
Static Program Analysis
Lecture 4: Dataflow Analysis III (The Framework)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/


Outline

1 Repetition: Heading for a Dataflow Analysis Framework

2 Order-Theoretic Foundations: the Function

3 Application to Dataflow Analysis

Static Program Analysis Summer Semester 2011 4.2



Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms for
solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Lc , the analysis information
(AI) is described by equations of the form

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

where

the set of extremal labels, E , is {init(c)} or final(c)
ι specifies the extremal analysis information
the combination operator,

⊔
, is
⋂

or
⋃

ϕl′ denotes the transfer function of block B l′

the flow relation F is flow(c) or flowR(c) (:= {(l ′, l) | (l , l ′) ∈ flow(c)})

Static Program Analysis Summer Semester 2011 4.3



Roadmap

Goal: solve dataflow equation system by fixpoint iteration

1 Characterize solution of equation system as fixpoint of a
transformation

2 Introduce partial order for comparing analysis results

3 Establish least upper bound as combination operator

4 Ensure monotonicity of transfer functions

5 Guarantee termination of fixpoint iteration by ascending chain
condition

6 Optimize fixpoint iteration by worklist algorithm

Static Program Analysis Summer Semester 2011 4.4



Motivation

Wanted: solution of (dataflow) equation system

Problem: recursive dependencies between dataflow variables

Idea: characterize solution as fixpoint of transformation:

(AIl = τl)l∈Lc ⇐⇒ Φ((AIl)l∈Lc ) = (AIl)l∈Lc

where Φ
(
(AIl)l∈Lc

)
:= (τl)l∈Lc

Approach: approximate fixpoint by iteration

Static Program Analysis Summer Semester 2011 4.5



Partial Orders

The domain of analysis information usually forms a partial order where the
ordering relation compares the “precision” of information.

Definition (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example

1 (N,≤) is a total partial order

2 (N, <) is not a partial order (since not reflexive)

3 (Live Variables) (2Var c ,⊆) is a (non-total) partial order

4 (Available Expressions) (2AExpc ,⊇) is a (non-total) partial order

Static Program Analysis Summer Semester 2011 4.6



Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition ((Least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Example

1 S ⊆ N has a LUB in (N,≤) iff it is finite
2 (Live Variables) (D,v) = (2Var c ,⊆). Given V1, . . . ,Vn ⊆ Var c ,⊔

{V1, . . . ,Vn} =
⋃
{V1, . . . ,Vn}

3 (Avail. Expr.) (D,v) = (2AExpc ,⊇). Given A1, . . . ,An ⊆ AExpc ,⊔
{A1, . . . ,An} =

⋂
{A1, . . . ,An}

Static Program Analysis Summer Semester 2011 4.7



Complete Lattices

Since {ϕl ′(AIl ′) | (l ′, l) ∈ F} can contain arbitrary elements, the existence
of least upper bounds must be ensured for arbitrary subsets.

Definition (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have
least upper bounds. In this case,

⊥ :=
⊔
∅

denotes the least element of D.

Example

1 (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2 (Live Variables)
(D,v) = (2Var c ,⊆) is a complete lattice with ⊥ = ∅

3 (Available Expressions)
(D,v) = (2AExpc ,⊇) is a complete lattice with ⊥ = AExpc

Static Program Analysis Summer Semester 2011 4.8



Chains

Chains are generated by the approximation of the analysis information in
the fixpoint iteration.

Definition (Chain)

Let (D,v) be a partial order. A subset S ⊆ D is called an (ascending)
chain in D if, for every s1, s2 ∈ S ,

s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).

Example

1 Every S ⊆ N is a chain in (N,≤)

2 {∅, {0}, {0, 1}, {0, 1, 2}, . . .} is a chain in (2N,⊆)

3 {∅, {0}, {1}} is not a chain in (2N,⊆)

Static Program Analysis Summer Semester 2011 4.9



The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition (Ascending Chain Condition)

A partial order (D,v) satisfies the Ascending Chain Condition (ACC) if
each ascending chain d1 v d2 v . . . eventually stabilizes, i.e., there exists
n ∈ N such that dn = dn+1 = . . .

Example

1 (N,≤) does not satisfy ACC

2 (Live Variables) (D,v) = (2Var c ,⊆) satisfies ACC since Var c (unlike
Var) is finite

3 (Available Expressions) (D,v) = (2AExpc ,⊇) satisfies ACC since
AExpc (unlike AExp) is finite

Static Program Analysis Summer Semester 2011 4.10



Outline

1 Repetition: Heading for a Dataflow Analysis Framework

2 Order-Theoretic Foundations: the Function

3 Application to Dataflow Analysis

Static Program Analysis Summer Semester 2011 4.11



Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V ) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2AExpc ,⊇) ditto

Static Program Analysis Summer Semester 2011 4.12



Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V ) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2AExpc ,⊇) ditto

Static Program Analysis Summer Semester 2011 4.12



Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V ) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2AExpc ,⊇) ditto

Static Program Analysis Summer Semester 2011 4.12



Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V ) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2AExpc ,⊇) ditto

Static Program Analysis Summer Semester 2011 4.12



Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V ) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2AExpc ,⊇) ditto

Static Program Analysis Summer Semester 2011 4.12



Fixpoints

Definition 4.3 (Fixpoint)

Let D be some domain, d ∈ D, and Φ : D → D. If
Φ(d) = d

then d is called a fixpoint of Φ.

Example 4.4

The (only) fixpoints of Φ : N→ N : n 7→ n2 are 0 and 1

Static Program Analysis Summer Semester 2011 4.13



Fixpoints

Definition 4.3 (Fixpoint)

Let D be some domain, d ∈ D, and Φ : D → D. If
Φ(d) = d

then d is called a fixpoint of Φ.

Example 4.4

The (only) fixpoints of Φ : N→ N : n 7→ n2 are 0 and 1

Static Program Analysis Summer Semester 2011 4.13



The Fixpoint Theorem I

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a complete lattice satisfying ACC and Φ : D → D
monotonic. Then

fix(Φ) :=
⊔{

Φk (⊥) | k ∈ N
}

is the least fixpoint of Φ where
Φ0(d) := d and Φk+1(d) := Φ(Φk(d)).

Remark: ACC =⇒
(
Φk (⊥) | k ∈ N

)
stabilizes at some k0 ∈ N with

fix(Φ) = Φk0 (⊥) (where k0 bounded by maximal chain length in (D,v))

Static Program Analysis Summer Semester 2011 4.14



The Fixpoint Theorem I

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a complete lattice satisfying ACC and Φ : D → D
monotonic. Then

fix(Φ) :=
⊔{

Φk (⊥) | k ∈ N
}

is the least fixpoint of Φ where
Φ0(d) := d and Φk+1(d) := Φ(Φk(d)).

Remark: ACC =⇒
(
Φk (⊥) | k ∈ N

)
stabilizes at some k0 ∈ N with

fix(Φ) = Φk0 (⊥) (where k0 bounded by maximal chain length in (D,v))
Static Program Analysis Summer Semester 2011 4.14



The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,v) be a complete lattice satisfying ACC, S ⊆ D a chain, and
Φ : D → D monotonic. Then

Φ(
⊔

S) =
⊔

Φ(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Static Program Analysis Summer Semester 2011 4.15



The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,v) be a complete lattice satisfying ACC, S ⊆ D a chain, and
Φ : D → D monotonic. Then

Φ(
⊔

S) =
⊔

Φ(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Static Program Analysis Summer Semester 2011 4.15



The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,v) be a complete lattice satisfying ACC, S ⊆ D a chain, and
Φ : D → D monotonic. Then

Φ(
⊔

S) =
⊔

Φ(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Static Program Analysis Summer Semester 2011 4.15



Outline

1 Repetition: Heading for a Dataflow Analysis Framework

2 Order-Theoretic Foundations: the Function

3 Application to Dataflow Analysis

Static Program Analysis Summer Semester 2011 4.16



Dataflow Systems I

Definition 4.7 (Dataflow system)

A dataflow system S = (L,E ,F , (D,v), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L× L (here: flow(c) or flowR(c)),

a complete lattice (D,v) satisfying ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.

Static Program Analysis Summer Semester 2011 4.17



Dataflow Systems II

Example 4.8

Problem Available Expressions Live Variables

E {init(c)} final(c)
F flow(c) flowR(c)
D 2AExpc 2Var c

v ⊇ ⊆⊔ ⋂ ⋃
⊥ AExpc ∅
ι ∅ Var c
ϕl ϕl(d) = (d \ kill(B l)) ∪ gen(B l)

Static Program Analysis Summer Semester 2011 4.18



Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system S = (L,E ,F , (D,v), ι, ϕ), L = {1, ..., n} (w.l.o.g.)

S determines the equation system (where l ∈ L)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′

1, . . . , d
′
n)

where

d ′
l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary 4.10

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS

Static Program Analysis Summer Semester 2011 4.19



Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system S = (L,E ,F , (D,v), ι, ϕ), L = {1, ..., n} (w.l.o.g.)

S determines the equation system (where l ∈ L)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′

1, . . . , d
′
n)

where

d ′
l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary 4.10

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS

Static Program Analysis Summer Semester 2011 4.19



Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system S = (L,E ,F , (D,v), ι, ϕ), L = {1, ..., n} (w.l.o.g.)

S determines the equation system (where l ∈ L)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′

1, . . . , d
′
n)

where

d ′
l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary 4.10

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS

Static Program Analysis Summer Semester 2011 4.19



Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system S = (L,E ,F , (D,v), ι, ϕ), L = {1, ..., n} (w.l.o.g.)

S determines the equation system (where l ∈ L)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′

1, . . . , d
′
n)

where

d ′
l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary 4.10

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS
Static Program Analysis Summer Semester 2011 4.19



Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:
fix(ΦS) =

⊔
{Φk

S(⊥Dn) | k ∈ N}
where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸

n times

)

If maximal length of chains in (D,v) (= height of (D,v)) is m
=⇒ maximal length of chains in (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Summer Semester 2011 4.20



Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:
fix(ΦS) =

⊔
{Φk

S(⊥Dn) | k ∈ N}
where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸

n times

)

If maximal length of chains in (D,v) (= height of (D,v)) is m
=⇒ maximal length of chains in (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Summer Semester 2011 4.20



Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:
fix(ΦS) =

⊔
{Φk

S(⊥Dn) | k ∈ N}
where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸

n times

)

If maximal length of chains in (D,v) (= height of (D,v)) is m
=⇒ maximal length of chains in (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Summer Semester 2011 4.20



Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:
fix(ΦS) =

⊔
{Φk

S(⊥Dn) | k ∈ N}
where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸

n times

)

If maximal length of chains in (D,v) (= height of (D,v)) is m
=⇒ maximal length of chains in (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Summer Semester 2011 4.20



Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:
fix(ΦS) =

⊔
{Φk

S(⊥Dn) | k ∈ N}
where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸

n times

)

If maximal length of chains in (D,v) (= height of (D,v)) is m
=⇒ maximal length of chains in (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Summer Semester 2011 4.20



Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Summer Semester 2011 4.21



Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Summer Semester 2011 4.21



Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc

1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Summer Semester 2011 4.21



Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅

2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Summer Semester 2011 4.21



Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅

3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Summer Semester 2011 4.21



Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅

4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Summer Semester 2011 4.21



Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Summer Semester 2011 4.21



Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Summer Semester 2011 4.22



Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Summer Semester 2011 4.22



Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅

1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Summer Semester 2011 4.22



Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}

2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Summer Semester 2011 4.22



Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Summer Semester 2011 4.22



Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Summer Semester 2011 4.22


	Repetition: Heading for a Dataflow Analysis Framework
	Order-Theoretic Foundations: the Function
	Application to Dataflow Analysis

