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Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms for
solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Lc , the analysis information
(AI) is described by equations of the form

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

where

the set of extremal labels, E , is {init(c)} or final(c)
ι specifies the extremal analysis information
the combination operator,

⊔
, is
⋂

or
⋃

ϕl′ denotes the transfer function of block B l′

the flow relation F is flow(c) or flowR(c) (:= {(l ′, l) | (l , l ′) ∈ flow(c)})
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Roadmap

Goal: solve dataflow equation system by fixpoint iteration

1 Characterize solution of equation system as fixpoint of a
transformation

2 Introduce partial order for comparing analysis results

3 Establish least upper bound as combination operator

4 Ensure monotonicity of transfer functions

5 Guarantee termination of fixpoint iteration by ascending chain
condition

6 Optimize fixpoint iteration by worklist algorithm
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Motivation

Wanted: solution of (dataflow) equation system

Problem: recursive dependencies between dataflow variables

Idea: characterize solution as fixpoint of transformation:

(AIl = τl)l∈Lc ⇐⇒ Φ((AIl)l∈Lc ) = (AIl)l∈Lc

where Φ
(
(AIl)l∈Lc

)
:= (τl)l∈Lc

Approach: approximate fixpoint by iteration
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Partial Orders

The domain of analysis information usually forms a partial order where the
ordering relation compares the “precision” of information.

Definition (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example

1 (N,≤) is a total partial order

2 (N, <) is not a partial order (since not reflexive)

3 (Live Variables) (2Var c ,⊆) is a (non-total) partial order

4 (Available Expressions) (2AExpc ,⊇) is a (non-total) partial order
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Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition ((Least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Example

1 S ⊆ N has a LUB in (N,≤) iff it is finite
2 (Live Variables) (D,v) = (2Var c ,⊆). Given V1, . . . ,Vn ⊆ Var c ,⊔

{V1, . . . ,Vn} =
⋃
{V1, . . . ,Vn}

3 (Avail. Expr.) (D,v) = (2AExpc ,⊇). Given A1, . . . ,An ⊆ AExpc ,⊔
{A1, . . . ,An} =

⋂
{A1, . . . ,An}
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Complete Lattices

Since {ϕl ′(AIl ′) | (l ′, l) ∈ F} can contain arbitrary elements, the existence
of least upper bounds must be ensured for arbitrary subsets.

Definition (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have
least upper bounds. In this case,

⊥ :=
⊔
∅

denotes the least element of D.

Example

1 (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2 (Live Variables)
(D,v) = (2Var c ,⊆) is a complete lattice with ⊥ = ∅

3 (Available Expressions)
(D,v) = (2AExpc ,⊇) is a complete lattice with ⊥ = AExpc
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Chains

Chains are generated by the approximation of the analysis information in
the fixpoint iteration.

Definition (Chain)

Let (D,v) be a partial order. A subset S ⊆ D is called an (ascending)
chain in D if, for every s1, s2 ∈ S ,

s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).

Example

1 Every S ⊆ N is a chain in (N,≤)

2 {∅, {0}, {0, 1}, {0, 1, 2}, . . .} is a chain in (2N,⊆)

3 {∅, {0}, {1}} is not a chain in (2N,⊆)
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The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition (Ascending Chain Condition)

A partial order (D,v) satisfies the Ascending Chain Condition (ACC) if
each ascending chain d1 v d2 v . . . eventually stabilizes, i.e., there exists
n ∈ N such that dn = dn+1 = . . .

Example

1 (N,≤) does not satisfy ACC

2 (Live Variables) (D,v) = (2Var c ,⊆) satisfies ACC since Var c (unlike
Var) is finite

3 (Available Expressions) (D,v) = (2AExpc ,⊇) satisfies ACC since
AExpc (unlike AExp) is finite
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Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V ) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2AExpc ,⊇) ditto
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Fixpoints

Definition 4.3 (Fixpoint)

Let D be some domain, d ∈ D, and Φ : D → D. If
Φ(d) = d

then d is called a fixpoint of Φ.

Example 4.4

The (only) fixpoints of Φ : N→ N : n 7→ n2 are 0 and 1
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The Fixpoint Theorem I

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a complete lattice satisfying ACC and Φ : D → D
monotonic. Then

fix(Φ) :=
⊔{

Φk (⊥) | k ∈ N
}

is the least fixpoint of Φ where
Φ0(d) := d and Φk+1(d) := Φ(Φk(d)).

Remark: ACC =⇒
(
Φk (⊥) | k ∈ N

)
stabilizes at some k0 ∈ N with

fix(Φ) = Φk0 (⊥) (where k0 bounded by maximal chain length in (D,v))
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The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,v) be a complete lattice satisfying ACC, S ⊆ D a chain, and
Φ : D → D monotonic. Then

Φ(
⊔

S) =
⊔

Φ(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board
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Dataflow Systems I

Definition 4.7 (Dataflow system)

A dataflow system S = (L,E ,F , (D,v), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L× L (here: flow(c) or flowR(c)),

a complete lattice (D,v) satisfying ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.
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Dataflow Systems II

Example 4.8

Problem Available Expressions Live Variables

E {init(c)} final(c)
F flow(c) flowR(c)
D 2AExpc 2Var c

v ⊇ ⊆⊔ ⋂ ⋃
⊥ AExpc ∅
ι ∅ Var c
ϕl ϕl(d) = (d \ kill(B l)) ∪ gen(B l)
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Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system S = (L,E ,F , (D,v), ι, ϕ), L = {1, ..., n} (w.l.o.g.)

S determines the equation system (where l ∈ L)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′

1, . . . , d
′
n)

where

d ′
l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary 4.10

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS
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Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:
fix(ΦS) =

⊔
{Φk

S(⊥Dn) | k ∈ N}
where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸

n times

)

If maximal length of chains in (D,v) (= height of (D,v)) is m
=⇒ maximal length of chains in (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps
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i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:
fix(ΦS) =

⊔
{Φk

S(⊥Dn) | k ∈ N}
where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸

n times

)

If maximal length of chains in (D,v) (= height of (D,v)) is m
=⇒ maximal length of chains in (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps
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Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅
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Example: Live Variables

Example 4.12 (Live Variables; cf. Example 3.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
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