Static Program Analysis

Lecture 20: Extensions Il
(Interprocedural Dataflow Analysis — Fixpoint Solution)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Repetition: Interprocedural Dataflow Analysis

nm Static Program Analysis Summer Semester 2011 L

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context-free grammar:
p ::= proc [P(val x,res y)|" is c [end]*;p | ¢ € PDec
c = [skip]' | [x :=a]' | c1;c0 | if [b]’ then ¢ else o |
while [b]' do c | [call P(a,x)];f € Cmd
@ All labels and procedure names in program p ¢ distinct

o In proc [P(val x,res y)]" is c [end]k, I, (Ix) refers to the entry
(exit) of P

@ In [call P(a,x)]i‘;, lc (1) refers to the call of (return from) P
@ First parameter call-by-value, second call-by-result

Rm Static Program Analysis Summer Semester 2011 20.3

Procedure Flow Graphs

Definition (Procedure flow graphs)
The auxiliary functions init, final, and flow are extended as follows:

i

init(proc [P(val x,res y)]" is c [end]lx)
final(proc [P(val x,res y)|" is ¢ [end]) :
flow(proc [P(val x,res y)]" is c [end]*) :

{3

{(Jn, init(c))}
flow(c)

{(/ I) | I € final(c)}

CC||

init([call P(a, x)]lc) =
final(jcall P(a,x0]") im {/}
flow([call P(a,x)],r) = {(le; 1), (e 1)}

if proc [P(val x,res y)] is c [end]* is in p.
Moreover the interprocedural flow of a program p c is defined by
iflow := {(lc, In, Ix, I+) | p ¢ contains [call P(a,x)];f and
proc [P(val x,res y)]" is c [end]*} C L*

nm Static Program Analysis Summer Semester 2011 20.4

Naive Formulation

Attempt: directly transfer techniques from intraprocedural analysis
= treat (lc; In) like (Ic, In) and (I; 1) like (I, Ir)

Given: dataflow system S = (L, E, F,(D,C),¢,)

For each procedure call [call P(a,x)];::

transfer functions ¢_, ¢;, : D — D (definition later)

For each procedure declaration proc [P(val x,res y)|" is ¢ [end]’:
transfer functions ¢,y : D — D (definition later)

Induces equation system

Al = {L ifleE
LI{er(Aly) | (I',1) € For (I''1) € F} otherwise

Problem: procedure calls (/; /,) and procedure returns (/y; /) treated

like goto's

= nesting of calls and returns ignored

= too many paths

— analysis information imprecise (but still correct)

Rm Static Program Analysis Summer Semester 2011 20.5

Valid Paths

@ Consider only paths with correct nesting of procedure calls and returns

o Will yield MVP solution (Meet over all Valid Paths)

Definition (Valid paths I)
Given a dataflow system S = (L, E, F,(D,C),t,¢) and h, h € L, the set
of valid paths from /; to is generated by the nonterminal symbol P[h,]
according to the following productions:

Plh,h] — K whenever l; = b
Plh,] — I, P[h, k] whenever (i, h) € F
Plle, 1l = lc, Pln,], P[lr, 1] whenever (Ic, I, I,) € iflow

Rm Static Program Analysis Summer Semester 2011 20.6

The MVP Solution |

Definition (Valid paths Il)

Let S=(L,E,F,(D,C),t,) be a dataflow system. For every / € L, the
set of valid paths up to / is given by

VPath(l) i= {[h, ..., k1] | k>1,h € E, I = I,
[h,...,I] valid path from / to Ix}.

For a path p = [/, ..., lk—1] € VPath(l), we define the transfer function
¢p: D — D by
Pp =Pl 0. 0@y 0idp

(so that ¢y = idp).

Rm Static Program Analysis Summer Semester 2011 20.7

The MVP Solution I

Definition (MVP solution)

Let S=(L,E,F,(D,C),¢,p) be a dataflow system where
L={h,...,l}. The MVP solution for S is determined by
mvp(S) := (mvp(h),...,mvp(l,)) € D"
where, for every | € L,
mvp(l) = L{p(0) | p € VPath(1)}.

Corollary
Q mvp(S) C mop(S)
@ The MVP solution is undecidable.

© since VPath(l) C Path(l) for every | € L

@ since mvp(S) = mop(S) in intraprocedural case, and by undecidability
of MOP solution (cf. Theorem 6.2)

nm Static Program Analysis Summer Semester 2011 20.8

© The Interprocedural Fixpoint Solution

nm Static Program Analysis Summer Semester 2011 20.9

Making Context Explicit

@ Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks D as dataflow version of runtime stack)

@ Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

@ call: computes new topmost entry from current and pushes it

@ return: removes topmost entry and combines it with underlying
(= call-site) entry

Rm Static Program Analysis Summer Semester 2011 20.10

The Interprocedural Extension |

Definition 20.1 (Interprocedural extension (forward analysis))

Let S=(L,E,F,(D,C),¢,) be a dataflow system. The interprocedural
extension of S is given by

3 = (L,E7F7(D7§)727¢))

where
o D:=D*
o d...d, C di...d) iff d; C d! for every 1 <i<n
@ l:=1,€D"
@ ¢;: Dt — DT where
o foreach I € L\ {Ic,lr | (le, Iny I, I¥) € iflow}:
@i(dw) := pi(d)w
o for each (le, In, I,) € iflow and | € {I, I, }:

&1 (dw) : (d)dw
& (d'dw) : (d',d)w

Ple
Pl

Rm Static Program Analysis Summer Semester 2011 20.11

The Interprocedural Extension Il

Visualization of

O &1.(dw) == ¢, (d)dw

Q ¢, (d'dw) := ¢, (d")dw
QO o (d'dw) := ¢y (d')dw
Q &, (d'dw) == ¢, (d', d)w

HP(val X,res y)]l”J

dw. = SOIC(d)dW/ (2) o1, (1 (d))dw

ﬂcall P(a,z)];j
(4) o1, (o1 (d'), d)w

Rm Static Program Analysis Summer Semester 2011 20.12

The Interprocedural Extension Il

Example 20.2 (Constant Propagation (cf. Lecture 6))

S:=(LE,F,(D,C),i @) is determined by
e D:={6|d:Varc - ZU{L,T}}
@ L CzLC T forevery z€ Z

e 1. =67€D
@ Foreach 1 € L\ {lc, In, by Ir | (Iey Iny I, 1) € iflow},
1) if B! = skip or B! € BExp

#i(0) = {5[)(— vals(a)] if B! = (x := a)
@ Whenever p ¢ contains [call P(a,z)];f and
proc [P(val x,res y)]" is c [end]*,
o call/entry: set input/reset output parameter
1. (0) :=d[x = vals(a),y = T], ¢, (8) =46
o exit/return: reset parameters/set return value
e (0) =0, ¢,(8',0) := §'[x = 6(x), ¥ = 8(y), 2 = &'(y)]

4

Rm Static Program Analysis Summer Semester 2011 20.13

© The Equation System

nm Static Program Analysis Summer Semester 2011 20.14

The Equation System |

For an interprocedural dataflow system § := (L,E,F, (ﬁ, £),7,9), the
intraprocedural equation system (cf. Definition 4.9)

Al = J¢ ifle E
"L er (Al) | (I,1) € F} otherwise

is extended to a system with three kinds of equations
(for every [€ L):
@ for actual dataflow information: Al; € Dt
(counterpart of intraprocedural Al)

@ for transfer functions of single nodes: f;: D* — DT
(extension of intraprocedural transfer functions with special handling
of procedure calls)

@ for transfer functions of complete procedures: F;: Dt — Dt
(Fi(w) yields information at / if surrounding procedure is called with
information w = complete procedure represented by F;)

Rm Static Program Analysis Summer Semester 2011 20.15

The Equation System Il

Formal definition — dataflow equations:
ifle E

L
A= JLHBLAL) | (e s b,) € iflow}if 1 =1,
= for some (lc, In, Iy, Iy) € iflow

LI{fr(Alp) [(I, 1) € F} otherwise
(if / not a return label)

Node transfer functions:
flw) = &1 (61 (Fr(P1.(w)))) ifl= le for some (Iey Iny I, 1) € iflow
! P1(w) otherwise
(if / not an exit or return label)
Procedure transfer functions:
w if I =1,
Fi(w) = for some (I¢, In, Iy, Ir) € iflow
LI{fr(Fr(w)) | (I',]) € F} otherwise
(if I occurs in some procedure)
As before: induces monotonic functional on lattice with ACC
= least fixpoint effectively computable
Rm Static Program Analysis Summer Semester 2011 20.16

The Equation System Il

Example 20.3 (Constant Propagation)

Program: Node transfer functions:
proc [P(val x, res y)]! is @1(5W) =ow
[y := 2% (x-D]; <€2(5W) = 0y = vals(2% (x-1))]w
[end]?; <,£)3(5w) = ow
[call P(2, z)]2; A<‘04g5W) - 5,[X = 2y s T)
[Call P(Z, z)]?; 905S5 §W) =9 [X = 6(X)7y = 6(y)7z =0 (y)]W
[skip]® Pe(dw) = d[x — d(z),y — T]ow
. @r(6'0w) = 6'[x = 6(x),y = 6(y),z = &'(y)]w
Dataflow equations: ?ngg = @1ngg = gfv .
Aly = B4(Aly) Ul Go(Al 2fow) = Zafow) = oly 1= vals(2x o))lw
AL Z Pl eelAle)5w) = Ba(ga(Fa(a(0w)))) = gs(Fa(a(bw))
AR 2 i) 6(3w) = 3r(2(Fa(26(6w)))) = B1(Fa(Z6(ow)))
Al =.=TTT fo(ow) = gs(0w) = 0w
Alg = f(Al,) Procedure transfer functions:
Alg = fy(Alg) Fi(6w) = dw
F(0w) = A (Fi(dw)) = dw
F3(0w) = K(F(dw)) = d[y — vals(2* (x-1))]w
Fixpoint iteration:
on the board

Rm Static Program Analysis Summer Semester 2011 20.17

The Fixpoint Iteration

For the fixpoint iteration it is important that the auxiliary functions only
operate on the topmost element of the stack:

Lemma 20.4

Forevery l € L, d € D, and w € D*,

fildw) = fi(d)w and Fi(dw) = Fi(d)w

see J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem, Proc.
CC'92, LNCS 641, Springer, 1992, 125-140 O

It therefore suffices to consider stacks with at most two entries, and so the
fixpoint iteration ranges over “finitary objects”.

Rm Static Program Analysis Summer Semester 2011 20.18

Soundness and Completeness

The following results carry over from the intraprocedural case:

Theorem 20.5
Let § := (L, E,F, (ﬁ, £),%,p) be an interprocedural dataflow system.
Q (cf. Theorem 7.2)
mvp(S) L fix(Pz)
Q (cf. Theorem 7.5)
mvp(S) = fix(®z) if all §; are distributive

see J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem, Proc.
CC'92, LNCS 641, Springer, 1992, 125-140 O

Rm Static Program Analysis Summer Semester 2011 20.19

@ Context-Sensitive Interprocedural Dataflow Analysis

nm Static Program Analysis Summer Semester 2011 20.20

Context-Sensitive Interprocedural DFA

@ Observation: MVP and fixpoint solution maintain proper relationship
between procedure calls and returns
@ But: do not distinguish between different procedure calls

. if | € E
Al — JLHPL(AL) [eyl b, 1) € iflow} if 1= I, for some
= (e Iny I, 1) € iflow
LI{fr(AlLy) | (I',1) € F} otherwise

@ information about calling states combined for all call sites
o procedure body only analyzed once using combined information
o resulting information used at all return points
—> “context-insensitive”
@ Alternative: context-sensitive analysis
separate information for different call sites
@ implementation by “procedure cloning”
@ more precise
@ more costly

<

nm Static Program Analysis Summer Semester 2011 20.21

	Repetition: Interprocedural Dataflow Analysis
	The Interprocedural Fixpoint Solution
	The Equation System
	Context-Sensitive Interprocedural Dataflow Analysis

