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@ Repetition: Heading for a Dataflow Analysis Framework
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Similarities between Analysis Problems

@ Observation: the analyses presented so far have some similarities
— Look for underlying framework

e Advantage: possibility for designing (efficient) generic algorithms for
solving dataflow equations

@ Overall pattern: for c € Cmd and | € L., the analysis information
(Al) is described by equations of the form

Al = 2 ifleE
T U er (Alp) | (1) € F} otherwise

where

the set of extremal labels, E, is {init(c)} or final(c)
¢ specifies the extremal analysis information

the combination operator, | |, is [ or UJ

oy denotes the transfer function of block B"
the flow relation F is flow(c) or flow®(c) (:= {(/', 1) | (1, 1) € flow(c)})
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Goal: solve dataflow equation system by fixpoint iteration

©© 00

Characterize solution of equation system as fixpoint of a
transformation

Introduce partial order for comparing analysis results
Establish least upper bound as combination operator
Ensure monotonicity of transfer functions

Guarantee termination of fixpoint iteration by ascending chain
condition

Optimize fixpoint iteration by worklist algorithm
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e Wanted: solution of (dataflow) equation system
@ Problem: recursive dependencies between dataflow variables

o ldea: characterize solution as fixpoint of transformation:
(Alp=11)1e, = ®((Al)ieLe) = (Al))reL

where ¢ ((AII)IELC) = (T/)IGLC
@ Approach: approximate fixpoint by iteration
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Partial Orders

The domain of analysis information usually forms a partial order where the
ordering relation compares the “precision” of information.

Definition (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,
reflexivity: di C dy
transitivity: di Cdr and do C d3 = di C d3
antisymmetry: di Cdrand db C di = di = >
It is called total if, in addition, always d; C d, or d» C dj.

N, <) is a total partial order

N, <) is not a partial order (since not reflexive)

Q (
Q (
© (Live Variables) (2V%<, C) is a (non-total) partial order
Q (

Available Expressions) (245*P<, D) is a (non-total) partial order
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Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition ((Least) upper bound)

Let (D, ) be a partial order and S C D.

© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).

@ An upper bound d of S is called least upper bound (LUB) or
supremum of S if d C d’ for every upper bound d’ of S
(notation: d =] |5).

V.

Example
@ S CNhasaLUBin (N, <) iff it is finite
@ (Live Variables) (D,C) = (2"2"<, C). Given W,...,V, C Var,
L{Va, . s Vil = U{V, ..., Vi)
@ (Avail. Expr.) (D,C) = (24B®¢, D). Given Ay, ..., A, C AExp,,
LI{A1, ..., An} = (A1, ..., An}
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Complete Lattices

Since {@p(Aly) | (I',1) € F} can contain arbitrary elements, the existence
of least upper bounds must be ensured for arbitrary subsets.

Definition (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have
least upper bounds. In this case,

1L:=1]0

denotes the least element of D.

O (N, <) is not a complete lattice as, e.g., N does not have a LUB
@ (Live Variables)
(D,C) = (2¥2r<, C) is a complete lattice with L = ()

© (Available Expressions)
(D,C) = (248 D) is a complete lattice with | = AExp,

v
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Chains are generated by the approximation of the analysis information in
the fixpoint iteration.

Definition (Chain)
Let (D,C) be a partial order. A subset S C D is called an (ascending)
chain in D if, for every s1,5 € S,

siEsors s

(that is, S is a totally ordered subset of D).

Q Every S C Nis a chain in (N, <)
@ {0,{0},{0,1},{0,1,2},...} is a chain in (2%, C)
@ {0,{0},{1}} is not a chain in (2%, C)
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The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain

Condition.

Definition (Ascending Chain Condition)

A partial order (D, C) satisfies the Ascending Chain Condition (ACC) if

each ascending chain di C d, C ... eventually stabilizes, i.e., there exists

n € N such that d, = dp41 =

Example
O (N, <) does not satisfy ACC

@ (Live Variables) (D,C) = (2V2"<, C) satisfies ACC since Var. (unlike

Var) is finite
© (Available Expressions) (D, C) = (24ExPc
AExp, (unlike AExp) is finite

D) satisfies ACC since
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© Order-Theoretic Foundations: the Function
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Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,
h Edp = &(dr) T’ O(c2).
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Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,
dCd = q)(dl) E/ (D(d2)-

Example 4.2

Q Let T:={SCN|Sfinite}. Then ®;: T = N:S— > _snis
monotonic w.r.t. (2N, C) and (N, <).

v
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Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,
dCd = q)(dl) E/ (D(d2)-

Example 4.2
Q Let T:={SCN|Sfinite}. Then ®;: T = N:S— > _snis
monotonic w.r.t. (2N, C) and (N, <).
Q ¢,:2N - 2N: S+3 N\ S is not monotonic w.r.t. (2, C)
(since, e.g., ) C N but ®(0) = N € &,(N) = 0).

v
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Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,
dCd = q)(dl) E/ (D(d2)-

Example 4.2

Q Let T:={SCN|Sfinite}. Then ®;: T = N:S— > _snis
monotonic w.r.t. (2N, C) and (N, <).

Q ¢,:2N - 2N: S+3 N\ S is not monotonic w.r.t. (2, C)
(since, e.g., ) C N but ®(0) = N € &,(N) = 0).

© (Live Variables) (D,C) = (D',C') = (2"a<, C)
Each transfer function ¢ (V) := (V \ killy(B")) U genyy(B") is
obviously monotonic

y
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Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,
dCd = q)(dl) E/ (D(d2)-

Example 4.2

Q Let T:={SCN|Sfinite}. Then ®;: T = N:S— > _snis
monotonic w.r.t. (2N, C) and (N, <).

Q ¢,:2N - 2N: S+3 N\ S is not monotonic w.r.t. (2, C)
(since, e.g., ) C N but ®(0) = N € &,(N) = 0).

© (Live Variables) (D,C) = (D',C') = (2"a<, C)
Each transfer function ¢ (V) := (V \ killy(B")) U genyy(B") is
obviously monotonic

@ (Available Expressions) (D,C) = (D',C') = (24F< D) ditto )
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Definition 4.3 (Fixpoint)

Let D be some domain, d € D, and ®: D — D. If
o(d)=d
then d is called a fixpoint of ®.
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Definition 4.3 (Fixpoint)

Let D be some domain, d € D, and ®: D — D. If
o(d)=d
then d is called a fixpoint of ®.

Example 4.4

The (only) fixpoints of @ : N — N: n+ n? are 0 and 1
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The Fixpoint Theorem |

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D,C) be a complete lattice satisfying ACC and ® : D — D
monotonic. Then

fix(®) := | ] {®¥ (L) | k € N}
is the least fixpoint of ® where
®0(d) := d and <Dk+1(d) (CD"(d))
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The Fixpoint Theorem |

AT AT K ]
Alfred Tarski (1901-1983) (LS \

Bronislaw Knaster (1893-1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D,C) be a complete lattice satisfying ACC and ® : D — D
monotonic. Then

fix(®) == {d>k (L) | ke N}
is the least fixpoint of ® where
®0(d) := d and d¥T1(d) := d(PX(d)).

Remark: ACC = (®*(L) | k € N) stabilizes at some ky € N with
fix(®) = ®ko (L) (where kg bounded by maximal chain length in (D, C))
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The Fixpoint Theorem Il

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,C) be a complete lattice satisfying ACC, S C D a chain, and
® : D — D monotonic. Then

o(LJsS) =L*(S)
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The Fixpoint Theorem Il

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,C) be a complete lattice satisfying ACC, S C D a chain, and
® : D — D monotonic. Then

o(LJsS) =L*(S)

Proof (Lemma 4.6).

on the board
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The Fixpoint Theorem Il

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,C) be a complete lattice satisfying ACC, S C D a chain, and
® : D — D monotonic. Then

o(LJsS) =L*(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Ol
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© Application to Dataflow Analysis
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Dataflow Systems |

Definition 4.7 (Dataflow system)

A dataflow system S = (L, E, F,(D,C),t, ) consists of
o a finite set of (program) labels L (here: L),
@ a set of extremal labels E C L (here: {init(c)} or final(c)),
e a flow relation F C L x L (here: flow(c) or flow®(c)),

@ a complete lattice (D, C) satisfying ACC
(with LUB operator | | and least element L),

@ an extremal value ¢ € D (for the extremal labels), and

@ a collection of monotonic transfer functions {¢; | | € L} of type
w;:D—D.
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Dataflow Systems I|

Example 4.8

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flowR(c)

D 2AExpC 2Varc

C 2 -

L N U

L AExp. 0

v 0 Var.

Q) ©i(d) = (d \ kill(B")) U gen(B")

Static Program Analysis
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Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)
Given: dataflow system S = (L, E, F,(D,C),¢,¢), L={1,...,n} (w.l.o.g.)

@ S determines the equation system (where | € L)

]

L if e E
L{er(Aly) | (I',]) € F}  otherwise
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Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)
Given: dataflow system S = (L, E, F,(D,C),¢,¢), L={1,...,n} (w.l.o.g.)

@ S determines the equation system (where | € L)

|

L ifl e E
L{er(Aly) | (I',]) € F}  otherwise
@ (di,...,dp) € D" is called a solution if
d=dt if e E
"T A Her(dr) | (I',1) € F}  otherwise
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Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)
Given: dataflow system S = (L, E, F,(D,C),¢,¢), L={1,...,n} (w.l.o.g.)

@ S determines the equation system (where | € L)

|

L ifle E
L {er(Aly) | (I']) € F}  otherwise
@ (di,...,dp) € D" is called a solution if
d =l ifle E
"T A Her(dr) | (I',1) € F}  otherwise
@ S determines the transformation
®s: D" — D" (dy,...,dn) > (d!,....d")
where
g J if | € E
7 VLK er(dr) | (1) € F} otherwise
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Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)
Given: dataflow system S = (L, E, F,(D,C),¢,¢), L={1,...,n} (w.l.o.g.)

@ S determines the equation system (where | € L)

|

L ifle E
L {er(Aly) | (I']) € F}  otherwise
@ (di,...,dp) € D" is called a solution if
d =l ifle E
"T A Her(dr) | (I',1) € F}  otherwise
@ S determines the transformation
®s: D" — D" (dy,...,dn) > (d!,....d")
where
o if | € E
7 VLK er(dr) | (1) € F} otherwise

Corollary 4.10

(di,...,dn) € D" solves the equation system iff it is a fixpoint of ®g
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Solving Dataflow Problems by Fixpoint lteration

Remarks:

e (D,C) being a complete lattice ensures that ®g is well defined
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Solving Dataflow Problems by Fixpoint lteration

Remarks:
e (D,C) being a complete lattice ensures that ®g is well defined
@ Since (D,C) is a complete lattice satisfying ACC, so is (D", C")
(where (di,...,d,) C" (df,...,d;) iff d; T d! for every 1 < < n)
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Solving Dataflow Problems by Fixpoint lteration

Remarks:
e (D,C) being a complete lattice ensures that ®g is well defined
@ Since (D,C) is a complete lattice satisfying ACC, so is (D", C")
(where (di,...,d,) C" (df,...,d;) iff d; T d! for every 1 < < n)

@ Monotonicity of transfer functions ¢, in (D, C) implies monotonicity
of s in (D", C") (since | | also monotonic)
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Solving Dataflow Problems by Fixpoint lteration

Remarks:

e (D,C) being a complete lattice ensures that ®g is well defined

@ Since (D,C) is a complete lattice satisfying ACC, so is (D", C")
(where (di,...,d,) C" (df,...,d;) iff d; T d! for every 1 < < n)

@ Monotonicity of transfer functions ¢, in (D, C) implies monotonicity
of s in (D", C") (since | | also monotonic)

@ Thus the (least) fixpoint is effectively computable by iteration:

fix(®s) = | {P&(Lpn) | k € N}
where Lpn = (Lp,...,1p)
~—_———

n times
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Solving Dataflow Problems by Fixpoint lteration

Remarks:
e (D,C) being a complete lattice ensures that ®g is well defined
@ Since (D,C) is a complete lattice satisfying ACC, so is (D", C")
(where (di,...,d,) C" (df,...,d;) iff d; T d! for every 1 < < n)
@ Monotonicity of transfer functions ¢, in (D, C) implies monotonicity
of s in (D", C") (since | | also monotonic)
@ Thus the (least) fixpoint is effectively computable by iteration:
fix(®s) = | {P&(Lpn) | k € N}
where Lpn = (Lp,...,1p)
~—_———
n times
e If maximal length of chains in (D,C) (= height of (D,C)) is m
— maximal length of chains in (D",C")is m-n
— fixpoint iteration requires at most m - n steps
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Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:
c=[x := a+b]1;
[y := axb]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®
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Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE4 = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}
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Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

i| 1 2 3 4 5
0| AExp. AExp. AExp. AExp. AExp,
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Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:
| 1 2 3 4 5

i
0| AExp. AExp. AExp. AExp. AExp.
1| 0  AExp. AExp. AExp. 0
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Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

i| 1 2 3 4

0| AExp. AExp. AExp. AExp. A
1 0 AExp. AExp. AExp.

2 0 {a+b} {a+b} AExp,

s=To
>
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Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

i| 1 2 3 4 5
0| AExp. AExp. AExp. AExp. AExp.
1| 0  AExp. AExp. AExp. 0
20 0 {a+b} {a+b} AExp. 0
3 0 {atb} {atb} {atb} 0
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Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

1 2 3 4 5
AExp. AExp. AExp. AExp. AExp.
0 AExp. AExp. AExp.
0 {a+b} {a+b} AExp.
0 {atb} {atb} {atb}
0 {a+b} {a+b} {a+b}

A WN R O~
SESESE
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Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

= 2Ly o= 4P
[x := ﬂ3;
if [y > 0]* then
[z := x]°
else
[z := y*yl%
[x := 2Z]”

v
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Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program: Equation system:
x := 2]%; = 4]?; LV = LV \ {y}
{x = 1}3;[y | LVo = LV3 \ {x}
if [y > 0]* then LV3 = LV4 U {y}
[z := x]° V4 = ((LVs \ {z}) U {x}) U ((LVe \ {z}) U{¥})
else LVs = (LV7 \ {x}) U {z}
2 := y*y]°; Ve = (LV7 \ {x}) U {z}
[X o= Z]7 V7 = {X7Y7Z}

v
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Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

£
T

2%y = 4%

Equation system:
LV: = Vo \ {y}

[x := 1]3; LV = LV3\ {x}
if [y > 0]* then LV3 = LV4 U {y}
[z := x]° LVa = ((LVs \ {z}) U {x}) U ((LVe \ {z}) U{y})
else LVs = (LV7 \ {x}) U {z}
[z = y*y]6; LVe = (LV7 \ {X}) U {Z}
[X .= Z]7 LvV7 = {X7Y7Z}
Fixpoint iteration:
i \ 1 2 3 4 5 6 7
0|0 0 0 0 0 0 0

v

Static Program Analysis
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Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program: Equation system:
x := 2|y := 4)%; LV1 = LV \ {y}
{x R= 1}3'[ | LV = LV3\ {x}
if [y > 0]* then Vs = LV, U {y}
[z := x]° LVa = ((LV5 \ {z}) U {x}) U((LV6 \ {z}) U {y})
else LVs = (LV7 \ {x}) U {z}
[z = y*y]®; Ve = (LV7 \ {x}) U {z}
[x := 2]’ LV; = {x,y,z}

i1 2 3 4 5 6 7
00 0 0 0 0 0 0
e 0 =y {=z {z {xyz
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Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program: Equation system:
[x := 2%y := 4% LVi=LV2\{y}
[X .= 1]3; LV, = LV3 \ {X}
if [y > 0]* then LV3 = LV4 U {y}
[z := x]° V4 = ((LVs \ {z}) U {x}) U ((LVe \ {z}) U{¥})
else LVs = (LV7 \ {x}) U {z}
2 := y*y]°; Ve = (LV7 \ {x}) U {z}
[X o= Z]7 V7 = {X7Y7Z}

Fixpoint iteration:

i1 2 3 4 5 6 7
00 0 0 1] 1] 1] 1]
e 0 {y} {xy} {z¥ {2z} {xvy.z}
210 {y} {xy} {xy} {v.z} {v.z} {xyz}
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Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program: Equation system:
x := 2]%; = 4]%; LV1 = V2 \ {y}
{x = 1}3;[y | LVo = LV3 \ {x}
if [y > 0]* then LV3 = LV4 U {y}
[z := x]° V4 = ((LVs \ {z}) U {x}) U ((LVe \ {z}) U{¥})
else LVs = (LV7 \ {x}) U {z}
[z := y*y]° Ve = (LV7 \ {x}) U {z}
[X o= Z]7 V7 = {X7Y7Z}

i1 2 3 4 5 6 7

00 0 0 1] 1] 1] 1]

1o 0 {y} {xyt {z} {z} {xyz}
210 {y} {xy} {xvy} {vz} {v.z} {xvyz}
310 {y} {xy} {xy} {vz} {v.z} {xvy.2z}
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