
Static Program Analysis
Lecture 3: Dataflow Analysis II (Live Variables Analysis)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Repetition: Dataflow Analysis

2 Another Example: Live Variables Analysis

3 Heading for a Dataflow Analysis Framework

4 Order-Theoretic Foundations: the Domain

Static Program Analysis Summer Semester 2011 3.2

Labeled Programs

Goal: localization of analysis information
Dataflow information will be associated with

skip statements
assignments
tests in conditionals (if) and loops (while)

Assume set of labels L with meta variable l ∈ L (usually L = N)

Definition (Labeled WHILE programs)

The syntax of labeled WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= [skip]l | [x := a]l | c1;c2 |

if [b]l then c1 else c2 | while [b]l do c ∈ Cmd

All labels in c ∈ Cmd assumed distinct, denoted by Lc

Labeled fragments of c called blocks, denoted by Blkc

Static Program Analysis Summer Semester 2011 3.3

Representing Control Flow

Example

c = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by
(control) flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

Static Program Analysis Summer Semester 2011 3.4

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

only interesting for non-trivial (i.e., complex) arithmetic expressions

Example (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Static Program Analysis Summer Semester 2011 3.5

The Equation System

Reminder: AEl =

{
∅ if l = init(c)⋂
{ϕl′(AEl′) | (l ′, l) ∈ flow(c)} otherwise

ϕl′(E) = (E \ killAE(B l′)) ∪ genAE(B l′)

Example (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Lc killAE(B l) genAE(B l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Static Program Analysis Summer Semester 2011 3.6

Outline

1 Repetition: Dataflow Analysis

2 Another Example: Live Variables Analysis

3 Heading for a Dataflow Analysis Framework

4 Order-Theoretic Foundations: the Domain

Static Program Analysis Summer Semester 2011 3.7

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

All variables considered to be live at the end of the program
(alternative: restriction to output variables)

Can be used for Dead Code Elimination:
remove assignments to non-live variables

Static Program Analysis Summer Semester 2011 3.8

An Example

Example 3.1 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Static Program Analysis Summer Semester 2011 3.9

Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killLV : Blkc → 2Var c is defined by

killLV([skip]l) := ∅
killLV([x := a]l) := {x}

killLV([b]l) := ∅

Every reading access generates a live variable

Formally: genLV : Blkc → 2Var c is defined by

genLV([skip]l) := ∅
genLV([x := a]l) := Vara

genLV([b]l) := Varb

Static Program Analysis Summer Semester 2011 3.10

Formalizing Live Variables Analysis II

Example 3.2 (killLV/genLV functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}
l ∈ Lc killLV(B l) genLV(B l)

1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

Static Program Analysis Summer Semester 2011 3.11

The Equation System I

For each l ∈ Lc , LVl ⊆ Var c represents the set of live variables at the
exit of block B l

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{
Var c if l ∈ final(c)⋃
{ϕl ′(LVl ′) | (l , l ′) ∈ flow(c)} otherwise

where ϕl ′ : 2Var c → 2Var c denotes the transfer function of block B l ′ ,
given by

ϕl ′(V) := (V \ killLV(B l ′)) ∪ genLV(B l ′)

Characterization of analysis:

backward: starts in final(c) and proceeds upwards
may:

⋃
in equation for LVl

flow-sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose least one

Static Program Analysis Summer Semester 2011 3.12

The Equation System II

Reminder: LVl =

{
Var c if l ∈ final(c)⋃
{ϕl′(LVl′) | (l , l ′) ∈ flow(c)} otherwise

ϕl′(V) = (V \ killLV(B l′)) ∪ genLV(B l′)

Example 3.3 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else
[z := y*y]6;

[x := z]7

l ∈ Lc killLV(B l) genLV(B l)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {y, z}
LV6 = {y, z}
LV7 = {x, y, z}

Static Program Analysis Summer Semester 2011 3.13

Outline

1 Repetition: Dataflow Analysis

2 Another Example: Live Variables Analysis

3 Heading for a Dataflow Analysis Framework

4 Order-Theoretic Foundations: the Domain

Static Program Analysis Summer Semester 2011 3.14

Similarities Between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms for
solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Lc , the analysis information
(AI) is described by equations of the form

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

where

the set of extremal labels, E , is {init(c)} or final(c)
ι specifies the extremal analysis information
the combination operator,

⊔
, is
⋂

or
⋃

ϕl′ denotes the transfer function of block B l′

the flow relation F is flow(c) or flowR(c) (:= {(l ′, l) | (l , l ′) ∈ flow(c)})

Static Program Analysis Summer Semester 2011 3.15

Characterization of Analyses

Direction of information flow:
forward:

F = flow(c)
AIl concerns entry of B l

c has isolated entry

backward:

F = flowR(c)
AIl concerns exit of B l

c has isolated exits

Quantification over paths:
may: ⊔

=
⋃

property satisfied by some path
interested in least solution (later)

must:⊔
=

⋂
property satisfied by all paths
interested in greatest solution (later)

Static Program Analysis Summer Semester 2011 3.16

Roadmap

Goal: solve dataflow equation system by fixpoint iteration

1 Characterize solution of equation system as fixpoint of a
transformation

2 Introduce partial order for comparing analysis results

3 Establish least upper bound as combination operator

4 Ensure monotonicity of transfer functions

5 Guarantee termination of fixpoint iteration by ascending chain
condition

6 Optimize fixpoint iteration by worklist algorithm

Static Program Analysis Summer Semester 2011 3.17

Outline

1 Repetition: Dataflow Analysis

2 Another Example: Live Variables Analysis

3 Heading for a Dataflow Analysis Framework

4 Order-Theoretic Foundations: the Domain

Static Program Analysis Summer Semester 2011 3.18

Motivation

Wanted: solution of (dataflow) equation system

Problem: recursive dependencies between dataflow variables

Idea: characterize solution as fixpoint of transformation:

(AIl = τl)l∈Lc ⇐⇒ Φ((AIl)l∈Lc) = (AIl)l∈Lc

where Φ
(
(AIl)l∈Lc

)
:= (τl)l∈Lc

Approach: approximate fixpoint by iteration

Static Program Analysis Summer Semester 2011 3.19

Partial Orders

The domain of analysis information usually forms a partial order where the
ordering relation compares the “precision” of information.

Definition 3.4 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 3.5

1 (N,≤) is a total partial order

2 (N, <) is not a partial order (since not reflexive)

3 (Live Variables) (2Var c ,⊆) is a (non-total) partial order

4 (Available Expressions) (2AExpc ,⊇) is a (non-total) partial order

Static Program Analysis Summer Semester 2011 3.20

Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 3.6 ((Least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Example 3.7

1 S ⊆ N has a LUB in (N,≤) iff it is finite
2 (Live Variables) (D,v) = (2Var c ,⊆). Given V1, . . . ,Vn ⊆ Var c ,⊔

{V1, . . . ,Vn} =
⋃
{V1, . . . ,Vn}

3 (Avail. Expr.) (D,v) = (2AExpc ,⊇). Given A1, . . . ,An ⊆ AExpc ,⊔
{A1, . . . ,An} =

⋂
{A1, . . . ,An}

Static Program Analysis Summer Semester 2011 3.21

Complete Lattices

Since {ϕl ′(AIl ′) | (l ′, l) ∈ F} can contain arbitrary elements, the existence
of least upper bounds must be ensured for arbitrary subsets.

Definition 3.8 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have
least upper bounds. In this case,

⊥ :=
⊔
∅

denotes the least element of D.

Example 3.9

1 (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2 (Live Variables)
(D,v) = (2Var c ,⊆) is a complete lattice with ⊥ = ∅

3 (Available Expressions)
(D,v) = (2AExpc ,⊇) is a complete lattice with ⊥ = AExpc

Static Program Analysis Summer Semester 2011 3.22

Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:
An element d ∈ D is called a lower bound of S ⊆ D if d v s for every
s ∈ S (notation: d v S).
A lower bound d is called greatest lower bound (GLB) or infimum of S
if d ′ v d for every lower bound d ′ of S (notation: d =

d
S).

Examples:
(Live Variables) (D,v) = (2Var c ,⊆),

d
{V1, . . . ,Vn} =

⋂
{V1, . . . ,Vn}

(Available Expressions) (D,v) = (2AExpc ,⊇),d
{A1, . . . ,An} =

⋃
{A1, . . . ,An}

Lemma: the following are equivalent:

(D,v) is a complete lattice
(i.e., every subset of D has a least upper bound)
Every subset of D has a greatest lower bound

Corollary: every complete lattice has a greatest element > :=
d
∅

Static Program Analysis Summer Semester 2011 3.23

Chains

Chains are generated by the approximation of the analysis information in
the fixpoint iteration.

Definition 3.10 (Chain)

Let (D,v) be a partial order. A subset S ⊆ D is called an (ascending)
chain in D if, for every s1, s2 ∈ S ,

s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).

Example 3.11

1 Every S ⊆ N is a chain in (N,≤)

2 {∅, {0}, {0, 1}, {0, 1, 2}, . . .} is a chain in (2N,⊆)

3 {∅, {0}, {1}} is not a chain in (2N,⊆)

Static Program Analysis Summer Semester 2011 3.24

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition 3.12 (Ascending Chain Condition)

A partial order (D,v) satisfies the Ascending Chain Condition (ACC) if
each ascending chain d1 v d2 v . . . eventually stabilizes, i.e., there exists
n ∈ N such that dn = dn+1 = . . .

Example 3.13

1 (N,≤) does not satisfy ACC

2 (Live Variables) (D,v) = (2Var c ,⊆) satisfies ACC since Var c (unlike
Var) is finite

3 (Available Expressions) (D,v) = (2AExpc ,⊇) satisfies ACC since
AExpc (unlike AExp) is finite

Static Program Analysis Summer Semester 2011 3.25

	Repetition: Dataflow Analysis
	Another Example: Live Variables Analysis
	Heading for a Dataflow Analysis Framework
	Order-Theoretic Foundations: the Domain

