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Pointer Analysis

So far: only static data structures (variables)

Now: pointer (variables) and dynamic memory allocation using heaps

Problem:

Programs with pointers and dynamically allocated data structures are
error prone
Identify subtle bugs at compile time
Automatically prove correctness

Interesting properties of heap-manipulating programs:

No null pointer dereference
No memory leaks
Preservation of data structures
Partial/total correctness
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The Shape Analysis Approach

Goal: determine the possible shapes of a dynamically allocated data
structure at given program point

Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address; aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Concrete questions:

Does x.next point to a shared element?
Does a variable p point to an allocated element every time p is
dereferenced?
Does a variable point to an acyclic list?
Does a variable point to a doubly-linked list?
Can a loop or procedure cause a memory leak?

Here: basic outline; details in [Nielson/Nielson/Hankin 2005,
Sct. 2.6]
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Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Arithmetic expressions AExp a
Boolean expressions BExp b
Selector names Sel sel
Pointer expressions PExp p
Commands (statements) Cmd c

Context-free grammar:

a ::= z | x | a1+a2 | . . . | p | nil ∈ AExp
b ::= t | a1=a2 | b1∧b2 | . . . | is-nil(p) ∈ BExp
p ::= x | x.sel
c ::= [skip]l | [p := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [malloc p]l ∈ Cmd
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An Example

Example 21.1 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

x a1 a2 a3 ♦

y

z

next next next

x a1 a2 a3 ♦

y ♦

z

next next next

x a1 a2 a3 ♦

y ♦

z ♦

next next next
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Shape Graphs I

Approach: representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes X = sets of variables (interpretation: x ∈ X iff x

points to concrete node represented by X )

∅ represents all concrete nodes that are not directly reachable

if x .sel and y refer to the same heap address and if X ,Y are abstract

nodes with x ∈ X and y ∈ Y , then this yields abstract edge X
sel
−→ Y

transfer functions transform (sets of) shape graphs
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Shape Graphs II

Example 21.2 (List reversal (cf. Example 21.1))

Concrete heap Shape graph

x a1 a2 a3 ♦

y

z

next next next

{x} ∅
next

next

x a1 a2 a3 ♦

y ♦

z

next next next

{x} ∅
next

next

x a1 a2 a3 ♦

y ♦

next next next

next
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Shape Graphs III

Definition 21.3 (Shape graph)

A shape graph G = (S ,H) consists of

a set S ⊆ 2Var of abstract locations and
an abstract heap H ⊆ S × Sel × S

(notation: X
sel
−→ Y for (X , sel ,Y ) ∈ H).

with the following properties:

Disjointness: X ,Y ∈ S =⇒ X = Y or X ∩ Y = ∅
(a variable can refer to at most one heap location)

Determinacy: X
sel
−→ Y and X

sel
−→ Z =⇒ X = ∅ or Y = Z

(target location is unique if source location non-empty)

SG denotes the set of all shape graphs.

Remark: the following example shows that determinacy requires X 6= ∅:

Concrete: y −→ •
sel
←− •

z −→ •
sel
←− •

Abstract: Y = {y}
sel
←− X = ∅

sel
−→ Z = {z}
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Shape Graphs and Concrete Heap Properties

Let G = (S ,H) be a shape graph.

x 6= nil

⇐⇒ ∃X ∈ S : x ∈ X

x = y 6= nil (aliasing)
⇐⇒ ∃X ∈ S : x, y ∈ X

x.sel = y 6= nil (sharing)

⇐⇒ ∃X ,Y ∈ S : x ∈ X , y ∈ Y ,X
sel
−→ Y
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The Domain

Approach: forward analysis to determine all shape graphs that
represent all possible heap structures at the respective label

Domain: (D,v) := (2SG ,⊆)
Var , Sel finite =⇒ SG finite =⇒ 2SG finite =⇒ ACC

Extremal value: ι := {shape graphs for possible initial values of Var}

Example 21.4 (List reversal (cf. Example 21.2))

Variables: Var = {x, y, z}

Assumption: x points to any (finite, non-cyclic) list, y = z = nil

=⇒ ι =







(∅, ∅)
︸ ︷︷ ︸

empty

, {x}
︸ ︷︷ ︸

1 elem.

, {x}
next
−→ ∅

︸ ︷︷ ︸

2 elem.

, {x}
next
−→

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.






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The Transfer Functions

Transfer functions: ϕl : 2
SG → 2SG (monotonic)

Transform each single shape graph into a set of shape graphs:
ϕl({G1, . . . ,Gn}) =

⋃n
i=1 ϕl (Gi)

ϕl(G ) determined by B l :
[skip]l : ϕl (G) := {G}
[b]l : ϕl (G) := {G}
[p := a]l : case-by-case analysis w.r.t. p and a

[Nielson/Nielson/Hankin 2005]: 12 cases
may involve (high degree of) non-determinism

[malloc x ]l : ϕl (G) := {(S ′ ∪ {{x}},H ′)} where
G = (S ,H)
S ′ := {X \ {x} | X ∈ S}
H ′ := H ∩ S ′ × Sel × S ′

[malloc x .sel ]l : equivalent to
[malloc t]l1;[x.sel := t]l2;[t := nil]l3;

with fresh t ∈ Var and l1, l2, t3 ∈ L

Crucial for soundness: safety of approximation
if shape graph G approximates heap h and h

[p := a]l

−→ h′,
then there exists G ′ ∈ ϕl(G ) such that G ′ approximates h′
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An Example

Example 21.5

{y} ∅ {z}
sel

sel1

sel2

⇓ϕx := y.sel

(a)

{y} {x} {z}
sel

sel1

sel2

(b) ∅

{y} {x} {z}
sel sel2

sel1

(c) ∅

{y} {x} {z}
sel sel2

sel1

sel1

(d) ∅

{y} {x} {z}
sel

sel1

sel2 (e) ∅

{y} {x} {z}
sel

sel1

sel1

sel2
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Application to List Reversal

Example 21.6 (List reversal (cf. Example 21.2))

Shape analysis of list reversal program yields final result







(∅, ∅)
︸ ︷︷ ︸

empty

, {y}
︸ ︷︷ ︸

1 elem.

, {y}
next
−→ ∅

︸ ︷︷ ︸

2 elem.

, {y}
next
−→

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.







Interpretation:

+ Result again finite list

− but potentially cyclic (a “lasso”, not a ring)

− also “reversal” property not guaranteed
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Alternative Approaches to Pointer Analysis

Dedicated algorithms:

nil Pointer Analysis: checks whether dereferencing operations possibly
involve nil pointers
Points-To Analysis: yields function pt that for each x ∈ Var returns set
pt(x) of possible pointer targets

x and y may be aliases if pt(x) ∩ pt(y) 6= ∅

Usually faster and sometimes more precise, but less general
(only “shallow” properties)

Graph grammar approaches:

e.g., J. Heinen, T. Noll, S. Rieger: Juggrnaut: Graph Grammar

Abstraction for Unbounded Heap Structures TTSS 2009, ENTCS 266,
Elsevier, 2010, 93–107
idea: specify data structures by graph production rules
concretization by forward application
abstraction by backward application
all pointer operations remain concrete
=⇒ avoids complicated definition of transfer functions
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Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

To this aim: compare results of concrete semantics (Definition 12.9)
with outcome of analysis

Example: correctness of Constant Propagation

Let c ∈ Cmd with l0 = init(c), and let l ∈ Lc , x ∈ Var , and z ∈ Z

such that CPl(x) = z . Then for every σ0, σ ∈ Σ such that
〈l0, σ0〉 →

∗ 〈l , σ〉, σ(x) = z .

see [Nielson/Nielson/Hankin 2005, Sct. 2.2]
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Final Remarks

Fortcoming courses in Wintersemester 2011/12

Introduction to Model Checking [Katoen; V3/4 Ü2]
1 Transition systems
2 Property classes: safety, liveness, invariants, fairness
3 Linear Temporal Logic (LTL)
4 Computational Tree Logic (CTL)
5 Model Checking algorithms for LTL and CTL

Semantics and Verification of Software [Noll; V3 Ü2]
1 The imperative model language WHILE
2 Operational, denotational and axiomatic semantics of WHILE
3 Equivalence of operational and denotational semantics
4 Applications: compiler correctness, optimizing transformations
5 Extensions: procedures and dynamic data structures
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