

Static Program Analysis

Lecture 20: Extensions II

(Interprocedural Dataflow Analysis – Fixpoint Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/spa11/>

Summer Semester 2011

- 1 Repetition: Interprocedural Dataflow Analysis
- 2 The Interprocedural Fixpoint Solution
- 3 The Equation System
- 4 Context-Sensitive Interprocedural Dataflow Analysis

Syntactic categories:

Category	Domain	Meta variable
Procedure identifiers	$PVar = \{P, Q, \dots\}$	P
Procedure declarations	$PDec$	p
Commands (statements)	Cmd	c

Context-free grammar:

$$\begin{aligned} p ::= & \text{proc } [P(\text{val } x, \text{res } y)]^{I_n} \text{ is } c [\text{end}]^{I_x}; p \mid \varepsilon \in PDec \\ c ::= & [\text{skip}]^I \mid [x := a]^I \mid c_1; c_2 \mid \text{if } [b]^I \text{ then } c_1 \text{ else } c_2 \mid \\ & \text{while } [b]^I \text{ do } c \mid [\text{call } P(a, x)]_{I_r}^{I_c} \in Cmd \end{aligned}$$

- All labels and procedure names in **program** p c distinct
- In $\text{proc } [P(\text{val } x, \text{res } y)]^{I_n} \text{ is } c [\text{end}]^{I_x}$, I_n (I_x) refers to the **entry** (**exit**) of P
- In $[\text{call } P(a, x)]_{I_r}^{I_c}$, I_c (I_r) refers to the **call** of (**return** from) P
- First parameter **call-by-value**, second **call-by-result**

Procedure Flow Graphs

Definition (Procedure flow graphs)

The auxiliary functions **init**, **final**, and **flow** are extended as follows:

$$\begin{aligned}\text{init}(\text{proc } [P(\text{val } x, \text{res } y)]^{I_n} \text{ is } c [\text{end}]^{I_x}) &:= I_n \\ \text{final}(\text{proc } [P(\text{val } x, \text{res } y)]^{I_n} \text{ is } c [\text{end}]^{I_x}) &:= \{I_x\} \\ \text{flow}(\text{proc } [P(\text{val } x, \text{res } y)]^{I_n} \text{ is } c [\text{end}]^{I_x}) &:= \{(I_n, \text{init}(c))\} \\ &\quad \cup \text{flow}(c) \\ &\quad \cup \{(I, I_x) \mid I \in \text{final}(c)\}\end{aligned}$$
$$\begin{aligned}\text{init}([\text{call } P(a, x)]_{I_r}^{I_c}) &:= I_c \\ \text{final}([\text{call } P(a, x)]_{I_r}^{I_c}) &:= \{I_r\} \\ \text{flow}([\text{call } P(a, x)]_{I_r}^{I_c}) &:= \{(I_c; I_n), (I_x; I_r)\}\end{aligned}$$

if **proc** $[P(\text{val } x, \text{res } y)]^{I_n} \text{ is } c [\text{end}]^{I_x}$ is in p .

Moreover the **interprocedural flow** of a program $p c$ is defined by

$$\text{iflow} := \{(I_c, I_n, I_x, I_r) \mid p c \text{ contains } [\text{call } P(a, x)]_{I_r}^{I_c} \text{ and } \text{proc } [P(\text{val } x, \text{res } y)]^{I_n} \text{ is } c [\text{end}]^{I_x}\} \subseteq L^4$$

- **Attempt:** directly transfer **techniques from intraprocedural analysis**
 \Rightarrow treat $(I_c; I_n)$ like (I_c, I_n) and $(I_x; I_r)$ like (I_x, I_r)
- Given: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$
- For each procedure call $[\text{call } P(a, x)]_{I_r}^{I_c}$:
 transfer functions $\varphi_{I_c}, \varphi_{I_r} : D \rightarrow D$ (definition later)
- For each procedure declaration $\text{proc } [P(\text{val } x, \text{res } y)]_{I_n}^{I_n} \text{ is } c [\text{end}]^{I_x}$:
 transfer functions $\varphi_{I_n}, \varphi_{I_x} : D \rightarrow D$ (definition later)
- Induces **equation system**
$$\text{AI}_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(\text{AI}_{I'}) \mid (I', I) \in F \text{ or } (I'; I) \in F\} & \text{otherwise} \end{cases}$$
- **Problem:** procedure calls $(I_c; I_n)$ and procedure returns $(I_x; I_r)$ treated like goto's
 - \Rightarrow **nesting** of calls and returns ignored
 - \Rightarrow too many **paths**
 - \Rightarrow analysis information **imprecise** (but still correct)

- Consider only paths with **correct nesting** of procedure calls and returns
- Will yield **MVP** solution (**Meet over all Valid Paths**)

Definition (Valid paths I)

Given a dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ and $l_1, l_2 \in L$, the set of **valid paths from l_1 to l_2** is generated by the nonterminal symbol $P[l_1, l_2]$ according to the following productions:

$$\begin{array}{ll} P[l_1, l_2] \rightarrow l_1 & \text{whenever } l_1 = l_2 \\ P[l_1, l_3] \rightarrow l_1, P[l_2, l_3] & \text{whenever } (l_1, l_2) \in F \\ P[l_c, l] \rightarrow l_c, P[l_n, l_x], P[l_r, l] & \text{whenever } (l_c, l_n, l_x, l_r) \in \text{iflow} \end{array}$$

Definition (Valid paths II)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $I \in L$, the set of **valid paths up to I** is given by

$$VPath(I) := \{[l_1, \dots, l_{k-1}] \mid k \geq 1, l_1 \in E, l_k = I, [l_1, \dots, l_k] \text{ valid path from } l_1 \text{ to } l_k\}.$$

For a path $p = [l_1, \dots, l_{k-1}] \in VPath(I)$, we define the **transfer function** $\varphi_p : D \rightarrow D$ by

$$\varphi_p := \varphi_{l_{k-1}} \circ \dots \circ \varphi_{l_1} \circ \text{id}_D$$

(so that $\varphi_{[]} = \text{id}_D$).

Definition (MVP solution)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L = \{l_1, \dots, l_n\}$. The **MVP solution** for S is determined by

$$\text{mvp}(S) := (\text{mvp}(l_1), \dots, \text{mvp}(l_n)) \in D^n$$

where, for every $l \in L$,

$$\text{mvp}(l) := \bigsqcup \{\varphi_p(\iota) \mid p \in VPath(l)\}.$$

Corollary

- ① $\text{mvp}(S) \sqsubseteq \text{mop}(S)$
- ② *The MVP solution is undecidable.*

Proof.

- ① since $VPath(l) \subseteq Path(l)$ for every $l \in L$
- ② since $\text{mvp}(S) = \text{mop}(S)$ in intraprocedural case, and by undecidability of MOP solution (cf. Theorem 6.2)

- 1 Repetition: Interprocedural Dataflow Analysis
- 2 The Interprocedural Fixpoint Solution
- 3 The Equation System
- 4 Context-Sensitive Interprocedural Dataflow Analysis

- **Goal:** adapt fixpoint solution to **avoid invalid paths**
- **Approach:** encode call history into data flow properties
(use **stacks** D^+ as dataflow version of runtime stack)
- Non-procedural constructs (**skip**, assignments, tests):
operate only on **topmost element**
- call: computes **new topmost entry** from current and pushes it
- return: **removes topmost entry** and combines it with underlying
(= call-site) entry

The Interprocedural Extension I

Definition 20.1 (Interprocedural extension (forward analysis))

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. The **interprocedural extension** of S is given by

$$\hat{S} := (L, E, F, (\hat{D}, \hat{\sqsubseteq}), \hat{\iota}, \hat{\varphi})$$

where

- $\hat{D} := D^+$
- $d_1 \dots d_n \hat{\sqsubseteq} d'_1 \dots d'_n$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$
- $\hat{\iota} := \iota \in D^+$
- $\hat{\varphi}_I : D^+ \rightarrow D^+$ where
 - for each $I \in L \setminus \{I_c, I_r \mid (I_c, I_n, I_x, I_r) \in \text{iflow}\}$:
$$\hat{\varphi}_I(dw) := \varphi_I(d)w$$
 - for each $(I_c, I_n, I_x, I_r) \in \text{iflow}$ and $I \in \{I_c, I_r\}$:
$$\hat{\varphi}_{I_c}(dw) := \varphi_{I_c}(d)dw$$

$$\hat{\varphi}_{I_r}(d'dw) := \varphi_{I_r}(d', d)w$$

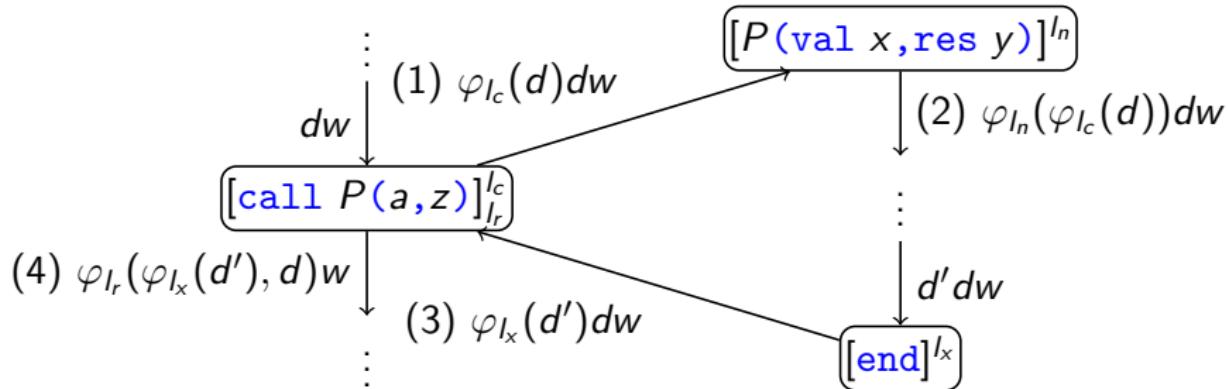
$$\hat{\varphi}_{I_r}(d'dw) := \varphi_{I_r}(d', d)w$$

$$\hat{\varphi}_{I_r}(d'dw) := \varphi_{I_r}(d', d)w$$

The Interprocedural Extension II

Visualization of

- 1 $\hat{\varphi}_{I_c}(dw) := \varphi_{I_c}(d)dw$
- 2 $\hat{\varphi}_{I_n}(d'dw) := \varphi_{I_n}(d')dw$
- 3 $\hat{\varphi}_{I_x}(d'dw) := \varphi_{I_x}(d')dw$
- 4 $\hat{\varphi}_{I_r}(d'dw) := \varphi_{I_r}(d', d)w$



Example 20.2 (Constant Propagation (cf. Lecture 6))

$\hat{S} := (L, E, F, (\hat{D}, \hat{\sqsubseteq}), \hat{\iota}, \hat{\varphi})$ is determined by

- $D := \{\delta \mid \delta : \text{Var}_c \rightarrow \mathbb{Z} \cup \{\perp, \top\}\}$
- $\perp \sqsubseteq z \sqsubseteq \top$ for every $z \in \mathbb{Z}$
- $\iota := \delta_{\top} \in D$
- For each $I \in L \setminus \{I_c, I_n, I_x, I_r \mid (I_c, I_n, I_x, I_r) \in \text{iflow}\}$,
$$\varphi_I(\delta) := \begin{cases} \delta & \text{if } B^I = \text{skip} \text{ or } B^I \in BExp \\ \delta[x \mapsto \text{val}_{\delta}(a)] & \text{if } B^I = (x := a) \end{cases}$$
- Whenever pc contains $[\text{call } P(a, z)]_{I_r}^{I_c}$ and
 $\text{proc } [P(\text{val } x, \text{res } y)]_{I_n}^{I_n} \text{ is } c [\text{end}]_{I_x}^{I_x}$,
 - **call/entry:** set input/reset output parameter
$$\varphi_{I_c}(\delta) := \delta[x \mapsto \text{val}_{\delta}(a), y \mapsto \top], \quad \varphi_{I_n}(\delta) := \delta$$
 - **exit/return:** reset parameters/set return value
$$\varphi_{I_x}(\delta) := \delta, \quad \varphi_{I_r}(\delta', \delta) := \delta'[x \mapsto \delta(x), y \mapsto \delta(y), z \mapsto \delta'(y)]$$

- 1 Repetition: Interprocedural Dataflow Analysis
- 2 The Interprocedural Fixpoint Solution
- 3 The Equation System
- 4 Context-Sensitive Interprocedural Dataflow Analysis

For an interprocedural dataflow system $\hat{S} := (L, E, F, (\hat{D}, \hat{\sqsubseteq}), \hat{\iota}, \hat{\varphi})$, the **intraprocedural equation system** (cf. Definition 4.9)

$$\text{AI}_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(\text{AI}_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

is **extended** to a system with three kinds of equations
(for every $I \in L$):

- for actual **dataflow information**: $\text{AI}_I \in D^+$
(counterpart of intraprocedural AI)
- for **transfer functions of single nodes**: $f_I : D^+ \rightarrow D^+$
(extension of intraprocedural transfer functions with special handling of procedure calls)
- for **transfer functions of complete procedures**: $F_I : D^+ \rightarrow D^+$
($F_I(w)$ yields information at I if surrounding procedure is called with information $w \implies$ complete procedure represented by F_{I_x})

The Equation System II

Formal definition – dataflow equations:

$$\text{AI}_I = \begin{cases} \bigcup \{\hat{\varphi}_{I_c}(\text{AI}_{I_c}) \mid (I_c, I_n, I_x, I_r) \in \text{iflow}\} & \text{if } I \in E \\ \bigcup \{f_{I'}(\text{AI}_{I'}) \mid (I', I) \in F\} & \text{if } I = I_n \\ & \text{for some } (I_c, I_n, I_x, I_r) \in \text{iflow} \\ (\text{if } I \text{ not a return label}) & \text{otherwise} \end{cases}$$

Node transfer functions:

$$f_I(w) = \begin{cases} \hat{\varphi}_{I_r}(\hat{\varphi}_{I_x}(F_{I_x}(\hat{\varphi}_{I_c}(w)))) & \text{if } I = I_c \text{ for some } (I_c, I_n, I_x, I_r) \in \text{iflow} \\ \hat{\varphi}_I(w) & \text{otherwise} \\ (\text{if } I \text{ not an exit or return label}) & \end{cases}$$

Procedure transfer functions:

$$F_I(w) = \begin{cases} w & \text{if } I = I_n \\ \bigcup \{f_{I'}(F_{I'}(w)) \mid (I', I) \in F\} & \text{for some } (I_c, I_n, I_x, I_r) \in \text{iflow} \\ (\text{if } I \text{ occurs in some procedure}) & \text{otherwise} \end{cases}$$

As before: induces monotonic functional on lattice with ACC
⇒ least fixpoint effectively computable

Example 20.3 (Constant Propagation)

Program:

```
proc [P(val x, res y)]1 is
  [y := 2*(x-1)]2;
[end]3;
[call P(2, z)]4;
[call P(z, z)]5;
[skip]8
```

Node transfer functions:

$$\begin{aligned}\hat{\varphi}_1(\delta w) &= \delta w \\ \hat{\varphi}_2(\delta w) &= \delta[y \mapsto \text{val}_\delta(2*(x-1))]w \\ \hat{\varphi}_3(\delta w) &= \delta w \\ \hat{\varphi}_4(\delta w) &= \delta[x \mapsto 2, y \mapsto \top]\delta w \\ \hat{\varphi}_5(\delta' \delta w) &= \delta'[x \mapsto \delta(x), y \mapsto \delta(y), z \mapsto \delta'(y)]w \\ \hat{\varphi}_6(\delta w) &= \delta[x \mapsto \delta(z), y \mapsto \top]\delta w \\ \hat{\varphi}_7(\delta' \delta w) &= \delta'[x \mapsto \delta(x), y \mapsto \delta(y), z \mapsto \delta'(y)]w\end{aligned}$$

Dataflow equations:

$$\begin{aligned}AI_1 &= \hat{\varphi}_4(AI_4) \sqcup \hat{\varphi}_6(AI_6) \\ AI_2 &= f_1(AI_1) \\ AI_3 &= f_2(AI_2) \\ AI_4 &= \iota = \top \top \top \\ AI_6 &= f_4(AI_4) \\ AI_8 &= f_6(AI_6)\end{aligned}$$

$$\begin{aligned}f_1(\delta w) &= \hat{\varphi}_1(\delta w) = \delta w \\ f_2(\delta w) &= \hat{\varphi}_2(\delta w) = \delta[y \mapsto \text{val}_\delta(2*(x-1))]w \\ f_4(\delta w) &= \hat{\varphi}_5(\hat{\varphi}_3(F_3(\hat{\varphi}_4(\delta w)))) = \hat{\varphi}_5(F_3(\hat{\varphi}_4(\delta w))) \\ f_6(\delta w) &= \hat{\varphi}_7(\hat{\varphi}_3(F_3(\hat{\varphi}_6(\delta w)))) = \hat{\varphi}_7(F_3(\hat{\varphi}_6(\delta w))) \\ f_8(\delta w) &= \hat{\varphi}_8(\delta w) = \delta w\end{aligned}$$

Procedure transfer functions:

$$\begin{aligned}F_1(\delta w) &= \delta w \\ F_2(\delta w) &= f_1(F_1(\delta w)) = \delta w \\ F_3(\delta w) &= f_2(F_2(\delta w)) = \delta[y \mapsto \text{val}_\delta(2*(x-1))]w\end{aligned}$$

Fixpoint iteration:

on the board

For the fixpoint iteration it is important that the auxiliary functions only operate on the topmost element of the stack:

Lemma 20.4

For every $l \in L$, $d \in D$, and $w \in D^*$,

$$f_l(dw) = f_l(d)w \text{ and } F_l(dw) = F_l(d)w$$

Proof.

see J. Knoop, B. Steffen: *The Interprocedural Coincidence Theorem*, Proc. CC '92, LNCS 641, Springer, 1992, 125–140 □

It therefore suffices to consider stacks with at most two entries, and so the fixpoint iteration ranges over “finitary objects”.

The following results carry over from the intraprocedural case:

Theorem 20.5

Let $\hat{S} := (L, E, F, (\hat{D}, \hat{\sqsubseteq}), \hat{\iota}, \hat{\varphi})$ be an interprocedural dataflow system.

- ① (cf. Theorem 7.2)
 $\text{mvp}(\hat{S}) \hat{\sqsubseteq} \text{fix}(\Phi_{\hat{S}})$
- ② (cf. Theorem 7.5)
 $\text{mvp}(\hat{S}) = \text{fix}(\Phi_{\hat{S}})$ if all $\hat{\varphi}_I$ are distributive

Proof.

see J. Knoop, B. Steffen: *The Interprocedural Coincidence Theorem*, Proc. CC '92, LNCS 641, Springer, 1992, 125–140

- 1 Repetition: Interprocedural Dataflow Analysis
- 2 The Interprocedural Fixpoint Solution
- 3 The Equation System
- 4 Context-Sensitive Interprocedural Dataflow Analysis

- **Observation:** MVP and fixpoint solution maintain proper relationship between procedure calls and returns
- **But:** do not distinguish between different procedure calls

$$\text{AI}_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\hat{\varphi}_{I_c}(\text{AI}_{I_c}) \mid (I_c, I_n, I_x, I_r) \in \text{iflow}\} & \text{if } I = I_n \text{ for some } (I_c, I_n, I_x, I_r) \in \text{iflow} \\ \bigsqcup \{f_{I'}(\text{AI}_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

- information about calling states combined for all call sites
- procedure body only analyzed once using combined information
- resulting information used at all return points

⇒ “context-insensitive”

- **Alternative:** context-sensitive analysis
 - separate information for different call sites
 - implementation by “procedure cloning”
 - more precise
 - more costly