Static Program Analysis

Lecture 3: Dataflow Analysis Il (Live Variables Analysis)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spail/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Repetition: Dataflow Analysis

“er Static Program Analysis Summer Semester 2011 3.2

Labeled Programs

@ Goal: localization of analysis information

o Dataflow information will be associated with
e skip statements
e assignments
e tests in conditionals (if) and loops (while)

@ Assume set of labels L with meta variable / € L (usually L = N)

Definition (Labeled WHILE programs)

The syntax of labeled WHILE programs is defined by the following
context-free grammar:

aun=z|x|a+ay | ai-ayx | ayxax € AExp
b=t | aij=a» | ai;>a» | —b | biA\by | bi1Vby € BExp
c == [skip]' | [x := 3] | 150 |

if [b]’ then ¢ else ¢ | while [b]' do c € Cmd

@ All labels in ¢ € Cmd assumed distinct, denoted by L.
@ Labeled fragments of ¢ called blocks, denoted by Blk.

RWTH Static Program Analysis Summer Semester 2011 33

Representing Control Flow

Visualization by
(control) flow graph:
c=[z := 1]*;
while [x > 0] do
[z := zxy];
[x := x-1]*
init(c) =1
final(c) = {2}
flow(c) = {(1,2),(2,3),(3,4),(4,2)}

RWTH Static Program Analysis Summer Semester 2011 3.4

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic expressions

Example (Available Expressions Analysis)

{; : z:z};: @ a+b available at label 3
while [y > a+b]® do @ a+b not available at label 5
[a := a+1]*; @ possible optimization:
[x := a+b]® while [y > x|3 do

RWTH Static Program Analysis Summer Semester 2011 35

The Equation System

.) {0 if [=init(c)
Reminder: AE, = {ﬂ{@//(AE//) | (I',1) € flow(c)} otherwise

wr(E) = (E \ killag(B")) Ugenae(B")

Example (AE equation system)

c=[x := a+b]}; Equations:
by 1= axbl’; e fg (AEy) = AE; U {a+b}
hil > a+b]® d 2 = ¢p1(AE;) = AE;
’ [la e: £y a+1é]14- o Es = ¢2(AE>) N s (AEs)

(AE, U {axb}) N (AEs U {a+b})

[x := atbP AE, = ¢3(AE3) = AE; U {a+b}
AEs = (p4(AE4) = AE, \ {a+b, axb, a+1}
l€L. killag(B') genae(B')
1 0 {a+b} Solution: AE; = 0
2 0 {axb} AE, = {a+b}
3 0 {atb} AE; = {a+b}
4 {a+b,axb,a+1} 0 AE, = {a+b}
5 0 {a+b} AEs = ()

RWTH Static Program Analysis Summer Semester 2011

3.6

© Another Example: Live Variables Analysis

“er Static Program Analysis Summer Semester 2011 3.7

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit from a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

@ All variables considered to be live at the end of the program
(alternative: restriction to output variables)

@ Can be used for Dead Code Elimination:
remove assignments to non-live variables

RWTH Static Program Analysis Summer Semester 2011 3.8

An Example

Example 3.1 (Live Variables Analysis)

[x := 2]’
[y 4]2’ @ x not live at exit from label 1
[le [y_ :]Oi4 then @ y live at exit from 2
[z := x]° @ x live at exit from 3
else @ z live at exits from 5 and 6
[x [Z_ :]%’*Y]ts’ @ possible optimization: remove [x := 2]

“er Static Program Analysis Summer Semester 2011 3.9

Formalizing Live Variables Analysis |

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killpy : Blke — 2" is defined by

killoy([skip]’) :
killoy([x := a]') :
killov ([b]') -

0
{x}
0

Every reading access generates a live variable

Formally: gen,y : Blk. — 2V2"< is defined by

genyy ([skip]') := 0
geny([x := a]') := Var,
genyy([b]) := Vary

“er Static Program Analysis Summer Semester 2011

3.10

Formalizing Live Variables Analysis Il

Example 3.2 (killy/gen,y, functions)

c=[x := 2%; o Varc = {x,y,z}

[y := 4]%; o /€ L. killpy(B') geny(B)

[x := 1]%; 1 {x} 0

if [y > 0]* then 2 {y} 0

[z := x]° 3 {x} 0

else 4 0 {y}

[z := y*y]°; 5 {z} {x}

x := 2]’ 6 {z} {y}

7 {x} {z}

RWTH Static Program Analysis Summer Semester 2011

311

The Equation System |

@ For each | € L, LV, C Var. represents the set of live variables at the
exit of block B’

@ Formally, for a program ¢ € Cmd with isolated exits:

LV, — Var. if I € final(c)
PZAULer (L) | (1, 1) € flow(c)} otherwise

where o : 2V2< — 2Vare denotes the transfer function of block B,
given by
pr(V):= (V \killy(B")) Ugenyy (B")
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: J in equation for LV,

flow-sensitive: results depending on order of assignments
@ Later: solution not necessarily unique

= choose least one

“er Static Program Analysis Summer Semester 2011 3.12

The Equation System Il

)) | Var, if | € final(c)
Reminder: Lv, = {U{QO//(LV//) | (1,I') € flow(c)} otherwise

pr(V) = (V\ killy(B")) U genpy(B")

Example 3.3 (LV equation system)

c=[x = 2]y := 4] LV = pa(LV2) = LV \ {y}
[x := 1]%; LV, = ¢3(LV3) = LV3 \ {x}
if [y > 0]* then LV3 = @4(LVs) = LV, U {y}
[z := x° LV4 = p5(LVs) U p6(LVe)
else = (Vs \ {z}) U {x}) U ((LV6 \ {z}) U {¥})
[z := y*y]° LVs = ¢7(LV7) = (LV7 \ {x}) U {z}
[x := 2]’ Ve = 7(LV7) = (LV7 \ {x}) U {z}
I €L, killy(B') geny(8") V7 =1{xy2}
1 =} 1] Solution: LV; =
2 {y} 0 LV2 = {y}
3 {x} 0 LV3 = {x,y}
4 0 {y} LV,y = {x,y}
5 {z} {x} LVs = {y,z}
6 {z} {y} Ve = {y,z}
7 {x} {z} V7 = {x,y,2}

© Heading for a Dataflow Analysis Framework

“er Static Program Analysis Summer Semester 2011 3.14

Similarities Between Analysis Problems

@ Observation: the analyses presented so far have some similarities
— Look for underlying framework

e Advantage: possibility for designing (efficient) generic algorithms for
solving dataflow equations

@ Overall pattern: for c € Cmd and | € L., the analysis information
(Al) is described by equations of the form

Al = 2 ifleE
"7 U er(Alp) | (1) € F} - otherwise

where

the set of extremal labels, E, is {init(c)} or final(c)
¢ specifies the extremal analysis information

the combination operator, | |, is [) or U

oy denotes the transfer function of block B"
the flow relation F is flow(c) or flow®(c) (:= {(/", 1) | (1, 1) € flow(c)})

“er Static Program Analysis Summer Semester 2011 3.15

Characterization of Analyses

o Direction of information flow:
e forward:
o F = flow(c)
e Al; concerns entry of B/
@ ¢ has isolated entry
e backward:
o F = flow(c)
e Al, concerns exit of B’
@ ¢ has isolated exits
o Quantification over paths:
e may:
o LI=U
@ property satisfied by some path
o interested in least solution (later)

@ must:

o LI=N
@ property satisfied by all paths
@ interested in greatest solution (later)

“er Static Program Analysis Summer Semester 2011 3.16

Goal: solve dataflow equation system by fixpoint iteration

©© 00

Characterize solution of equation system as fixpoint of a
transformation

Introduce partial order for comparing analysis results
Establish least upper bound as combination operator
Ensure monotonicity of transfer functions

Guarantee termination of fixpoint iteration by ascending chain
condition

Optimize fixpoint iteration by worklist algorithm

“er Static Program Analysis Summer Semester 2011 3.17

@ Order-Theoretic Foundations: the Domain

“er Static Program Analysis Summer Semester 2011 3.18

e Wanted: solution of (dataflow) equation system
@ Problem: recursive dependencies between dataflow variables

o ldea: characterize solution as fixpoint of transformation:
(Aly=11)1e, = ®((Al)ieLe) = (Al))reL

where ¢ ((AII)IELC) = (T/)IGLC
@ Approach: approximate fixpoint by iteration

“er Static Program Analysis Summer Semester 2011 3.19

Partial Orders

The domain of analysis information usually forms a partial order where the
ordering relation compares the “precision” of information.

Definition 3.4 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,
reflexivity: di C dy
transitivity: di Cdr and do C d3 = di C d3
antisymmetry: di Cdrand db C di = di = >
It is called total if, in addition, always d; C d, or d» C dj.

N, <) is a total partial order

N, <) is not a partial order (since not reflexive)

Q (
Q (
© (Live Variables) (2V2<, C) is a (non-total) partial order
Q (

Available Expressions) (245*P<, D) is a (non-total) partial order

“w.rH Static Program Analysis Summer Semester 2011 3.20

Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 3.6 ((Least) upper bound)

Let (D,) be a partial order and S C D.

© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).

@ An upper bound d of S is called least upper bound (LUB) or
supremum of S if d C d’ for every upper bound d’ of S
(notation: d =] |5).

V.

Example 3.7

@ S CNhasalLUBin (N, <) iff it is finite
@ (Live Variables) (D,C) = (2"2"<, C). Given W,...,V, C Var,
L{Va, . s Vil = U{V, ..., Vi)
@ (Avail. Expr.) (D,C) = (24F®¢ D). Given Ay, ..., A, C AExp,,
LI{A1, ..., An} = (A1, ..., An}
RWTH

Complete Lattices

Since {@p(Aly) | (I',1) € F} can contain arbitrary elements, the existence
of least upper bounds must be ensured for arbitrary subsets.

Definition 3.8 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have
least upper bounds. In this case,

1L:=1]0

denotes the least element of D.

O (N, <) is not a complete lattice as, e.g., N does not have a LUB
@ (Live Variables)
(D,C) = (2Y°r<, C) is a complete lattice with | = ()

© (Available Expressions)
(D,C) = (248 D) is a complete lattice with | = AExp,

v

RWTH Static Program Analysis Summer Semester 2011 3.22

Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:
o An element d € D is called a lower bound of S C D if d C s for every
s € S (notation: d C S).
o A lower bound d is called greatest lower bound (GLB) or infimum of S
if d’ C d for every lower bound d’ of S (notation: d =[]5).
Examples:
o (Live Variables) (D,C) = (2%, C), [{V4,..., Va} = {WA,..., V,}
o (Available Expressions) (D, C) = (24E< D),
KA1, -, An = U{AL, ..., An}

@ Lemma: the following are equivalent:

e (D,) is a complete lattice
(i-e., every subset of D has a least upper bound)
o Every subset of D has a greatest lower bound

Corollary: every complete lattice has a greatest element T :=[]0

RWTH Static Program Analysis Summer Semester 2011 3.23

Chains are generated by the approximation of the analysis information in
the fixpoint iteration.

Definition 3.10 (Chain)

Let (D,C) be a partial order. A subset S C D is called an (ascending)
chain in D if, for every s1,5 € S,

siEsors s

(that is, S is a totally ordered subset of D).

Q Every S C Nis a chain in (N, <)
@ {0,{0},{0,1},{0,1,2},...} is a chain in (2%, C)
@ {0,{0},{1}} is not a chain in (2%, C)

RWTH Static Program Analysis Summer Semester 2011 3.24

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain

Condition.

Definition 3.12 (Ascending Chain Condition)

A partial order (D, C) satisfies the Ascending Chain Condition (ACC) if

each ascending chain di C d, C ... eventually stabilizes, i.e., there exists

n € N such that d, = dp41 =

Example 3.13
O (N, <) does not satisfy ACC

@ (Live Variables) (D,C) = (2V2"<, C) satisfies ACC since Var. (unlike

Var) is finite
© (Available Expressions) (D, C) = (2AExPc
AExp. (unlike AExp) is finite

D) satisfies ACC since

RWTH Static Program Analysis

Summer Semester 2011

3.25

	Repetition: Dataflow Analysis
	Another Example: Live Variables Analysis
	Heading for a Dataflow Analysis Framework
	Order-Theoretic Foundations: the Domain

