Static Program Analysis

Lecture 21: Extensions Ill
(Pointer Analysis & Wrap-Up)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Pointer Analysis

nm Static Program Analysis Summer Semester 2011 21.2

Pointer Analysis

@ So far: only static data structures (variables)

@ Now: pointer (variables) and dynamic memory allocation using heaps
@ Problem:

@ Programs with pointers and dynamically allocated data structures are

error prone

o Identify subtle bugs at compile time

@ Automatically prove correctness
@ Interesting properties of heap-manipulating programs:

@ No null pointer dereference

@ No memory leaks

o Preservation of data structures

o Partial/total correctness

Rm Static Program Analysis Summer Semester 2011 21.3

The Shape Analysis Approach

@ Goal: determine the possible shapes of a dynamically allocated data
structure at given program point

@ Interesting information:

data types (to avoid type errors, such as dereferencing nil)

sharing (different pointer variables referencing same address; aliasing)

reachability of nodes (garbage collection)

disjointness of heap regions (parallelizability)

shapes (lists, trees, absence of cycles, ...)

©

¢ ¢ ¢ ¢

o Concrete questions:

Does x.next point to a shared element?
@ Does a variable p point to an allocated element every time p is
dereferenced?

©

@ Does a variable point to an acyclic list?
@ Does a variable point to a doubly-linked list?
o Can a loop or procedure cause a memory leak?

@ Here: basic outline; details in [Nielson/Nielson/Hankin 2005,
Sct. 2.6]

Rm Static Program Analysis Summer Semester 2011 21.4

© Introducing Pointers

nm Static Program Analysis Summer Semester 2011

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Arithmetic expressions AExp a

Boolean expressions BExp b

Selector names Sel sel

Pointer expressions PExp p

Commands (statements) Cmd c

Context-free grammar:

a

b
p
c

z|x|atay|...| p|nil € AExp
t | ai=ap | b1\ by | | is-nil(p) € BExp
x| x.sel

[skip] | [p :=a]' | c15c2 | if [b]' then ¢ else oo |
while [b]' do c | [malloc p]' € Cmd

Rm Static Program Analysis Summer Semester 2011 21.6

An Example

Example 21.1 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

next next next
x 0
y
z

next next next o

X
y——¢<
z

next next next
x 0
y——¢<

Rm Static Program Analysis Summer Semester 2011 21.7

© Shape Graphs

nm Static Program Analysis Summer Semester 2011 21.8

Shape Graphs |

Approach: representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

@ abstract nodes X = sets of variables (interpretation: x € X iff x
points to concrete node represented by X)

@ () represents all concrete nodes that are not directly reachable
o if x.sel and y refer to the same heap address and if X, Y are abstract
nodes with x € X and y € Y/, then this yields abstract edge X =y

@ transfer functions transform (sets of) shape graphs

Rm Static Program Analysis Summer Semester 2011 21.9

Shape Graphs Il

Example 21.2 (List reversal (cf. Example 21.1))

Concrete heap Shape graph

< next next next <>

ext
y (\3
—
—_—

z {x}
< next next next <>

y <> mext
. {x} P2 0]

next next next
X ¢
s ~——ext
Rm Static Program Analysis Summer Semester 2011 21.10

hvd

Shape Graphs llI

Definition 21.3 (Shape graph)
A shape graph G = (S, H) consists of
@ aset S C 24" of abstract locations and
@ an abstract heap H C S x Sel x §
(notation: X =LY for (X,sel,Y) € H).
with the following properties:
Disjointness: X, Y €S = X=Yo XNY =10
(a variable can refer to at most one heap location)
Determinacy: X2 YadX2h7Z = X=0orY=2
(target location is unique if source location non-empty)
SG denotes the set of all shape graphs.

Remark: the following example shows that determinacy requires X # 0:

Concrete: y — o &L e Abstract: [Y = {y} Ex=9]=[z= {z}

sel
Z—> 04— @

Rm Static Program Analysis

Summer Semester 2011 21.11

Shape Graphs and Concrete Heap Properties

Let G = (S, H) be a shape graph.
® x #nil
< IXeS:xeX
e x =y #nil (aliasing)
— IXeS:x,yeX
@ x.sel =y # nil (sharing)
— IX,YeS:xeX,ye YV, X3y

Rm Static Program Analysis Summer Semester 2011 21.12

Q@ Shape Analysis

nm Static Program Analysis Summer Semester 2011 pARK)

@ Approach: forward analysis to determine all shape graphs that
represent all possible heap structures at the respective label
@ Domain: (D,C) := (2°¢, Q)
o Var, Sel finite = SG finite = 2°C finite = ACC

@ Extremal value: ¢ := {shape graphs for possible initial values of Var}

Example 21.4 (List reversal (cf. Example 21.2))
@ Variables: Var = {x,y,z}

@ Assumption: x points to any (finite, non-cyclic) list, y = z = nil

n?}\cft
— =S , (&3], []2S[e] L[]S 0]
N ——"
empty 1 elem. 2 elem. > 3 elem.
Rm Static Program Analysis

Summer Semester 2011 21.14

The Transfer Functions

Transfer functions: ¢; : 2°¢ — 25¢ (monotonic)
@ Transform each single shape graph into a set of shape graphs:

i({G1;--.,Gn}) = U?:l ¢1(Gi)
o /(G) determined by B’:
o [skip]”: ¢/(G) = {G}
o [b]" @i(G) = {G}
o [p := a]': case-by-case analysis w.r.t. p and a
o [Nielson/Nielson/Hankin 2005]: 12 cases
@ may involve (high degree of) non-determinism
o [malloc x]": /(G) := {(S’ U {{x}},H")} where
o G=(S,H)
o S':={X\{x}|XeS}
o H:=HNS x Sel x§'
o [malloc x.sel]’: equivalent to
[malloc t];[x.sel := t]2;[t :=nil]";
with fresh t € Var and 1, b, tz3 € L
@ Crucial for soundness: safety of approximation

if shape graph G approximates heap h and h —>] H,
then there exists G’ € ¢(G) such that G’ approximates h’
Rm Static Program Analysis Summer Semester 2011 21.15

An Example
Example 21.5

0

(a) el1 (b) l (c)

m sel Tsell
e ErE] @) D]
ell
(d) sel2 (e) sel2
. Tse\ll\ . 1\11\
|0 == (@] [0 [

Static Program Analysis Summer Semester 2011 21.16

Application to List Reversal

Example 21.6 (List reversal (cf. Example 21.2))

Shape analysis of list reversal program yields final result

next
t t
00 . [. []==5[e] . [G3]=5 (0]
~—~— ~— ——
empty 1 elem. 2 elem. > 3 elem.

Interpretation:
+ Result again finite list
— but potentially cyclic (a “lasso”, not a ring)

— also “reversal” property not guaranteed

Rm Static Program Analysis Summer Semester 2011 21.17

© Further Topic in Program Analysis

nm Static Program Analysis Summer Semester 2011 21.18

Alternative Approaches to Pointer Analysis

o Dedicated algorithms:
@ nil Pointer Analysis: checks whether dereferencing operations possibly
involve nil pointers
@ Points-To Analysis: yields function pt that for each x € Var returns set
pt(x) of possible pointer targets
@ x and y may be aliases if pt(x) N pt(y) # 0
Usually faster and sometimes more precise, but less general
(only “shallow” properties)

@ Graph grammar approaches:

e e.g., J. Heinen, T. Noll, S. Rieger: Juggrnaut: Graph Grammar
Abstraction for Unbounded Heap Structures TTSS 2009, ENTCS 266,
Elsevier, 2010, 93-107

idea: specify data structures by graph production rules

concretization by forward application

abstraction by backward application

all pointer operations remain concrete

= avoids complicated definition of transfer functions

¢ € ¢ ¢

Rm Static Program Analysis Summer Semester 2011 21.19

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent
@ Of course both are (and should be) related!

@ To this aim: compare results of concrete semantics (Definition 12.9)
with outcome of analysis

o Example: correctness of Constant Propagation
Let ¢ € Cmd with Iy = init(c), and let | € L., x € Var, and z € Z
such that CP/(x) = z. Then for every 09,0 € X such that
</0’0-0> —* </?0->1 J(X) L

@ see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Rm Static Program Analysis Summer Semester 2011 21.20

© Wrap-Up

nm Static Program Analysis Summer Semester 2011 21.

Final Remarks
Fortcoming courses in Wintersemester 2011/12

o Introduction to Model Checking [Katoen; V3/4 U2]

@ Transition systems

@ Property classes: safety, liveness, invariants, fairness
© Linear Temporal Logic (LTL)

© Computational Tree Logic (CTL)

@ Model Checking algorithms for LTL and CTL

o Semantics and Verification of Software [Noll; V3 U2]

@ The imperative model language WHILE

@ Operational, denotational and axiomatic semantics of WHILE
© Equivalence of operational and denotational semantics

@ Applications: compiler correctness, optimizing transformations
@ Extensions: procedures and dynamic data structures

Rm Static Program Analysis Summer Semester 2011 21.22

	Pointer Analysis
	Introducing Pointers
	Shape Graphs
	Shape Analysis
	Further Topic in Program Analysis
	Wrap-Up

