Static Program Analysis

Lecture 2: Dataflow Analysis |
(Introduction & Available Expressions Analysis)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Preliminaries on Dataflow Analysis

anl Static Program Analysis Summer Semester 2011

Dataflow Analysis: the Approach

@ Traditional form of program analysis

@ ldea: describe how analysis information flows through program
@ Distinctions:
direction of flow:

forward vs. backward analyses
procedures:

interprocedural vs. intraprocedural analyses
quantification over paths:

may (union) vs. must (intersection) analyses
dependence on statement order:

flow-sensitive vs. flow-insensitive analyses

anl Static Program Analysis Summer Semester 2011 23

Labeled Programs

@ Goal: localization of analysis information

o Dataflow information will be associated with
e skip statements
e assignments
e tests in conditionals (if) and loops (while)

@ Assume set of labels L with meta variable / € L (usually L = N)

Definition 2.1 (Labeled WHILE programs)

The syntax of labeled WHILE programs is defined by the following
context-free grammar:

aun=z|x|a+ay | ai-ax | ayxax € AExp
b=t | ai=a» | ai;>a» | —-b | biAby | bi1Vby € BExp
c == [skip]' | [x := 3] | a5 |

if [b]’ then ¢; else ¢ | while [b]' do c € Cmd

@ All labels in ¢ € Cmd assumed distinct, denoted by L.
@ Labeled fragments of ¢ called blocks, denoted by Blk.

Imm Static Program Analysis Summer Semester 2011 2.4

A WHILE Program with Labels

Example 2.2

X := 6;
y = 7;
z := 0;
while x > O do
X :=x - 1;
vV =y,
while v > 0 d
v :=v - 1;
z =z + 1;

Rwr“ Static Program Analysis Summer Semester 2011 2.5

Representing Control Flow |

Every (labeled) statement has a single entry (given by the initial label) and
generally multiple exits (given by the final labels):

Definition 2.3 (Initial and final labels)

The mapping init : Cmd — L returns the initial label of a statement:
init([skip]’) =/
init([x :=a]) =1/
init(c1; c2) := init(cy)
init(if [b]’ then c; else) :=/
init(while [b]' do c) :=/
The mapping final : Cmd — 2L returns the set of final labels of a

statement:
final([skip]) := {/}
final_([x =gl = {/}
final(c1;) = final(c)
final(if [b]’ then ¢ else cp) := final(cy) U final(cp)
final(while [b]' do c) := {/}

V.

Imm Static Program Analysis Summer Semester 2011 2.6

Representing Control Flow Il

Definition 2.4 (Flow relation)

Given a statement ¢ € Cmd, the (control) flow relation flow(c) C L x L is
defined by

flow([skip]') := 0
flow([x := a]') := 0
flow(cy; ¢2) := flow(cr) U flow(c) U
{(1;init(c2)) | I € final(cy)}
flow(if [b]' then c; else) := flow(ci) U flow(cp) U
{(1,init(c1)), (1, init(c2))}
flow(while [b]' do c) := flow(c) U {(/,init(c))} U

(I, 1)] I' € final(c)}

Imm Static Program Analysis Summer Semester 2011 2.7

Representing Control Flow 11l
Example 2.5

Visualization by
(control) flow graph:
c=[z := 1]*;
while [x > 0] do
[z := zxy];
[x := x-1]*
init(c) =1
final(c) = {2}
flow(c) = {(1,2),(2,3),(3,4),(4,2)}

Imm Static Program Analysis Summer Semester 2011 2.8

Representing Control Flow IV

@ To simplify the presentation we will often assume that the pro-
gram ¢ € Cmd under consideration has an isolated entry, meaning that
{l' e L] (l,init(c)) € flow(c)} =0
(which is the case when ¢ does not start with a while loop)
@ Similarly: ¢ € Cmd has isolated exits if
{I'e L|(I,I") € flow(c) for some | € final(c)} =0
(which is the case when no final label identifies a loop header)

Example 2.6

has an isolated entry but not isolated exits

y
Static Program Analysis Summer Semester 2011 2.9

© An Example: Available Expressions Analysis

anl Static Program Analysis Summer Semester 2011 2.10

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ Can be used for Common Subexpression Elimination:
replace subexpression by variable that contains up-to-date value

@ Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

{; j Z:‘E};: @ a+b available at label 3
while [y > a+b]® do @ a+b not available at label 5
[a := a+1]®; @ possible optimization:
[x := a+b]® while [y > x]3 do

v

Imm Static Program Analysis Summer Semester 2011 211

Formalizing Available Expressions Analysis |

o Given a € AExp, b € BExp, c € Cmd
o Var,/Var/Var. denotes the set of all variables occurring in a/b/c
o AExp,/AExp. denote the sets of all complex arithmetic expressions
occurring in b/c
@ An expression a is killed in a block B if any of the variables in a is
modified in B
Formally: killag : Blk. — 24FPc is defined by

ki”AE([Skip]I) =
killag([x := a]’) :
killag([b]") :=

@ An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B
Formally: genag : Blk. — 25%¢ is defined by

genae([skip]') := 0
genae([x := a]/) ={a| x ¢ Var,}
genae([b]') = AExp,,

me Static Program Analysis Summer Semester 2011 2.12

0
{a' € AExp. | x € Vary}
0

Formalizing Available Expressi

Example 2.8 (killag/genag functions)

ons Analysis Il

o AExp. = {atb,a*b,a+1}
c=[x := at+p]}; : / /
T o a*b]z' o L. killag(B') genag(B')
while [y > a+b]® do ! [(&)
[a := a+1]*; 2 y {axb}
[X 0= a+b]5, 3 (D {a+b}
: 4 {a+b,a*b,a+1} ()
5 {a+b}
me Static Program Analysis Summer Semester 2011 2.13

The Equation System |

@ Analysis itself defined by setting up an equation system
@ For each | € L., AE; C AExp. represents the set of available
expressions at the entry of block B’
@ Formally, for ¢ € Cmd with isolated entry:
AE, — {@ if / = init(c)
(M er(AEp) | (I, 1) € flow(c)} otherwise
where oy 1 2ABPc 5 2AEXP: denotes the transfer function of block
B, given by
pr(A) = (A\ killag(B")) U genae(B")
@ Characterization of analysis:
forward: starts in init(c) and proceeds downwards
must: () in equation for AE,
flow-sensitive: results depending on order of assignments
o Later: solution not necessarily unique
= choose greatest one

me Static Program Analysis Summer Semester 2011 2.14

The Equation System Il

.) {0 if [=init(c)
Reminder: AE, = {ﬂ{@//(AE//) | (I',1) € flow(c)} otherwise

wr(E) = (E \ killag(B")) Ugenae(B")

Example 2.9 (AE equation system)

Cc = [X = a+b]1; EquatiOnS:
[y := axb]?; ﬁEl :g (0B = A 0]
while > a+b]3 do 2= %1 1) = Ak
[a :Lya+1]4;] AE3 = o (AE2) N ¢5(AEs)

(AE, U {axb}) N (AEs U {a+b})

[x := a+b]®

AE4 Lp3(AE3) = AE3 U {a+b}
AEs = (p4(AE4) = AE, \ {a+b, axb, a+1}
l€Le killag(B') genae(B')
1 0 {a+b} Solution: AE; = ()
2 0 {a*b} AE, = {a+b}
3 0 {atb} AE; = {a+b}
4 {a+b,axb,a+1} 0 AE; = {a+b}
0 {a+b} AEs = ()

4

Imm Static Program Analysis Summer Semester 2011 2.15

	Preliminaries on Dataflow Analysis
	An Example: Available Expressions Analysis

