Static Program Analysis

Lecture 4: Dataflow Analysis Ill (The Framework)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spail/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Repetition: Heading for a Dataflow Analysis Framework

“w.rH Static Program Analysis Summer Semester 2011 4.2

Similarities between Analysis Problems

@ Observation: the analyses presented so far have some similarities
— Look for underlying framework

e Advantage: possibility for designing (efficient) generic algorithms for
solving dataflow equations

@ Overall pattern: for c € Cmd and | € L., the analysis information
(Al) is described by equations of the form

Al = 2 ifleE
T U er (Alp) | (1) € F} otherwise

where

the set of extremal labels, E, is {init(c)} or final(c)
¢ specifies the extremal analysis information

the combination operator, | |, is [or UJ

oy denotes the transfer function of block B"
the flow relation F is flow(c) or flow®(c) (:= {(/', 1) | (1, 1) € flow(c)})

“er Static Program Analysis Summer Semester 2011 4.3

Goal: solve dataflow equation system by fixpoint iteration

©© 00

Characterize solution of equation system as fixpoint of a
transformation

Introduce partial order for comparing analysis results
Establish least upper bound as combination operator
Ensure monotonicity of transfer functions

Guarantee termination of fixpoint iteration by ascending chain
condition

Optimize fixpoint iteration by worklist algorithm

“er Static Program Analysis Summer Semester 2011 4.4

e Wanted: solution of (dataflow) equation system
@ Problem: recursive dependencies between dataflow variables

o ldea: characterize solution as fixpoint of transformation:
(Alp=11)1e, = ®((Al)ieLe) = (Al))reL

where ¢ ((AII)IELC) = (T/)IGLC
@ Approach: approximate fixpoint by iteration

“er Static Program Analysis Summer Semester 2011 4.5

Partial Orders

The domain of analysis information usually forms a partial order where the
ordering relation compares the “precision” of information.

Definition (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,
reflexivity: di C dy
transitivity: di Cdr and do C d3 = di C d3
antisymmetry: di Cdrand db C di = di = >
It is called total if, in addition, always d; C d, or d» C dj.

N, <) is a total partial order

N, <) is not a partial order (since not reflexive)

Q (
Q (
© (Live Variables) (2V%<, C) is a (non-total) partial order
Q (

Available Expressions) (245*P<, D) is a (non-total) partial order

“w.rH Static Program Analysis Summer Semester 2011 4.6

Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition ((Least) upper bound)

Let (D,) be a partial order and S C D.

© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).

@ An upper bound d of S is called least upper bound (LUB) or
supremum of S if d C d’ for every upper bound d’ of S
(notation: d =] |5).

V.

Example
@ S CNhasaLUBin (N, <) iff it is finite
@ (Live Variables) (D,C) = (2"2"<, C). Given W,...,V, C Var,
L{Va, . s Vil = U{V, ..., Vi)
@ (Avail. Expr.) (D,C) = (24B®¢, D). Given Ay, ..., A, C AExp,,
LI{A1, ..., An} = (A1, ..., An}

“w.rH Static Program Analysis Summer Semester 2011 4.7

Complete Lattices

Since {@p(Aly) | (I',1) € F} can contain arbitrary elements, the existence
of least upper bounds must be ensured for arbitrary subsets.

Definition (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have
least upper bounds. In this case,

1L:=1]0

denotes the least element of D.

O (N, <) is not a complete lattice as, e.g., N does not have a LUB
@ (Live Variables)
(D,C) = (2¥2r<, C) is a complete lattice with L = ()

© (Available Expressions)
(D,C) = (248 D) is a complete lattice with | = AExp,

v

RWTH Static Program Analysis Summer Semester 2011 4.8

Chains are generated by the approximation of the analysis information in
the fixpoint iteration.

Definition (Chain)
Let (D,C) be a partial order. A subset S C D is called an (ascending)
chain in D if, for every s1,5 € S,

siEsors s

(that is, S is a totally ordered subset of D).

Q Every S C Nis a chain in (N, <)
@ {0,{0},{0,1},{0,1,2},...} is a chain in (2%, C)
@ {0,{0},{1}} is not a chain in (2%, C)

RWTH Static Program Analysis Summer Semester 2011 4.9

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain

Condition.

Definition (Ascending Chain Condition)

A partial order (D, C) satisfies the Ascending Chain Condition (ACC) if

each ascending chain di C d, C ... eventually stabilizes, i.e., there exists

n € N such that d, = dp41 =

Example
O (N, <) does not satisfy ACC

@ (Live Variables) (D,C) = (2V2"<, C) satisfies ACC since Var. (unlike

Var) is finite
© (Available Expressions) (D, C) = (24ExPc
AExp, (unlike AExp) is finite

D) satisfies ACC since

RWTH Static Program Analysis

Summer Semester 2011

4.10

© Order-Theoretic Foundations: the Function

“er Static Program Analysis Summer Semester 2011 411

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,
h Edp = &(dr) T’ O(c2).

“er Static Program Analysis

Summer Semester 2011 4.12

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,
dCd = q)(dl) E/ (D(d2)-

Example 4.2

Q Let T:={SCN|Sfinite}. Then ®;: T = N:S— > _snis
monotonic w.r.t. (2N, C) and (N, <).

v

RWTH Static Program Analysis

Summer Semester 2011 4.12

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,
dCd = q)(dl) E/ (D(d2)-

Example 4.2
Q Let T:={SCN|Sfinite}. Then ®;: T = N:S— > _snis
monotonic w.r.t. (2N, C) and (N, <).
Q ¢,:2N - 2N: S+3 N\ S is not monotonic w.r.t. (2, C)
(since, e.g.,) C N but ®(0) = N € &,(N) = 0).

v

“w.rH Static Program Analysis

Summer Semester 2011 4.12

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,
dCd = q)(dl) E/ (D(d2)-

Example 4.2

Q Let T:={SCN|Sfinite}. Then ®;: T = N:S— > _snis
monotonic w.r.t. (2N, C) and (N, <).

Q ¢,:2N - 2N: S+3 N\ S is not monotonic w.r.t. (2, C)
(since, e.g.,) C N but ®(0) = N € &,(N) = 0).

© (Live Variables) (D,C) = (D',C') = (2"a<, C)
Each transfer function ¢ (V) := (V \ killy(B")) U genyy(B") is
obviously monotonic

y
“w.rH Static Program Analysis Summer Semester 2011 4.12

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let & : D — D’. & is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,
dCd = q)(dl) E/ (D(d2)-

Example 4.2

Q Let T:={SCN|Sfinite}. Then ®;: T = N:S— > _snis
monotonic w.r.t. (2N, C) and (N, <).

Q ¢,:2N - 2N: S+3 N\ S is not monotonic w.r.t. (2, C)
(since, e.g.,) C N but ®(0) = N € &,(N) = 0).

© (Live Variables) (D,C) = (D',C') = (2"a<, C)
Each transfer function ¢ (V) := (V \ killy(B")) U genyy(B") is
obviously monotonic

@ (Available Expressions) (D,C) = (D',C') = (24F< D) ditto)

Rer Static Program Analysis Summer Semester 2011 4.12

Definition 4.3 (Fixpoint)

Let D be some domain, d € D, and ®: D — D. If
o(d)=d
then d is called a fixpoint of ®.

“er Static Program Analysis Summer Semester 2011 4.13

Definition 4.3 (Fixpoint)

Let D be some domain, d € D, and ®: D — D. If
o(d)=d
then d is called a fixpoint of ®.

Example 4.4

The (only) fixpoints of @ : N — N: n+ n? are 0 and 1

“er Static Program Analysis Summer Semester 2011 4.13

The Fixpoint Theorem |

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D,C) be a complete lattice satisfying ACC and ® : D — D
monotonic. Then

fix(®) := |] {®¥ (L) | k € N}
is the least fixpoint of ® where
®0(d) := d and <Dk+1(d) (CD"(d))

RWTH Static Program Analysis Summer Semester 2011 4.14

The Fixpoint Theorem |

AT AT K]
Alfred Tarski (1901-1983) (LS \

Bronislaw Knaster (1893-1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D,C) be a complete lattice satisfying ACC and ® : D — D
monotonic. Then

fix(®) == {d>k (L) | ke N}
is the least fixpoint of ® where
®0(d) := d and d¥T1(d) := d(PX(d)).

Remark: ACC = (®*(L) | k € N) stabilizes at some ky € N with
fix(®) = ®ko (L) (where kg bounded by maximal chain length in (D, C))

RWTH Static Program Analysis Summer Semester 2011 4.14

The Fixpoint Theorem Il

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,C) be a complete lattice satisfying ACC, S C D a chain, and
® : D — D monotonic. Then

o(LJsS) =L*(S)

RWTH Static Program Analysis

Summer Semester 2011 4.15

The Fixpoint Theorem Il

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,C) be a complete lattice satisfying ACC, S C D a chain, and
® : D — D monotonic. Then

o(LJsS) =L*(S)

Proof (Lemma 4.6).

on the board

RWTH Static Program Analysis

Summer Semester 2011 4.15

The Fixpoint Theorem Il

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,C) be a complete lattice satisfying ACC, S C D a chain, and
® : D — D monotonic. Then

o(LJsS) =L*(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Ol

RWTH Static Program Analysis Summer Semester 2011 4.15

© Application to Dataflow Analysis

“er Static Program Analysis Summer Semester 2011 4.16

Dataflow Systems |

Definition 4.7 (Dataflow system)

A dataflow system S = (L, E, F,(D,C),t,) consists of
o a finite set of (program) labels L (here: L),
@ a set of extremal labels E C L (here: {init(c)} or final(c)),
e a flow relation F C L x L (here: flow(c) or flow®(c)),

@ a complete lattice (D, C) satisfying ACC
(with LUB operator | | and least element L),

@ an extremal value ¢ € D (for the extremal labels), and

@ a collection of monotonic transfer functions {¢; | | € L} of type
w;:D—D.

RWTH Static Program Analysis Summer Semester 2011 4.17

Dataflow Systems I|

Example 4.8

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flowR(c)

D 2AExpC 2Varc

C 2 -

L N U

L AExp. 0

v 0 Var.

Q) ©i(d) = (d \ kill(B")) U gen(B")

Static Program Analysis

Summer Semester 2011

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)
Given: dataflow system S = (L, E, F,(D,C),¢,¢), L={1,...,n} (w.l.o.g.)

@ S determines the equation system (where | € L)

]

L if e E
L{er(Aly) | (I',]) € F} otherwise

RWTH Static Program Analysis Summer Semester 2011 4.19

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)
Given: dataflow system S = (L, E, F,(D,C),¢,¢), L={1,...,n} (w.l.o.g.)

@ S determines the equation system (where | € L)

|

L ifl e E
L{er(Aly) | (I',]) € F} otherwise
@ (di,...,dp) € D" is called a solution if
d=dt if e E
"T A Her(dr) | (I',1) € F} otherwise

RWTH Static Program Analysis Summer Semester 2011 4.19

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)
Given: dataflow system S = (L, E, F,(D,C),¢,¢), L={1,...,n} (w.l.o.g.)

@ S determines the equation system (where | € L)

|

L ifle E
L {er(Aly) | (I']) € F} otherwise
@ (di,...,dp) € D" is called a solution if
d =l ifle E
"T A Her(dr) | (I',1) € F} otherwise
@ S determines the transformation
®s: D" — D" (dy,...,dn) > (d!,....d")
where
g J if | € E
7 VLK er(dr) | (1) € F} otherwise

“w.rH Static Program Analysis Summer Semester 2011 4.19

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)
Given: dataflow system S = (L, E, F,(D,C),¢,¢), L={1,...,n} (w.l.o.g.)

@ S determines the equation system (where | € L)

|

L ifle E
L {er(Aly) | (I']) € F} otherwise
@ (di,...,dp) € D" is called a solution if
d =l ifle E
"T A Her(dr) | (I',1) € F} otherwise
@ S determines the transformation
®s: D" — D" (dy,...,dn) > (d!,....d")
where
o if | € E
7 VLK er(dr) | (1) € F} otherwise

Corollary 4.10

(di,...,dn) € D" solves the equation system iff it is a fixpoint of ®g
Rer Static Program Analysis Summer Semester 2011

Solving Dataflow Problems by Fixpoint lteration

Remarks:

e (D,C) being a complete lattice ensures that ®g is well defined

“w.rH Static Program Analysis Summer Semester 2011 4.20

Solving Dataflow Problems by Fixpoint lteration

Remarks:
e (D,C) being a complete lattice ensures that ®g is well defined
@ Since (D,C) is a complete lattice satisfying ACC, so is (D", C")
(where (di,...,d,) C" (df,...,d;) iff d; T d! for every 1 < < n)

“er Static Program Analysis Summer Semester 2011

4.20

Solving Dataflow Problems by Fixpoint lteration

Remarks:
e (D,C) being a complete lattice ensures that ®g is well defined
@ Since (D,C) is a complete lattice satisfying ACC, so is (D", C")
(where (di,...,d,) C" (df,...,d;) iff d; T d! for every 1 < < n)

@ Monotonicity of transfer functions ¢, in (D, C) implies monotonicity
of s in (D", C") (since | | also monotonic)

“er Static Program Analysis Summer Semester 2011 4.20

Solving Dataflow Problems by Fixpoint lteration

Remarks:

e (D,C) being a complete lattice ensures that ®g is well defined

@ Since (D,C) is a complete lattice satisfying ACC, so is (D", C")
(where (di,...,d,) C" (df,...,d;) iff d; T d! for every 1 < < n)

@ Monotonicity of transfer functions ¢, in (D, C) implies monotonicity
of s in (D", C") (since | | also monotonic)

@ Thus the (least) fixpoint is effectively computable by iteration:

fix(®s) = | {P&(Lpn) | k € N}
where Lpn = (Lp,...,1p)
~—_———

n times

“er Static Program Analysis Summer Semester 2011

4.20

Solving Dataflow Problems by Fixpoint lteration

Remarks:
e (D,C) being a complete lattice ensures that ®g is well defined
@ Since (D,C) is a complete lattice satisfying ACC, so is (D", C")
(where (di,...,d,) C" (df,...,d;) iff d; T d! for every 1 < < n)
@ Monotonicity of transfer functions ¢, in (D, C) implies monotonicity
of s in (D", C") (since | | also monotonic)
@ Thus the (least) fixpoint is effectively computable by iteration:
fix(®s) = | {P&(Lpn) | k € N}
where Lpn = (Lp,...,1p)
~—_———
n times
e If maximal length of chains in (D,C) (= height of (D,C)) is m
— maximal length of chains in (D",C")is m-n
— fixpoint iteration requires at most m - n steps

“er Static Program Analysis Summer Semester 2011 4.20

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:
c=[x := a+b]1;
[y := axb]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

RWTH Static Program Analysis Summer Semester 2011 4.21

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE4 = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

RWTH Static Program Analysis Summer Semester 2011 4.21

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

i| 1 2 3 4 5
0| AExp. AExp. AExp. AExp. AExp,

RWTH Static Program Analysis Summer Semester 2011 4.21

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:
| 1 2 3 4 5

i
0| AExp. AExp. AExp. AExp. AExp.
1| 0 AExp. AExp. AExp. 0

RWTH Static Program Analysis Summer Semester 2011 4.21

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

i| 1 2 3 4

0| AExp. AExp. AExp. AExp. A
1 0 AExp. AExp. AExp.

2 0 {a+b} {a+b} AExp,

s=To
>

RWTH Static Program Analysis Summer Semester 2011 4.21

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

i| 1 2 3 4 5
0| AExp. AExp. AExp. AExp. AExp.
1| 0 AExp. AExp. AExp. 0
20 0 {a+b} {a+b} AExp. 0
3 0 {atb} {atb} {atb} 0

RWTH Static Program Analysis Summer Semester 2011 4.21

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]z; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]4; AE, = AE3 U {a+b}
[x := a+b]’ AEs = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

1 2 3 4 5
AExp. AExp. AExp. AExp. AExp.
0 AExp. AExp. AExp.
0 {a+b} {a+b} AExp.
0 {atb} {atb} {atb}
0 {a+b} {a+b} {a+b}

A WN R O~
SESESE

RWTH Static Program Analysis Summer Semester 2011 4.21

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

= 2Ly o= 4P
[x := ﬂ3;
if [y > 0]* then
[z := x]°
else
[z := y*yl%
[x := 2Z]”

v

RWTH Static Program Analysis Summer Semester 2011 4.22

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program: Equation system:
x := 2]%; = 4]?; LV = LV \ {y}
{x = 1}3;[y | LVo = LV3 \ {x}
if [y > 0]* then LV3 = LV4 U {y}
[z := x]° V4 = ((LVs \ {z}) U {x}) U ((LVe \ {z}) U{¥})
else LVs = (LV7 \ {x}) U {z}
2 := y*y]°; Ve = (LV7 \ {x}) U {z}
[X o= Z]7 V7 = {X7Y7Z}

v

RWTH Static Program Analysis Summer Semester 2011 4.22

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

£
T

2%y = 4%

Equation system:
LV: = Vo \ {y}

[x := 1]3; LV = LV3\ {x}
if [y > 0]* then LV3 = LV4 U {y}
[z := x]° LVa = ((LVs \ {z}) U {x}) U ((LVe \ {z}) U{y})
else LVs = (LV7 \ {x}) U {z}
[z = y*y]6; LVe = (LV7 \ {X}) U {Z}
[X .= Z]7 LvV7 = {X7Y7Z}
Fixpoint iteration:
i \ 1 2 3 4 5 6 7
0|0 0 0 0 0 0 0

v

Static Program Analysis

Summer Semester 2011

4.22

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program: Equation system:
x := 2|y := 4)%; LV1 = LV \ {y}
{x R= 1}3'[| LV = LV3\ {x}
if [y > 0]* then Vs = LV, U {y}
[z := x]° LVa = ((LV5 \ {z}) U {x}) U((LV6 \ {z}) U {y})
else LVs = (LV7 \ {x}) U {z}
[z = y*y]®; Ve = (LV7 \ {x}) U {z}
[x := 2]’ LV; = {x,y,z}

i1 2 3 4 5 6 7
00 0 0 0 0 0 0
e 0 =y {=z {z {xyz

“w.rH Static Program Analysis Summer Semester 2011 4.22

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program: Equation system:
[x := 2%y := 4% LVi=LV2\{y}
[X .= 1]3; LV, = LV3 \ {X}
if [y > 0]* then LV3 = LV4 U {y}
[z := x]° V4 = ((LVs \ {z}) U {x}) U ((LVe \ {z}) U{¥})
else LVs = (LV7 \ {x}) U {z}
2 := y*y]°; Ve = (LV7 \ {x}) U {z}
[X o= Z]7 V7 = {X7Y7Z}

Fixpoint iteration:

i1 2 3 4 5 6 7
00 0 0 1] 1] 1] 1]
e 0 {y} {xy} {z¥ {2z} {xvy.z}
210 {y} {xy} {xy} {v.z} {v.z} {xyz}

“w.rH Static Program Analysis Summer Semester 2011 4.22

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program: Equation system:
x := 2]%; = 4]%; LV1 = V2 \ {y}
{x = 1}3;[y | LVo = LV3 \ {x}
if [y > 0]* then LV3 = LV4 U {y}
[z := x]° V4 = ((LVs \ {z}) U {x}) U ((LVe \ {z}) U{¥})
else LVs = (LV7 \ {x}) U {z}
[z := y*y]° Ve = (LV7 \ {x}) U {z}
[X o= Z]7 V7 = {X7Y7Z}

i1 2 3 4 5 6 7

00 0 0 1] 1] 1] 1]

1o 0 {y} {xyt {z} {z} {xyz}
210 {y} {xy} {xvy} {vz} {v.z} {xvyz}
310 {y} {xy} {xy} {vz} {v.z} {xvy.2z}

“w.rH Static Program Analysis

	Repetition: Heading for a Dataflow Analysis Framework
	Order-Theoretic Foundations: the Function
	Application to Dataflow Analysis

