
Static Program Analysis
Lecture 21: Extensions III

(Pointer Analysis & Wrap-Up)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Pointer Analysis

2 Introducing Pointers

3 Shape Graphs

4 Shape Analysis

5 Further Topic in Program Analysis

6 Wrap-Up

Static Program Analysis Summer Semester 2011 21.2

Pointer Analysis

So far: only static data structures (variables)

Now: pointer (variables) and dynamic memory allocation using heaps

Problem:

Programs with pointers and dynamically allocated data structures are
error prone
Identify subtle bugs at compile time
Automatically prove correctness

Interesting properties of heap-manipulating programs:

No null pointer dereference
No memory leaks
Preservation of data structures
Partial/total correctness

Static Program Analysis Summer Semester 2011 21.3

The Shape Analysis Approach

Goal: determine the possible shapes of a dynamically allocated data
structure at given program point

Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address; aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Concrete questions:

Does x.next point to a shared element?
Does a variable p point to an allocated element every time p is
dereferenced?
Does a variable point to an acyclic list?
Does a variable point to a doubly-linked list?
Can a loop or procedure cause a memory leak?

Here: basic outline; details in [Nielson/Nielson/Hankin 2005,
Sct. 2.6]

Static Program Analysis Summer Semester 2011 21.4

Outline

1 Pointer Analysis

2 Introducing Pointers

3 Shape Graphs

4 Shape Analysis

5 Further Topic in Program Analysis

6 Wrap-Up

Static Program Analysis Summer Semester 2011 21.5

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Arithmetic expressions AExp a
Boolean expressions BExp b
Selector names Sel sel
Pointer expressions PExp p
Commands (statements) Cmd c

Context-free grammar:

a ::= z | x | a1+a2 | . . . | p | nil ∈ AExp
b ::= t | a1=a2 | b1∧b2 | . . . | is-nil(p) ∈ BExp
p ::= x | x.sel
c ::= [skip]l | [p := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [malloc p]l ∈ Cmd

Static Program Analysis Summer Semester 2011 21.6

An Example

Example 21.1 (List reversal)

Program that reverses list pointed to by x and leaves result in y:

x a1 a2 a3 ♦

y

z

next next next

x a1 a2 a3 ♦

y ♦

z

next next next

x a1 a2 a3 ♦

y ♦

z ♦

next next next

Static Program Analysis Summer Semester 2011 21.7

Outline

1 Pointer Analysis

2 Introducing Pointers

3 Shape Graphs

4 Shape Analysis

5 Further Topic in Program Analysis

6 Wrap-Up

Static Program Analysis Summer Semester 2011 21.8

Shape Graphs I

Approach: representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes X = sets of variables (interpretation: x ∈ X iff x

points to concrete node represented by X)

∅ represents all concrete nodes that are not directly reachable

if x .sel and y refer to the same heap address and if X ,Y are abstract

nodes with x ∈ X and y ∈ Y , then this yields abstract edge X
sel
−→ Y

transfer functions transform (sets of) shape graphs

Static Program Analysis Summer Semester 2011 21.9

Shape Graphs II

Example 21.2 (List reversal (cf. Example 21.1))

Concrete heap Shape graph

x a1 a2 a3 ♦

y

z

next next next

{x} ∅
next

next

x a1 a2 a3 ♦

y ♦

z

next next next

{x} ∅
next

next

x a1 a2 a3 ♦

y ♦

next next next

next
Static Program Analysis Summer Semester 2011 21.10

Shape Graphs III

Definition 21.3 (Shape graph)

A shape graph G = (S ,H) consists of

a set S ⊆ 2Var of abstract locations and
an abstract heap H ⊆ S × Sel × S

(notation: X
sel
−→ Y for (X , sel ,Y) ∈ H).

with the following properties:

Disjointness: X ,Y ∈ S =⇒ X = Y or X ∩ Y = ∅
(a variable can refer to at most one heap location)

Determinacy: X
sel
−→ Y and X

sel
−→ Z =⇒ X = ∅ or Y = Z

(target location is unique if source location non-empty)

SG denotes the set of all shape graphs.

Remark: the following example shows that determinacy requires X 6= ∅:

Concrete: y −→ •
sel
←− •

z −→ •
sel
←− •

Abstract: Y = {y}
sel
←− X = ∅

sel
−→ Z = {z}

Static Program Analysis Summer Semester 2011 21.11

Shape Graphs and Concrete Heap Properties

Let G = (S ,H) be a shape graph.

x 6= nil

⇐⇒ ∃X ∈ S : x ∈ X

x = y 6= nil (aliasing)
⇐⇒ ∃X ∈ S : x, y ∈ X

x.sel = y 6= nil (sharing)

⇐⇒ ∃X ,Y ∈ S : x ∈ X , y ∈ Y ,X
sel
−→ Y

Static Program Analysis Summer Semester 2011 21.12

Outline

1 Pointer Analysis

2 Introducing Pointers

3 Shape Graphs

4 Shape Analysis

5 Further Topic in Program Analysis

6 Wrap-Up

Static Program Analysis Summer Semester 2011 21.13

The Domain

Approach: forward analysis to determine all shape graphs that
represent all possible heap structures at the respective label

Domain: (D,v) := (2SG ,⊆)
Var , Sel finite =⇒ SG finite =⇒ 2SG finite =⇒ ACC

Extremal value: ι := {shape graphs for possible initial values of Var}

Example 21.4 (List reversal (cf. Example 21.2))

Variables: Var = {x, y, z}

Assumption: x points to any (finite, non-cyclic) list, y = z = nil

=⇒ ι =







(∅, ∅)
︸ ︷︷ ︸

empty

, {x}
︸ ︷︷ ︸

1 elem.

, {x}
next
−→ ∅

︸ ︷︷ ︸

2 elem.

, {x}
next
−→

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.







Static Program Analysis Summer Semester 2011 21.14

The Transfer Functions

Transfer functions: ϕl : 2
SG → 2SG (monotonic)

Transform each single shape graph into a set of shape graphs:
ϕl({G1, . . . ,Gn}) =

⋃n
i=1 ϕl (Gi)

ϕl(G) determined by B l :
[skip]l : ϕl (G) := {G}
[b]l : ϕl (G) := {G}
[p := a]l : case-by-case analysis w.r.t. p and a

[Nielson/Nielson/Hankin 2005]: 12 cases
may involve (high degree of) non-determinism

[malloc x]l : ϕl (G) := {(S ′ ∪ {{x}},H ′)} where
G = (S ,H)
S ′ := {X \ {x} | X ∈ S}
H ′ := H ∩ S ′ × Sel × S ′

[malloc x .sel]l : equivalent to
[malloc t]l1;[x.sel := t]l2;[t := nil]l3;

with fresh t ∈ Var and l1, l2, t3 ∈ L

Crucial for soundness: safety of approximation
if shape graph G approximates heap h and h

[p := a]l

−→ h′,
then there exists G ′ ∈ ϕl(G) such that G ′ approximates h′

Static Program Analysis Summer Semester 2011 21.15

An Example

Example 21.5

{y} ∅ {z}
sel

sel1

sel2

⇓ϕx := y.sel

(a)

{y} {x} {z}
sel

sel1

sel2

(b) ∅

{y} {x} {z}
sel sel2

sel1

(c) ∅

{y} {x} {z}
sel sel2

sel1

sel1

(d) ∅

{y} {x} {z}
sel

sel1

sel2 (e) ∅

{y} {x} {z}
sel

sel1

sel1

sel2

Static Program Analysis Summer Semester 2011 21.16

Application to List Reversal

Example 21.6 (List reversal (cf. Example 21.2))

Shape analysis of list reversal program yields final result







(∅, ∅)
︸ ︷︷ ︸

empty

, {y}
︸ ︷︷ ︸

1 elem.

, {y}
next
−→ ∅

︸ ︷︷ ︸

2 elem.

, {y}
next
−→

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.







Interpretation:

+ Result again finite list

− but potentially cyclic (a “lasso”, not a ring)

− also “reversal” property not guaranteed

Static Program Analysis Summer Semester 2011 21.17

Outline

1 Pointer Analysis

2 Introducing Pointers

3 Shape Graphs

4 Shape Analysis

5 Further Topic in Program Analysis

6 Wrap-Up

Static Program Analysis Summer Semester 2011 21.18

Alternative Approaches to Pointer Analysis

Dedicated algorithms:

nil Pointer Analysis: checks whether dereferencing operations possibly
involve nil pointers
Points-To Analysis: yields function pt that for each x ∈ Var returns set
pt(x) of possible pointer targets

x and y may be aliases if pt(x) ∩ pt(y) 6= ∅

Usually faster and sometimes more precise, but less general
(only “shallow” properties)

Graph grammar approaches:

e.g., J. Heinen, T. Noll, S. Rieger: Juggrnaut: Graph Grammar

Abstraction for Unbounded Heap Structures TTSS 2009, ENTCS 266,
Elsevier, 2010, 93–107
idea: specify data structures by graph production rules
concretization by forward application
abstraction by backward application
all pointer operations remain concrete
=⇒ avoids complicated definition of transfer functions

Static Program Analysis Summer Semester 2011 21.19

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

To this aim: compare results of concrete semantics (Definition 12.9)
with outcome of analysis

Example: correctness of Constant Propagation

Let c ∈ Cmd with l0 = init(c), and let l ∈ Lc , x ∈ Var , and z ∈ Z

such that CPl(x) = z . Then for every σ0, σ ∈ Σ such that
〈l0, σ0〉 →

∗ 〈l , σ〉, σ(x) = z .

see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Static Program Analysis Summer Semester 2011 21.20

Outline

1 Pointer Analysis

2 Introducing Pointers

3 Shape Graphs

4 Shape Analysis

5 Further Topic in Program Analysis

6 Wrap-Up

Static Program Analysis Summer Semester 2011 21.21

Final Remarks

Fortcoming courses in Wintersemester 2011/12

Introduction to Model Checking [Katoen; V3/4 Ü2]
1 Transition systems
2 Property classes: safety, liveness, invariants, fairness
3 Linear Temporal Logic (LTL)
4 Computational Tree Logic (CTL)
5 Model Checking algorithms for LTL and CTL

Semantics and Verification of Software [Noll; V3 Ü2]
1 The imperative model language WHILE
2 Operational, denotational and axiomatic semantics of WHILE
3 Equivalence of operational and denotational semantics
4 Applications: compiler correctness, optimizing transformations
5 Extensions: procedures and dynamic data structures

Static Program Analysis Summer Semester 2011 21.22

	Pointer Analysis
	Introducing Pointers
	Shape Graphs
	Shape Analysis
	Further Topic in Program Analysis
	Wrap-Up

