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Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context-free grammar:
p ::= proc [P(val x,res y)|" is c [end]*;p | ¢ € PDec
c = [skip]' | [x :=a]' | c1;c0 | if [b]’ then ¢ else o |
while [b]' do c | [call P(a,x)];f € Cmd
@ All labels and procedure names in program p ¢ distinct

o In proc [P(val x,res y)]" is c [end]k, I, (Ix) refers to the entry
(exit) of P

@ In [call P(a,x)]i‘;, lc (1) refers to the call of (return from) P
@ First parameter call-by-value, second call-by-result
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Procedure Flow Graphs

Definition (Procedure flow graphs)
The auxiliary functions init, final, and flow are extended as follows:

i

init(proc [P(val x,res y)]" is c [end]lx)
final(proc [P(val x,res y)|" is ¢ [end]) :
flow(proc [P(val x,res y)]" is c [end]*) :

{3

{(Jn, init(c))}
flow(c)

{(/ I) | I € final(c)}

CC||

init([call P(a, x)]lc) =
final(jcall P(a,x0]") im {/}
flow([call P(a,x)],r) = {(le; 1), (e 1)}

if proc [P(val x,res y)] is c [end]* is in p.
Moreover the interprocedural flow of a program p c is defined by
iflow := {(lc, In, Ix, I+) | p ¢ contains [call P(a,x)];f and
proc [P(val x,res y)]" is c [end]*} C L*
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Naive Formulation

Attempt: directly transfer techniques from intraprocedural analysis
= treat (lc; In) like (Ic, In) and (I; 1) like (I, Ir)

Given: dataflow system S = (L, E, F,(D,C),¢, )

For each procedure call [call P(a,x)];::

transfer functions ¢_, ¢;, : D — D (definition later)

For each procedure declaration proc [P(val x,res y)|" is ¢ [end]’:
transfer functions ¢,y : D — D (definition later)

Induces equation system

Al = {L ifleE
LI{er(Aly) | (I',1) € For (I''1) € F}  otherwise

Problem: procedure calls (/; /,) and procedure returns (/y; /) treated

like goto's

= nesting of calls and returns ignored

= too many paths

— analysis information imprecise (but still correct)
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Valid Paths

@ Consider only paths with correct nesting of procedure calls and returns

o Will yield MVP solution (Meet over all Valid Paths)

Definition (Valid paths I)
Given a dataflow system S = (L, E, F,(D,C),t,¢) and h, h € L, the set
of valid paths from /; to  is generated by the nonterminal symbol P[h, ]
according to the following productions:

Plh,h] — K whenever l; = b
Plh, ] — I, P[h, k] whenever (i, h) € F
Plle, 1l = lc, Pln, ], P[lr, 1] whenever (Ic, I, I, ) € iflow
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The MVP Solution |

Definition (Valid paths Il)

Let S=(L,E,F,(D,C),t, ) be a dataflow system. For every / € L, the
set of valid paths up to / is given by

VPath(l) i= {[h, ..., k1] | k>1,h € E, I = I,
[h,...,I] valid path from / to Ix}.

For a path p = [/, ..., lk—1] € VPath(l), we define the transfer function
¢p: D — D by
Pp =Pl 0. 0@y 0idp

(so that ¢y = idp).
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The MVP Solution I

Definition (MVP solution)

Let S=(L,E,F,(D,C),¢,p) be a dataflow system where
L={h,...,l}. The MVP solution for S is determined by
mvp(S) := (mvp(h),...,mvp(l,)) € D"
where, for every | € L,
mvp(l) = L{p(0) | p € VPath(1)}.

Corollary
Q mvp(S) C mop(S)
@ The MVP solution is undecidable.

© since VPath(l) C Path(l) for every | € L

@ since mvp(S) = mop(S) in intraprocedural case, and by undecidability
of MOP solution (cf. Theorem 6.2)
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© The Interprocedural Fixpoint Solution
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Making Context Explicit

@ Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks D as dataflow version of runtime stack)

@ Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

@ call: computes new topmost entry from current and pushes it

@ return: removes topmost entry and combines it with underlying
(= call-site) entry
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The Interprocedural Extension |

Definition 20.1 (Interprocedural extension (forward analysis))

Let S=(L,E,F,(D,C),¢, ) be a dataflow system. The interprocedural
extension of S is given by

3 = (L,E7F7(D7§)727¢))

where
o D:=D*
o d...d, C di...d) iff d; C d! for every 1 <i<n
@ l:=1,€D"
@ ¢;: Dt — DT where
o foreach I € L\ {Ic,lr | (le, Iny I, I¥) € iflow}:
@i(dw) := pi(d)w
o for each (le, In, I, ) € iflow and | € {I, I, }:

&1 (dw) : (d)dw
& (d'dw) : (d',d)w

Ple
Pl
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The Interprocedural Extension Il

Visualization of

O &1.(dw) == ¢, (d)dw

Q ¢, (d'dw) := ¢, (d")dw
QO o (d'dw) := ¢y (d')dw
Q &, (d'dw) == ¢, (d', d)w

HP(val X,res y)]l”J

dw. = SOIC(d)dW/ (2) o1, (1 (d))dw

ﬂcall P(a,z)];j
(4) o1, (o1 (d'), d)w

Rm Static Program Analysis Summer Semester 2011 20.12



The Interprocedural Extension Il

Example 20.2 (Constant Propagation (cf. Lecture 6))

S:=(LE,F,(D,C),i @) is determined by
e D:={6|d:Varc - ZU{L,T}}
@ L CzLC T forevery z€ Z

e 1. =67€D
@ Foreach 1 € L\ {lc, In, by Ir | (Iey Iny I, 1) € iflow},
1) if B! = skip or B! € BExp

#i(0) = {5[)( — vals(a)] if B! = (x := a)
@ Whenever p ¢ contains [call P(a,z)];f and
proc [P(val x,res y)]" is c [end]*,
o call/entry: set input/reset output parameter
1. (0) :=d[x = vals(a),y = T], ¢, (8) =46
o exit/return: reset parameters/set return value
e (0) =0, ¢,(8',0) := §'[x = 6(x), ¥ = 8(y), 2 = &'(y)]

4

Rm Static Program Analysis Summer Semester 2011 20.13



© The Equation System
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The Equation System |

For an interprocedural dataflow system § := (L,E,F, (ﬁ, £),7,9), the
intraprocedural equation system (cf. Definition 4.9)

Al = J¢ ifle E
"L er (Al) | (I,1) € F} otherwise

is extended to a system with three kinds of equations
(for every [ € L):
@ for actual dataflow information: Al; € Dt
(counterpart of intraprocedural Al)

@ for transfer functions of single nodes: f;: D* — DT
(extension of intraprocedural transfer functions with special handling
of procedure calls)

@ for transfer functions of complete procedures: F;: Dt — Dt
(Fi(w) yields information at / if surrounding procedure is called with
information w = complete procedure represented by F; )
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The Equation System Il

Formal definition — dataflow equations:
ifle E

L
A= JLHBLAL) | (e s b, ) € iflow}if 1 =1,
= for some (lc, In, Iy, Iy) € iflow

LI{fr(Alp) [ (I, 1) € F} otherwise
(if / not a return label)

Node transfer functions:
flw) = &1 (61 (Fr(P1.(w)))) ifl= le for some (Iey Iny I, 1) € iflow
! P1(w) otherwise
(if / not an exit or return label)
Procedure transfer functions:
w if I =1,
Fi(w) = for some (I¢, In, Iy, Ir) € iflow
LI{fr(Fr(w)) | (I',]) € F} otherwise
(if I occurs in some procedure)
As before: induces monotonic functional on lattice with ACC
= least fixpoint effectively computable
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The Equation System Il

Example 20.3 (Constant Propagation)

Program: Node transfer functions:
proc [P(val x, res y)]! is @1(5W) =ow
[y := 2% (x-D]; <€2(5W) = 0y = vals(2% (x-1))]w
[end]?; <,£)3(5w) = ow
[call P(2, z)]2; A<‘04g5W) - 5,[X = 2y s T )
[Call P(Z, z)]?; 905S5 §W) =9 [X = 6(X)7y = 6(y)7z =0 (y)]W
[skip]® Pe(dw) = d[x — d(z),y — T]ow
. @r(6'0w) = 6'[x = 6(x),y = 6(y),z = &'(y)]w
Dataflow equations: ?ngg = @1ngg = gfv .
Aly = B4(Aly) Ul Go(Al 2fow) = Zafow) = oly 1= vals(2x o) )lw
AL Z Pl eelAle)5w) = Ba(ga(Fa(a(0w)))) = gs(Fa(a(bw))
AR 2 i) 6(3w) = 3r(2(Fa(26(6w)))) = B1(Fa(Z6(ow)))
Al =.=TTT fo(ow) = gs(0w) = 0w
Alg = f(Al,) Procedure transfer functions:
Alg = fy(Alg) Fi(6w) = dw
F(0w) = A (Fi(dw)) = dw
F3(0w) = K(F(dw)) = d[y — vals(2* (x-1))]w
Fixpoint iteration:
on the board
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The Fixpoint Iteration

For the fixpoint iteration it is important that the auxiliary functions only
operate on the topmost element of the stack:

Lemma 20.4

Forevery l € L, d € D, and w € D*,

fildw) = fi(d)w and Fi(dw) = Fi(d)w

see J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem, Proc.
CC'92, LNCS 641, Springer, 1992, 125-140 O

It therefore suffices to consider stacks with at most two entries, and so the
fixpoint iteration ranges over “finitary objects”.
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Soundness and Completeness

The following results carry over from the intraprocedural case:

Theorem 20.5
Let § := (L, E,F, (ﬁ, £),%,p) be an interprocedural dataflow system.
Q (cf. Theorem 7.2)
mvp(S) L fix(Pz)
Q (cf. Theorem 7.5)
mvp(S) = fix(®z) if all §; are distributive

see J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem, Proc.
CC'92, LNCS 641, Springer, 1992, 125-140 O
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@ Context-Sensitive Interprocedural Dataflow Analysis
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Context-Sensitive Interprocedural DFA

@ Observation: MVP and fixpoint solution maintain proper relationship
between procedure calls and returns
@ But: do not distinguish between different procedure calls

. if | € E
Al — JLHPL(AL) [ eyl b, 1) € iflow} if 1= I, for some
= (e Iny I, 1) € iflow
LI{fr(AlLy) | (I',1) € F} otherwise

@ information about calling states combined for all call sites
o procedure body only analyzed once using combined information
o resulting information used at all return points
—> “context-insensitive”
@ Alternative: context-sensitive analysis
separate information for different call sites
@ implementation by “procedure cloning”
@ more precise
@ more costly

<
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