

Static Program Analysis

Lecture 4: Dataflow Analysis III (The Framework)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/spa11/>

Summer Semester 2011

- 1 Repetition: Heading for a Dataflow Analysis Framework
- 2 Order-Theoretic Foundations: the Function
- 3 Application to Dataflow Analysis

Similarities between Analysis Problems

- **Observation:** the analyses presented so far have some **similarities**
⇒ Look for underlying **framework**
- **Advantage:** possibility for designing (efficient) **generic algorithms** for **solving dataflow equations**
- **Overall pattern:** for $c \in Cmd$ and $I \in L_c$, the **analysis information** (AI) is described by **equations** of the form

$$AI_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(AI_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

where

- the set of **extremal labels**, E , is $\{\text{init}(c)\}$ or $\text{final}(c)$
- ι specifies the **extremal analysis information**
- the **combination operator**, \bigsqcup , is \cap or \cup
- $\varphi_{I'}$ denotes the **transfer function** of block $B^{I'}$
- the **flow relation** F is $\text{flow}(c)$ or $\text{flow}^R(c)$ ($:= \{(I', I) \mid (I, I') \in \text{flow}(c)\}$)

Goal: solve dataflow equation system by **fixpoint iteration**

- ① Characterize solution of equation system as **fixpoint** of a transformation
- ② Introduce **partial order** for comparing analysis results
- ③ Establish **least upper bound** as combination operator
- ④ Ensure **monotonicity** of transfer functions
- ⑤ Guarantee termination of fixpoint iteration by **ascending chain condition**
- ⑥ Optimize fixpoint iteration by **worklist algorithm**

- **Wanted:** solution of (dataflow) equation system
- **Problem:** recursive dependencies between dataflow variables
- **Idea:** characterize solution as fixpoint of transformation:

$$(AI_I = \tau_I)_{I \in L_c} \iff \Phi((AI_I)_{I \in L_c}) = (AI_I)_{I \in L_c}$$

where $\Phi((AI_I)_{I \in L_c}) := (\tau_I)_{I \in L_c}$

- **Approach:** approximate fixpoint by iteration

The domain of analysis information usually forms a partial order where the ordering relation compares the “precision” of information.

Definition (Partial order)

A **partial order (PO)** (D, \sqsubseteq) consists of a set D , called **domain**, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called **total** if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example

- ❶ (\mathbb{N}, \leq) is a total partial order
- ❷ $(\mathbb{N}, <)$ is not a partial order (since not reflexive)
- ❸ (Live Variables) $(2^{Var_c}, \sqsubseteq)$ is a (non-total) partial order
- ❹ (Available Expressions) $(2^{Exp_c}, \sqsupseteq)$ is a (non-total) partial order

In the dataflow equation system, analysis information from several predecessors is combined by taking the least upper bound.

Definition ((Least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.

- ① An element $d \in D$ is called an **upper bound** of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).
- ② An upper bound d of S is called **least upper bound (LUB)** or **supremum** of S if $d \sqsubseteq d'$ for every upper bound d' of S (notation: $d = \sqcup S$).

Example

- ① $S \subseteq \mathbb{N}$ has a LUB in (\mathbb{N}, \leq) iff it is finite
- ② (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$. Given $V_1, \dots, V_n \subseteq Var_c$,
$$\sqcup\{V_1, \dots, V_n\} = \bigcup\{V_1, \dots, V_n\}$$
- ③ (Avail. Expr.) $(D, \sqsubseteq) = (2^{AExp_c}, \supseteq)$. Given $A_1, \dots, A_n \subseteq AExp_c$,
$$\sqcup\{A_1, \dots, A_n\} = \bigcap\{A_1, \dots, A_n\}$$

Complete Lattices

Since $\{\varphi_{I'}(\text{AI}_{I'}) \mid (I', I) \in F\}$ can contain arbitrary elements, the existence of least upper bounds must be ensured for arbitrary subsets.

Definition (Complete lattice)

A **complete lattice** is a partial order (D, \sqsubseteq) such that all subsets of D have least upper bounds. In this case,

$$\perp := \bigsqcup \emptyset$$

denotes the **least element** of D .

Example

- ① (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
- ② (Live Variables)
 $(D, \sqsubseteq) = (2^{\text{Var}_c}, \sqsubseteq)$ is a complete lattice with $\perp = \emptyset$
- ③ (Available Expressions)
 $(D, \sqsubseteq) = (2^{A\text{Exp}_c}, \sqsupseteq)$ is a complete lattice with $\perp = A\text{Exp}_c$

Chains are generated by the approximation of the analysis information in the fixpoint iteration.

Definition (Chain)

Let (D, \sqsubseteq) be a partial order. A subset $S \subseteq D$ is called an **(ascending) chain** in D if, for every $s_1, s_2 \in S$,

$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$

(that is, S is a totally ordered subset of D).

Example

- ① Every $S \subseteq \mathbb{N}$ is a chain in (\mathbb{N}, \leq)
- ② $\{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}, \dots\}$ is a chain in $(2^{\mathbb{N}}, \subseteq)$
- ③ $\{\emptyset, \{0\}, \{1\}\}$ is not a chain in $(2^{\mathbb{N}}, \subseteq)$

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain Condition.

Definition (Ascending Chain Condition)

A partial order (D, \sqsubseteq) satisfies the **Ascending Chain Condition (ACC)** if each ascending chain $d_1 \sqsubseteq d_2 \sqsubseteq \dots$ eventually stabilizes, i.e., there exists $n \in \mathbb{N}$ such that $d_n = d_{n+1} = \dots$

Example

- ① (\mathbb{N}, \leq) does not satisfy ACC
- ② (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \sqsubseteq)$ satisfies ACC since Var_c (unlike Var) is finite
- ③ (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \sqsupseteq)$ satisfies ACC since $AExp_c$ (unlike $AExp$) is finite

- 1 Repetition: Heading for a Dataflow Analysis Framework
- 2 Order-Theoretic Foundations: the Function
- 3 Application to Dataflow Analysis

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $\Phi : D \rightarrow D'$. Φ is called **monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq'))** if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2).$$

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $\Phi : D \rightarrow D'$. Φ is called **monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq'))** if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2).$$

Example 4.2

- ① Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $\Phi_1 : T \rightarrow \mathbb{N} : S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $\Phi : D \rightarrow D'$. Φ is called **monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq'))** if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2).$$

Example 4.2

- ① Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $\Phi_1 : T \rightarrow \mathbb{N} : S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .
- ② $\Phi_2 : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}} : S \mapsto \mathbb{N} \setminus S$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $\Phi_2(\emptyset) = \mathbb{N} \not\subseteq \Phi_2(\mathbb{N}) = \emptyset$).

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $\Phi : D \rightarrow D'$. Φ is called **monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq'))** if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2).$$

Example 4.2

- ① Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $\Phi_1 : T \rightarrow \mathbb{N} : S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .
- ② $\Phi_2 : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}} : S \mapsto \mathbb{N} \setminus S$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $\Phi_2(\emptyset) = \mathbb{N} \not\subseteq \Phi_2(\mathbb{N}) = \emptyset$).
- ③ (Live Variables) $(D, \sqsubseteq) = (D', \sqsubseteq') = (2^{\mathit{Var}_c}, \subseteq)$
Each transfer function $\varphi_{I''}(V) := (V \setminus \text{kill}_{\text{LV}}(B'')) \cup \text{gen}_{\text{LV}}(B'')$ is obviously monotonic

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $\Phi : D \rightarrow D'$. Φ is called **monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq'))** if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2).$$

Example 4.2

- ① Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $\Phi_1 : T \rightarrow \mathbb{N} : S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .
- ② $\Phi_2 : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}} : S \mapsto \mathbb{N} \setminus S$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $\Phi_2(\emptyset) = \mathbb{N} \not\subseteq \Phi_2(\mathbb{N}) = \emptyset$).
- ③ (Live Variables) $(D, \sqsubseteq) = (D', \sqsubseteq') = (2^{Var_c}, \subseteq)$
Each transfer function $\varphi_{I''}(V) := (V \setminus \text{kill}_{LV}(B'')) \cup \text{gen}_{LV}(B'')$ is obviously monotonic
- ④ (Available Expressions) $(D, \sqsubseteq) = (D', \sqsubseteq') = (2^{AExp_c}, \supseteq)$ ditto

Definition 4.3 (Fixpoint)

Let D be some domain, $d \in D$, and $\Phi : D \rightarrow D$. If

$$\Phi(d) = d$$

then d is called a **fixpoint** of Φ .

Definition 4.3 (Fixpoint)

Let D be some domain, $d \in D$, and $\Phi : D \rightarrow D$. If

$$\Phi(d) = d$$

then d is called a **fixpoint** of Φ .

Example 4.4

The (only) fixpoints of $\Phi : \mathbb{N} \rightarrow \mathbb{N} : n \mapsto n^2$ are 0 and 1

The Fixpoint Theorem I

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D, \sqsubseteq) be a complete lattice satisfying ACC and $\Phi : D \rightarrow D$ monotonic. Then

$$\text{fix}(\Phi) := \bigsqcup \{ \Phi^k(\perp) \mid k \in \mathbb{N} \}$$

is the *least fixpoint of Φ* where

$$\Phi^0(d) := d \text{ and } \Phi^{k+1}(d) := \Phi(\Phi^k(d)).$$

The Fixpoint Theorem I

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D, \sqsubseteq) be a complete lattice satisfying ACC and $\Phi : D \rightarrow D$ monotonic. Then

$$\text{fix}(\Phi) := \bigsqcup \{ \Phi^k(\perp) \mid k \in \mathbb{N} \}$$

is the *least fixpoint of Φ* where

$$\Phi^0(d) := d \text{ and } \Phi^{k+1}(d) := \Phi(\Phi^k(d)).$$

Remark: ACC $\implies (\Phi^k(\perp) \mid k \in \mathbb{N})$ stabilizes at some $k_0 \in \mathbb{N}$ with $\text{fix}(\Phi) = \Phi^{k_0}(\perp)$ (where k_0 bounded by maximal chain length in (D, \sqsubseteq))

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying ACC, $S \subseteq D$ a chain, and $\Phi : D \rightarrow D$ monotonic. Then

$$\Phi(\bigsqcup S) = \bigsqcup \Phi(S)$$

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying ACC, $S \subseteq D$ a chain, and $\Phi : D \rightarrow D$ monotonic. Then

$$\Phi(\bigsqcup S) = \bigsqcup \Phi(S)$$

Proof (Lemma 4.6).

on the board

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying ACC, $S \subseteq D$ a chain, and $\Phi : D \rightarrow D$ monotonic. Then

$$\Phi(\bigsqcup S) = \bigsqcup \Phi(S)$$

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

- 1 Repetition: Heading for a Dataflow Analysis Framework
- 2 Order-Theoretic Foundations: the Function
- 3 Application to Dataflow Analysis

Definition 4.7 (Dataflow system)

A **dataflow system** $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) **labels** L (here: L_c),
- a set of **extremal labels** $E \subseteq L$ (here: $\{\text{init}(c)\}$ or $\text{final}(c)$),
- a **flow relation** $F \subseteq L \times L$ (here: $\text{flow}(c)$ or $\text{flow}^R(c)$),
- a **complete lattice** (D, \sqsubseteq) satisfying ACC
(with LUB operator \sqcup and least element \perp),
- an **extremal value** $\iota \in D$ (for the extremal labels), and
- a collection of **monotonic transfer functions** $\{\varphi_I \mid I \in L\}$ of type $\varphi_I : D \rightarrow D$.

Example 4.8

Problem	Available Expressions	Live Variables
E	$\{\text{init}(c)\}$	$\text{final}(c)$
F	$\text{flow}(c)$	$\text{flow}^R(c)$
D	2^{AExp_c}	2^{Var_c}
\sqsubseteq	\supseteq	\subseteq
\sqcup	\bigcap	\bigcup
\perp	$AExp_c$	\emptyset
ι	\emptyset	Var_c
φ_I	$\varphi_I(d) = (d \setminus \text{kill}(B')) \cup \text{gen}(B')$	

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$, $L = \{1, \dots, n\}$ (w.l.o.g.)

- S determines the **equation system** (where $I \in L$)

$$\text{AI}_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(\text{AI}_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$, $L = \{1, \dots, n\}$ (w.l.o.g.)

- S determines the **equation system** (where $I \in L$)

$$\text{AI}_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(\text{AI}_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

- $(d_1, \dots, d_n) \in D^n$ is called a **solution** if

$$d_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(d_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$, $L = \{1, \dots, n\}$ (w.l.o.g.)

- S determines the **equation system** (where $I \in L$)

$$\text{AI}_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(\text{AI}_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

- $(d_1, \dots, d_n) \in D^n$ is called a **solution** if

$$d_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(d_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

- S determines the **transformation**

$$\Phi_S : D^n \rightarrow D^n : (d_1, \dots, d_n) \mapsto (d'_1, \dots, d'_n)$$

where

$$d'_I := \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(d_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$, $L = \{1, \dots, n\}$ (w.l.o.g.)

- S determines the **equation system** (where $I \in L$)

$$\text{AI}_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(\text{AI}_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

- $(d_1, \dots, d_n) \in D^n$ is called a **solution** if

$$d_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(d_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

- S determines the **transformation**

$$\Phi_S : D^n \rightarrow D^n : (d_1, \dots, d_n) \mapsto (d'_1, \dots, d'_n)$$

where

$$d'_I := \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(d_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

Corollary 4.10

$(d_1, \dots, d_n) \in D^n$ **solves** the equation system iff it is a **fixpoint** of Φ_S

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined
- Since (D, \sqsubseteq) is a **complete lattice satisfying ACC**, so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined
- Since (D, \sqsubseteq) is a **complete lattice satisfying ACC**, so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Monotonicity of transfer functions φ_I in (D, \sqsubseteq) implies **monotonicity of Φ_S** in (D^n, \sqsubseteq^n) (since \sqcup also monotonic)

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined
- Since (D, \sqsubseteq) is a **complete lattice satisfying ACC**, so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Monotonicity of transfer functions φ_I in (D, \sqsubseteq) implies **monotonicity of Φ_S** in (D^n, \sqsubseteq^n) (since \sqcup also monotonic)
- Thus the **(least) fixpoint is effectively computable** by iteration:

$$\text{fix}(\Phi_S) = \sqcup \{ \Phi_S^k(\perp_{D^n}) \mid k \in \mathbb{N} \}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined
- Since (D, \sqsubseteq) is a **complete lattice satisfying ACC**, so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Monotonicity of transfer functions φ_I in (D, \sqsubseteq) implies **monotonicity of Φ_S** in (D^n, \sqsubseteq^n) (since \sqcup also monotonic)
- Thus the **(least) fixpoint is effectively computable** by iteration:

$$\text{fix}(\Phi_S) = \sqcup \{ \Phi_S^k(\perp_{D^n}) \mid k \in \mathbb{N} \}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

- If maximal length of chains in (D, \sqsubseteq) (= **height** of (D, \sqsubseteq)) is m
 \implies maximal length of chains in (D^n, \sqsubseteq^n) is $m \cdot n$
 \implies fixpoint iteration requires at most $m \cdot n$ steps

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AE\text{xp}_c$	$AE\text{xp}_c$	$AE\text{xp}_c$	$AE\text{xp}_c$	$AE\text{xp}_c$
1	\emptyset	$AE\text{xp}_c$	$AE\text{xp}_c$	$AE\text{xp}_c$	\emptyset

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}
1	\emptyset	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	AE_{Exp_c}	\emptyset

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}
1	\emptyset	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	AE_{Exp_c}	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}
1	\emptyset	AE_{Exp_c}	AE_{Exp_c}	AE_{Exp_c}	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	AE_{Exp_c}	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	$\{x, y, z\}$

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	$\{x, y, z\}$
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	$\{x, y, z\}$
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$