

Static Program Analysis

Lecture 3: Dataflow Analysis II (Live Variables Analysis)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/spa11/>

Summer Semester 2011

- 1 Repetition: Dataflow Analysis
- 2 Another Example: Live Variables Analysis
- 3 Heading for a Dataflow Analysis Framework
- 4 Order-Theoretic Foundations: the Domain

- Goal: **localization** of analysis information
- Dataflow information will be associated with
 - **skip** statements
 - assignments
 - tests in conditionals (**if**) and loops (**while**)
- Assume set of **labels** L with meta variable $l \in L$ (usually $L = \mathbb{N}$)

Definition (Labeled WHILE programs)

The **syntax of labeled WHILE programs** is defined by the following context-free grammar:

$$\begin{aligned} a &::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp \\ b &::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \wedge b_2 \mid b_1 \vee b_2 \in BExp \\ c &::= [\text{skip}]' \mid [x := a]' \mid c_1 ; c_2 \mid \\ &\quad \text{if } [b]' \text{ then } c_1 \text{ else } c_2 \mid \text{while } [b]' \text{ do } c \in Cmd \end{aligned}$$

- All labels in $c \in Cmd$ assumed distinct, denoted by L_c
- Labeled fragments of c called **blocks**, denoted by Blk_c

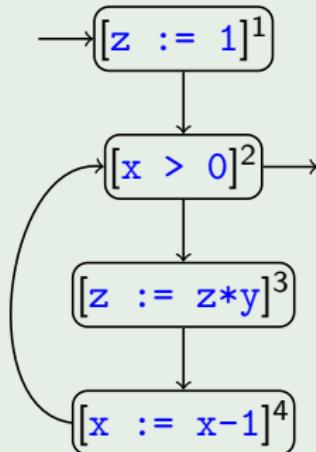
Representing Control Flow

Example

```
c = [z := 1]1;  
    while [x > 0]2 do  
        [z := z*y]3;  
        [x := x-1]4
```

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by
(control) flow graph:



Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- can be used to **avoid recomputations** of expressions
- only interesting for non-trivial (i.e., complex) arithmetic expressions

Example (Available Expressions Analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

- a+b available at label 3
- a+b not available at label 5
- possible optimization:
 while [y > x]³ do

The Equation System

Reminder: $AE_I = \begin{cases} \emptyset & \text{if } I = \text{init}(c) \\ \bigcap \{\varphi_{I'}(AE_{I'}) \mid (I', I) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$

$$\varphi_{I'}(E) = (E \setminus \text{kill}_{AE}(B^{I'})) \cup \text{gen}_{AE}(B^{I'})$$

Example (AE equation system)

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
       [a := a+1]4;  
       [x := a+b]5
```

$I \in L_c$	$\text{kill}_{AE}(B^I)$	$\text{gen}_{AE}(B^I)$
1	\emptyset	$\{a+b\}$
2	\emptyset	$\{a*b\}$
3	\emptyset	$\{a+b\}$
4	$\{a+b, a*b, a+1\}$	\emptyset
5	\emptyset	$\{a+b\}$

Equations:

$$\begin{aligned} AE_1 &= \emptyset \\ AE_2 &= \varphi_1(AE_1) = AE_1 \cup \{a+b\} \\ AE_3 &= \varphi_2(AE_2) \cap \varphi_5(AE_5) \\ &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\ AE_4 &= \varphi_3(AE_3) = AE_3 \cup \{a+b\} \\ AE_5 &= \varphi_4(AE_4) = AE_4 \setminus \{a+b, a*b, a+1\} \end{aligned}$$

Solution: $AE_1 = \emptyset$

$$\begin{aligned} AE_2 &= \{a+b\} \\ AE_3 &= \{a+b\} \\ AE_4 &= \{a+b\} \\ AE_5 &= \emptyset \end{aligned}$$

- 1 Repetition: Dataflow Analysis
- 2 Another Example: Live Variables Analysis
- 3 Heading for a Dataflow Analysis Framework
- 4 Order-Theoretic Foundations: the Domain

Live Variables Analysis

The goal of **Live Variables Analysis** is to determine, for each program point, which variables *may* be live at the exit from the point.

- A variable is called **live** at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable
- All variables considered to be live at the **end** of the program (alternative: restriction to output variables)
- Can be used for **Dead Code Elimination**: remove assignments to non-live variables

Example 3.1 (Live Variables Analysis)

```
[x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

- x not live at exit from label 1
- y live at exit from 2
- x live at exit from 3
- z live at exits from 5 and 6
- possible optimization: remove [x := 2]¹

- A variable on the left-hand side of an assignment is **killed** by the assignment; tests and **skip** do not kill
- Formally: $\text{kill}_{\text{LV}} : \text{Blk}_c \rightarrow 2^{\text{Var}_c}$ is defined by

$$\begin{aligned}\text{kill}_{\text{LV}}([\text{skip}]') &:= \emptyset \\ \text{kill}_{\text{LV}}([x := a]') &:= \{x\} \\ \text{kill}_{\text{LV}}([b]') &:= \emptyset\end{aligned}$$

- Every reading access **generates** a live variable
- Formally: $\text{gen}_{\text{LV}} : \text{Blk}_c \rightarrow 2^{\text{Var}_c}$ is defined by

$$\begin{aligned}\text{gen}_{\text{LV}}([\text{skip}]') &:= \emptyset \\ \text{gen}_{\text{LV}}([x := a]') &:= \text{Var}_a \\ \text{gen}_{\text{LV}}([b]') &:= \text{Var}_b\end{aligned}$$

Example 3.2 (kill_{LV}/gen_{LV} functions)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
       [z := x]5  
     else  
       [z := y*y]6;  
     [x := z]7
```

• $Var_c = \{x, y, z\}$

• $\frac{I \in L_c \quad kill_{LV}(B^I) \quad gen_{LV}(B^I)}{1 \quad \{x\} \quad \emptyset}$

1	{x}	\emptyset
2	{y}	\emptyset
3	{x}	\emptyset
4	\emptyset	{y}
5	{z}	{x}
6	{z}	{y}
7	{x}	{z}

- For each $l \in L_c$, $LV_l \subseteq Var_c$ represents the set of **live variables at the exit of block B'**
- Formally, for a program $c \in Cmd$ with isolated exits:

$$LV_l = \begin{cases} Var_c & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(LV_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{Var_c} \rightarrow 2^{Var_c}$ denotes the **transfer function** of block B'' , given by

$$\varphi_{l'}(V) := (V \setminus \text{kill}_{LV}(B'')) \cup \text{gen}_{LV}(B'')$$

- Characterization of analysis:

backward: starts in $\text{final}(c)$ and proceeds upwards

may: \bigcup in equation for LV_l

flow-sensitive: results depending on order of assignments

- Later: solution **not necessarily unique**

⇒ choose **least one**

The Equation System II

Reminder: $LV_I = \begin{cases} Var_c \\ \bigcup \{\varphi_{I'}(LV_{I'}) \mid (I, I') \in \text{flow}(c)\} \end{cases}$ if $I \in \text{final}(c)$
 $\varphi_{I'}(V) = (V \setminus \text{kill}_{LV}(B')) \cup \text{gen}_{LV}(B')$ otherwise

Example 3.3 (LV equation system)

```
c = [x := 2]1; [y := 4]2;  
      [x := 1]3;  
      if [y > 0]4 then  
        [z := x]5  
      else  
        [z := y*y]6;  
      [x := z]7
```

$I \in L_c$ $\text{kill}_{LV}(B')$ $\text{gen}_{LV}(B')$

1	{x}	\emptyset
2	{y}	\emptyset
3	{x}	\emptyset
4	\emptyset	{y}
5	{z}	{x}
6	{z}	{y}
7	{x}	{z}

$$\begin{aligned} LV_1 &= \varphi_2(LV_2) = LV_2 \setminus \{y\} \\ LV_2 &= \varphi_3(LV_3) = LV_3 \setminus \{x\} \\ LV_3 &= \varphi_4(LV_4) = LV_4 \cup \{y\} \\ LV_4 &= \varphi_5(LV_5) \cup \varphi_6(LV_6) \\ &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= \varphi_7(LV_7) = (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= \varphi_7(LV_7) = (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Solution: $LV_1 = \emptyset$
 $LV_2 = \{y\}$
 $LV_3 = \{x, y\}$
 $LV_4 = \{x, y\}$
 $LV_5 = \{y, z\}$
 $LV_6 = \{y, z\}$
 $LV_7 = \{x, y, z\}$

- 1 Repetition: Dataflow Analysis
- 2 Another Example: Live Variables Analysis
- 3 Heading for a Dataflow Analysis Framework
- 4 Order-Theoretic Foundations: the Domain

Similarities Between Analysis Problems

- **Observation:** the analyses presented so far have some **similarities**
⇒ Look for underlying **framework**
- **Advantage:** possibility for designing (efficient) **generic algorithms** for **solving dataflow equations**
- **Overall pattern:** for $c \in Cmd$ and $I \in L_c$, the **analysis information** (AI) is described by **equations** of the form

$$AI_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(AI_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

where

- the set of **extremal labels**, E , is $\{\text{init}(c)\}$ or $\text{final}(c)$
- ι specifies the **extremal analysis information**
- the **combination operator**, \bigsqcup , is \cap or \cup
- $\varphi_{I'}$ denotes the **transfer function** of block $B^{I'}$
- the **flow relation** F is $\text{flow}(c)$ or $\text{flow}^R(c)$ ($:= \{(I', I) \mid (I, I') \in \text{flow}(c)\}$)

- **Direction of information flow:**

- **forward:**

- $F = \text{flow}(c)$
 - AI_l concerns entry of B^l
 - c has isolated entry

- **backward:**

- $F = \text{flow}^R(c)$
 - AI_l concerns exit of B^l
 - c has isolated exits

- **Quantification over paths:**

- **may:**

- $\sqcup = \bigcup$
 - property satisfied by some path
 - interested in least solution (later)

- **must:**

- $\sqcup = \bigcap$
 - property satisfied by all paths
 - interested in greatest solution (later)

Goal: solve dataflow equation system by **fixpoint iteration**

- ① Characterize solution of equation system as **fixpoint** of a transformation
- ② Introduce **partial order** for comparing analysis results
- ③ Establish **least upper bound** as combination operator
- ④ Ensure **monotonicity** of transfer functions
- ⑤ Guarantee termination of fixpoint iteration by **ascending chain condition**
- ⑥ Optimize fixpoint iteration by **worklist algorithm**

- 1 Repetition: Dataflow Analysis
- 2 Another Example: Live Variables Analysis
- 3 Heading for a Dataflow Analysis Framework
- 4 Order-Theoretic Foundations: the Domain

- **Wanted:** solution of (dataflow) equation system
- **Problem:** recursive dependencies between dataflow variables
- **Idea:** characterize solution as fixpoint of transformation:

$$(AI_I = \tau_I)_{I \in L_c} \iff \Phi((AI_I)_{I \in L_c}) = (AI_I)_{I \in L_c}$$

where $\Phi((AI_I)_{I \in L_c}) := (\tau_I)_{I \in L_c}$

- **Approach:** approximate fixpoint by iteration

The domain of analysis information usually forms a partial order where the ordering relation compares the “precision” of information.

Definition 3.4 (Partial order)

A **partial order (PO)** (D, \sqsubseteq) consists of a set D , called **domain**, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called **total** if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 3.5

- ❶ (\mathbb{N}, \leq) is a total partial order
- ❷ $(\mathbb{N}, <)$ is not a partial order (since not reflexive)
- ❸ (Live Variables) $(2^{Var_c}, \sqsubseteq)$ is a (non-total) partial order
- ❹ (Available Expressions) $(2^{Exp_c}, \sqsupseteq)$ is a (non-total) partial order

Upper Bounds

In the dataflow equation system, analysis information from several predecessors is combined by taking the least upper bound.

Definition 3.6 ((Least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.

- ① An element $d \in D$ is called an **upper bound** of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).
- ② An upper bound d of S is called **least upper bound (LUB)** or **supremum** of S if $d \sqsubseteq d'$ for every upper bound d' of S (notation: $d = \sqcup S$).

Example 3.7

- ① $S \subseteq \mathbb{N}$ has a LUB in (\mathbb{N}, \leq) iff it is finite
- ② (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$. Given $V_1, \dots, V_n \subseteq Var_c$,
$$\sqcup\{V_1, \dots, V_n\} = \bigcup\{V_1, \dots, V_n\}$$
- ③ (Avail. Expr.) $(D, \sqsubseteq) = (2^{AExp_c}, \supseteq)$. Given $A_1, \dots, A_n \subseteq AExp_c$,
$$\sqcup\{A_1, \dots, A_n\} = \bigcap\{A_1, \dots, A_n\}$$

Since $\{\varphi_{I'}(\text{AI}_{I'}) \mid (I', I) \in F\}$ can contain arbitrary elements, the existence of least upper bounds must be ensured for arbitrary subsets.

Definition 3.8 (Complete lattice)

A **complete lattice** is a partial order (D, \sqsubseteq) such that all subsets of D have least upper bounds. In this case,

$$\perp := \bigsqcup \emptyset$$

denotes the **least element** of D .

Example 3.9

- ① (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
- ② (Live Variables)
 $(D, \sqsubseteq) = (2^{\text{Var}_c}, \sqsubseteq)$ is a complete lattice with $\perp = \emptyset$
- ③ (Available Expressions)
 $(D, \sqsubseteq) = (2^{A\text{Exp}_c}, \sqsupseteq)$ is a complete lattice with $\perp = A\text{Exp}_c$

- **Dual** concept of least upper bound: greatest lower bound
- **Definitions:**
 - An element $d \in D$ is called a **lower bound** of $S \subseteq D$ if $d \sqsubseteq s$ for every $s \in S$ (notation: $d \sqsubseteq S$).
 - A lower bound d is called **greatest lower bound (GLB)** or **infimum** of S if $d' \sqsubseteq d$ for every lower bound d' of S (notation: $d = \sqcap S$).
- **Examples:**
 - (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \sqsubseteq)$, $\sqcap\{V_1, \dots, V_n\} = \bigcap\{V_1, \dots, V_n\}$
 - (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \sqsupseteq)$,
 $\sqcap\{A_1, \dots, A_n\} = \bigcup\{A_1, \dots, A_n\}$
- **Lemma:** the following are equivalent:
 - (D, \sqsubseteq) is a complete lattice
(i.e., every subset of D has a least upper bound)
 - Every subset of D has a greatest lower bound
- **Corollary:** every complete lattice has a greatest element $\top := \sqcap \emptyset$

Chains are generated by the approximation of the analysis information in the fixpoint iteration.

Definition 3.10 (Chain)

Let (D, \sqsubseteq) be a partial order. A subset $S \subseteq D$ is called an **(ascending) chain** in D if, for every $s_1, s_2 \in S$,

$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$

(that is, S is a totally ordered subset of D).

Example 3.11

- ① Every $S \subseteq \mathbb{N}$ is a chain in (\mathbb{N}, \leq)
- ② $\{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}, \dots\}$ is a chain in $(2^{\mathbb{N}}, \subseteq)$
- ③ $\{\emptyset, \{0\}, \{1\}\}$ is not a chain in $(2^{\mathbb{N}}, \subseteq)$

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain Condition.

Definition 3.12 (Ascending Chain Condition)

A partial order (D, \sqsubseteq) satisfies the **Ascending Chain Condition (ACC)** if each ascending chain $d_1 \sqsubseteq d_2 \sqsubseteq \dots$ eventually stabilizes, i.e., there exists $n \in \mathbb{N}$ such that $d_n = d_{n+1} = \dots$

Example 3.13

- ① (\mathbb{N}, \leq) does not satisfy ACC
- ② (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \sqsubseteq)$ satisfies ACC since Var_c (unlike Var) is finite
- ③ (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \sqsupseteq)$ satisfies ACC since $AExp_c$ (unlike $AExp$) is finite