Summer Semester 2011 20.11

The Interprocedural Extension II

Visualization of

1 ϕ̂lc (dw) := ϕlc (d)dw

2 ϕ̂ln(d
′dw) := ϕln(d

′)dw

3 ϕ̂lx (d
′dw) := ϕlx (d

′)dw

4 ϕ̂lr (d
′dw) := ϕlr (d

′, d)w

...

[call P(a,z)]lclr

...

[P(val x,res y)]ln

...

[end]lx

dw
(1) ϕlc (d)dw (2) ϕln(ϕlc (d))dw

d ′dw
(3) ϕlx (d

′)dw
(4) ϕlr (ϕlx (d

′), d)w

Static Program Analysis Summer Semester 2011 20.12

The Interprocedural Extension III

Example 20.2 (Constant Propagation (cf. Lecture 6))

Ŝ := (L,E ,F , (D̂ , v̂), ι̂, ϕ̂) is determined by

D := {δ | δ : Var c → Z ∪ {⊥,>}}

⊥ v z v > for every z ∈ Z

ι := δ> ∈ D

For each l ∈ L \ {lc , ln, lx , lr | (lc , ln, lx , lr) ∈ iflow},

ϕl(δ) :=

{

δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

Whenever p c contains [call P(a,z)]lclr and

proc [P(val x,res y)]ln is c [end]lx ,

call/entry: set input/reset output parameter

ϕlc (δ) := δ[x 7→ valδ(a), y 7→ >], ϕln(δ) := δ

exit/return: reset parameters/set return value

ϕlx (δ) := δ, ϕlr (δ
′, δ) := δ′[x 7→ δ(x), y 7→ δ(y), z 7→ δ′(y)]

Static Program Analysis Summer Semester 2011 20.13

Outline

1 Repetition: Interprocedural Dataflow Analysis

2 The Interprocedural Fixpoint Solution

3 The Equation System

4 Context-Sensitive Interprocedural Dataflow Analysis

Static Program Analysis Summer Semester 2011 20.14

The Equation System I

For an interprocedural dataflow system Ŝ := (L,E ,F , (D̂ , v̂), ι̂, ϕ̂), the
intraprocedural equation system (cf. Definition 4.9)

AIl =

{

ι if l ∈ E
⊔

{ϕl ′(AIl ′) | (l
′, l) ∈ F} otherwise

is extended to a system with three kinds of equations
(for every l ∈ L):

for actual dataflow information: AIl ∈ D+

(counterpart of intraprocedural AI)

for transfer functions of single nodes: fl : D
+ → D+

(extension of intraprocedural transfer functions with special handling
of procedure calls)

for transfer functions of complete procedures: Fl : D
+ → D+

(Fl(w) yields information at l if surrounding procedure is called with
information w =⇒ complete procedure represented by Flx)

Static Program Analysis Summer Semester 2011 20.15

The Equation System II

Formal definition – dataflow equations:

AIl =











ι if l ∈ E
⊔

{ϕ̂lc (AIlc) | (lc , ln, lx , lr) ∈ iflow} if l = ln
for some (lc , ln, lx , lr) ∈ iflow

⊔

{fl ′(AIl ′) | (l
′, l) ∈ F} otherwise

(if l not a return label)

Node transfer functions:

fl(w) =

{

ϕ̂lr (ϕ̂lx (Flx (ϕ̂lc (w)))) if l = lc for some (lc , ln, lx , lr) ∈ iflow
ϕ̂l (w) otherwise

(if l not an exit or return label)

Procedure transfer functions:

Fl(w) =







w if l = ln
for some (lc , ln, lx , lr) ∈ iflow

⊔

{fl ′(Fl ′(w)) | (l ′, l) ∈ F} otherwise
(if l occurs in some procedure)

As before: induces monotonic functional on lattice with ACC
=⇒ least fixpoint effectively computable

Static Program Analysis Summer Semester 2011 20.16

The Equation System III

Example 20.3 (Constant Propagation)

Program:

proc [P(val x, res y)]1 is
[y := 2*(x-1)]2;

[end]3;
[call P(2, z)]45;
[call P(z, z)]67;
[skip]8

Dataflow equations:

AI1 = ϕ̂4(AI4) t ϕ̂6(AI6)
AI2 = f1(AI1)
AI3 = f2(AI2)
AI4 = ι = >>>
AI6 = f4(AI4)
AI8 = f6(AI6)

Node transfer functions:
ϕ̂1(δw) = δw
ϕ̂2(δw) = δ[y 7→ valδ(2*(x-1))]w
ϕ̂3(δw) = δw
ϕ̂4(δw) = δ[x 7→ 2, y 7→ >]δw

ϕ̂5(δ
′δw) = δ′[x 7→ δ(x), y 7→ δ(y), z 7→ δ′(y)]w

ϕ̂6(δw) = δ[x 7→ δ(z), y 7→ >]δw
ϕ̂7(δ

′δw) = δ′[x 7→ δ(x), y 7→ δ(y), z 7→ δ′(y)]w

f1(δw) = ϕ̂1(δw) = δw
f2(δw) = ϕ̂2(δw) = δ[y 7→ valδ(2*(x-1))]w
f4(δw) = ϕ̂5(ϕ̂3(F3(ϕ̂4(δw)))) = ϕ̂5(F3(ϕ̂4(δw)))
f6(δw) = ϕ̂7(ϕ̂3(F3(ϕ̂6(δw)))) = ϕ̂7(F3(ϕ̂6(δw)))
f8(δw) = ϕ̂8(δw) = δw

Procedure transfer functions:
F1(δw) = δw
F2(δw) = f1(F1(δw)) = δw
F3(δw) = f2(F2(δw)) = δ[y 7→ valδ(2*(x-1))]w

Fixpoint iteration:
on the board
Static Program Analysis Summer Semester 2011 20.17

The Fixpoint Iteration

For the fixpoint iteration it is important that the auxiliary functions only
operate on the topmost element of the stack:

Lemma 20.4

For every l ∈ L, d ∈ D, and w ∈ D∗,

fl(dw) = fl(d)w and Fl(dw) = Fl(d)w

Proof.

see J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem, Proc.
CC ’92, LNCS 641, Springer, 1992, 125–140

It therefore suffices to consider stacks with at most two entries, and so the
fixpoint iteration ranges over “finitary objects”.

Static Program Analysis Summer Semester 2011 20.18

Soundness and Completeness

The following results carry over from the intraprocedural case:

Theorem 20.5

Let Ŝ := (L,E ,F , (D̂ , v̂), ι̂, ϕ̂) be an interprocedural dataflow system.

1 (cf. Theorem 7.2)
mvp(Ŝ) v̂ fix(Φ

Ŝ
)

2 (cf. Theorem 7.5)
mvp(Ŝ) = fix(Φ

Ŝ
) if all ϕ̂l are distributive

Proof.

see J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem, Proc.
CC ’92, LNCS 641, Springer, 1992, 125–140

Static Program Analysis Summer Semester 2011 20.19

Outline

1 Repetition: Interprocedural Dataflow Analysis

2 The Interprocedural Fixpoint Solution

3 The Equation System

4 Context-Sensitive Interprocedural Dataflow Analysis

Static Program Analysis Summer Semester 2011 20.20

Context-Sensitive Interprocedural DFA

Observation: MVP and fixpoint solution maintain proper relationship
between procedure calls and returns

But: do not distinguish between different procedure calls

AIl =











ι if l ∈ E
⊔

{ϕ̂lc (AIlc) | (lc , ln, lx , lr) ∈ iflow} if l = ln for some
(lc , ln, lx , lr) ∈ iflow

⊔

{fl ′(AIl ′) | (l
′, l) ∈ F} otherwise

information about calling states combined for all call sites
procedure body only analyzed once using combined information
resulting information used at all return points

=⇒ “context-insensitive”
Alternative: context-sensitive analysis

separate information for different call sites
implementation by “procedure cloning”
more precise
more costly

Static Program Analysis Summer Semester 2011 20.21

	Repetition: Interprocedural Dataflow Analysis
	The Interprocedural Fixpoint Solution
	The Equation System
	Context-Sensitive Interprocedural Dataflow Analysis

