Static Program Analysis

Lecture 5: Dataflow Analysis IV
(Worklist Algorithm & MOP Solution)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Repetition: Dataflow Systems

“er Static Program Analysis Summer Semester 2011 5.2



Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (L, E, F,(D,C),t, ) consists of

a finite set of (program) labels L (here: L),

@ a set of extremal labels E C L (here: {init(c)} or final(c)),
e a flow relation F C L x L (here: flow(c) or flow®(c)),
°

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

@ an extremal value ¢ € D (for the extremal labels), and

@ a collection of monotonic transfer functions {¢; | | € L} of type
w;:D—D.

RWTH Static Program Analysis Summer Semester 2011 5.3



Dataflow Systems and Fixpoints

Definition (Dataflow equation system)
Given: dataflow system S = (L, E, F,(D,C),¢,¢), L={1,...,n} (w.l.o.g.)

@ S determines the equation system (where | € L)

|

L if e E
L {er(Aly) | (I',]) € F}  otherwise
@ (di,...,dp) € D" is called a solution if
d=dt ifle E
"T A Her(dr) | (I',1) € F}  otherwise
@ S determines the transformation
®s: D" D" (dy,...,dn) = (d!,...,d")

where
J =t ifle E
W (dr) [ (I,1) € F} o otherwise
(di,...,dn) € D" solves the equation system iff it is a fixpoint of ®g

Rer Static Program Analysis Summer Semester 2011 5.4



The Fixpoint Theorem

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D,C) be a complete lattice satisfying ACC and ® : D — D
monotonic. Then

fix(®) := || {®¥ (L) | k € N}
is the least fixpoint of ® where
®0(d) := d and d*T1(d) := d(dk(d)).

Remark: ACC = (®*(L) | k € N) stabilizes at some ky € N with
fix(®) = ®ko (L) (where kg bounded by maximal chain length in (D, C))

RWTH Static Program Analysis Summer Semester 2011 5.5



© Uniqueness of Solutions

“er Static Program Analysis Summer Semester 2011 5.6



Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

“er Static Program Analysis Summer Semester 2011 5.7



Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

RWTH Static Program Analysis Summer Semester 2011 5.7



Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do

[skip]2;
[x := X+1]3;
[y := o]

RWTH Static Program Analysis Summer Semester 2011 5.7



Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV; U {x}

[x := x+1]3; LV3 = LV4 \ {y}

[y := 0]* Vs = {x,y}

RWTH Static Program Analysis Summer Semester 2011 5.7



Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV U {x}
[x := X+1]3; LV3 = LV4 \ {y}
[y := o] LV4 = {x,y}
= LV3 = {X}

RWTH Static Program Analysis Summer Semester 2011 5.7



Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV U {x}
[x := X+1]3; LV3 = LV4 \ {y}
[y :=0]* V4 = {x,y}
= LV3 = {X}
= LV; =LV, U {X}
=LV U {X}

RWTH Static Program Analysis Summer Semester 2011 5.7



Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV U {x}
[x := X+1]3; LV3 = LV4 \ {y}
[y :=0]* V4 = {x,y}
= LV3 = {X}
= LV; =LV, U {X}
=LV U {X}

= Solutions: LV; = Vo = ({x} or {x,v}),
V3 = {x},LV4a = {x,y}

RWTH Static Program Analysis Summer Semester 2011 5.7



Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV U {x}
[x := X+1]3; LV3 = LV4 \ {y}
[y :=0]* V4 = {x,y}
= LV3 = {X}
= LV; =LV, U {X}
=LV U {X}

= Solutions: LV; = Vo = ({x} or {x,v}),
V3 = {x},LV4a = {x,y}
Here: least solution {x} (maximal potential for optimization)

RWTH Static Program Analysis Summer Semester 2011 5.7




© Efficient Fixpoint Computation

“er Static Program Analysis Summer Semester 2011 5.8



A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step

“er Static Program Analysis Summer Semester 2011 5.9



A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed

“er Static Program Analysis Summer Semester 2011 5.9



A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

“er Static Program Analysis Summer Semester 2011 5.9



A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),¢, )

RWTH Static Program Analysis Summer Semester 2011 5.9



A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),¢, )
Variables: W e (Lx L)*, {Al; e D|Il€ L}

“w.rH Static Program Analysis Summer Semester 2011 5.9



A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),¢, )
Variables: W e (Lx L)*, {Al; e D|Il€ L}
Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialize W

for /| € L do % Initialize Al
if | € E then Al, := . else Al, := 1 p;

“w.rH Static Program Analysis

Summer Semester 2011 5.9



A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),¢, )
Variables: W e (Lx L)*, {Al; e D|Il€ L}
Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialize W
for / € L do % Initialize Al
if | € E then Al, := . else Al, := 1 p;
while W +# ¢ do
(1,I) := head(W); W := tail(W);
if o/(Al}) Z Al then % Fixpoint not yet reached
Aly = Al U @/(Al/);
for (I',1") € F do
if (I,1") not in W then W :=(I',1") - W;

Rer Static Program Analysis Summer Semester 2011 5.9



A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),¢, )
Variables: W e (Lx L)*, {Al; e D|Il€ L}

Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialize W
for / € L do % Initialize Al
if | € E then Al, := . else Al, := 1 p;
while W +# ¢ do
(1,I) := head(W); W := tail(W);
if o/(Al}) Z Al then % Fixpoint not yet reached
Aly = Al U @/(Al/);
for (I',1") € F do
if (I,1") not in W then W :=(I',1") - W;
Output: {Al; |/ €L}

Rer Static Program Analysis Summer Semester 2011 5.9




A Worklist Algorithm Il

Example 5.3 (Worklist algorithm)

Available Expression analysis for ¢ = [x := a+b]!;
[y := a*b]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

(cf. Examples 2.9 and 4.11)

Transfer functions: ¢1(A) = AU {a+b}
©2(A) = AU {a*b}
<p3(A) AU {a+b}
va(A) = A\ {a+b, axb,a+1}
v5(A) = AU {a+b}

Computation protocol: on the board

RWTH Static Program Analysis Summer Semester 2011 5.10



A Worklist Algorithm IlI

Properties of the algorithm:

Theorem 5.4 (Correctness of worklist algorithm)

Given a dataflow system S = (L, E, F,(D,C), ¢, ), Algorithm 5.2 always
terminates and computes fix(®s).

“er Static Program Analysis Summer Semester 2011 5.11



A Worklist Algorithm IlI

Properties of the algorithm:

Theorem 5.4 (Correctness of worklist algorithm)

Given a dataflow system S = (L, E, F,(D,C), ¢, ), Algorithm 5.2 always
terminates and computes fix(®s).

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

RWTH Static Program Analysis Summer Semester 2011 5.11



@ The MOP Solution

“er Static Program Analysis Summer Semester 2011 5.12



The MOP Solution |

@ Other solution method for dataflow systems

“er Static Program Analysis Summer Semester 2011 5.13



The MOP Solution |

@ Other solution method for dataflow systems
@ MOP = Meet Over all Paths

“er Static Program Analysis Summer Semester 2011 5.13



The MOP Solution |

@ Other solution method for dataflow systems
@ MOP = Meet Over all Paths

@ Analysis information for block B/ = least upper bound over all paths
leading to /

“er Static Program Analysis Summer Semester 2011 5.13



The MOP Solution |

@ Other solution method for dataflow systems
@ MOP = Meet Over all Paths

@ Analysis information for block B/ = least upper bound over all paths
leading to /

Definition 5.5 (Paths)

Let S=(L,E,F,(D,C),t, ) be a dataflow system. For every / € L, the
set of paths up to / is given by

Path(l) := {[h,..., k1] | kK > 1,1 € E,
(liyliy1) € F forevery 1 < i < k, I, = I}.

V.

RWTH Static Program Analysis Summer Semester 2011 5.13



The MOP Solution |

@ Other solution method for dataflow systems
@ MOP = Meet Over all Paths
@ Analysis information for block B/ = least upper bound over all paths

leading to /
Definition 5.5 (Paths)

Let S=(L,E,F,(D,C),t, ) be a dataflow system. For every / € L, the
set of paths up to / is given by

Path(l) := {[h,..., k1] | kK > 1,1 € E,
(liyliy1) € F forevery 1 < i < k, I, = I}.

For a path p = [h, ..., lk—1] € Path(/), we define the transfer function
¢p:D— D by

Pp =Pl ©...0py0idp
(so that ¢ = idp).

V.

RWTH Static Program Analysis Summer Semester 2011 5.13



The MOP Solution Il

Definition 5.6 (MOP solution)

Let S=(L,E,F,(D,C),t, ) be a dataflow system where
L={h,...,l}. The MOP solution for S is determined by

mop(S) := (mop(h),...,mop(/,)) € D"

where, for every | € L,

mop(1) i=|_Jp(0) | p € Path(1)}.

RWTH Static Program Analysis Summer Semester 2011 5.14



The MOP Solution Il

Definition 5.6 (MOP solution)

Let S=(L,E,F,(D,C),t, ) be a dataflow system where
L={h,...,l}. The MOP solution for S is determined by

mop(S) := (mop(h),...,mop(/,)) € D"

where, for every | € L,

mop(1) i=|_Jp(0) | p € Path(1)}.

Remark:
e Path(/) is generally infinite

— not clear how to compute mop(/)

RWTH Static Program Analysis Summer Semester 2011 5.14



The MOP Solution Il

Definition 5.6 (MOP solution)

Let S=(L,E,F,(D,C),t, ) be a dataflow system where
L={h,...,l}. The MOP solution for S is determined by

mop(S) := (mop(h),...,mop(/,)) € D"

where, for every | € L,

mop(1) i=|_Jp(0) | p € Path(1)}.

Remark:
e Path(/) is generally infinite
— not clear how to compute mop(/)

@ In fact: MOP solution generally undecidable (later)

RWTH Static Program Analysis Summer Semester 2011 5.14



The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]*;
[y := 4]
[x := 1]3;
if [y > 0]* then
[z := x]°
else
[z = yxy]°;
[x := z]’

RWTH Static Program Analysis Summer Semester 2011 5.15



The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

RWTH Static Program Analysis Summer Semester 2011 5.15



The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]1§ — mop(1) = <P[7,5,4,3,2](L) U <P[7,6,4,3,2](L)
[y := 4%
[x := 1]3;
if [y > 0]* then
[z := x]°
else
[z := y*y]%;
[x := z]7
= Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}

RWTH Static Program Analysis Summer Semester 2011 5.15



The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

= 2]'; = mop(1) = Y75.4,32](t) U @p7,6.432/(t)
[y := 4] = 02(p3(pa(ps(wr({x,v,2})))) U
.= 1]3; p2(p3(pa(vs(p7({x,y,2})))))
if [y > 0]* then

RWTH Static Program Analysis Summer Semester 2011 5.15



The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]} = mop(l)—<P[75432]()'—'<P[76432(L)
[y := 4% = 2(p3(pa(es(pr({x,y,2}))))) U
[x := 1]3; ©2(p3(pa(pe(vr({x,7.2})))))
if [y > 0] then = ¢2(p3(wa(es({y,z})))) U
[z := x]° p2(3(palps({y,2}))))
else
[z = yxy]°;
[x := z]’
— Path(1) = {[7,5,4,3,2),
[7,6,4,3,2]}

Static Program Analysis



The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]} = mop(l)—<P[75432]()'—'<P[76432(L)
[y := 4% = 2(p3(wales(er({x,y,2})
[x := 1]3; ©2(p3(a(we(pr({x,y,2})
if [y > 0]* then = ¢2(p3(wa(es({y,z})))) U
[z := x]° p2(p3(pa(ve({y,2}))))
else = pa(p3(pa({x,y}))) U
[Z = y*y]6 @2(903(904({ })))
[x := 2]

— Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}

)
)

)
)

)
)

L

Static Program Analysis




The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

2]*;

4]%;

13;

if [y > 0]* then
[z := x]°

else
[z :

—

— Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}

mop(1) = ¢[75.4,32(¢) U ¥[7.6.4,3,2(¢)

= oa(p3(als(er({x,y, Z})))))
©2(e3(eales(e7({x,y,2})))))

= p2(p3(pa(es({y,z})))) U
©2(p3(pa(ve({y,z}))))

= pa(p3(pa({x,y}))) U
©2(e3(wa({y})))

= p2(p3({x,7})) U w2(w3({y}))

L

Static Program Analysis




The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]} = mop(1) = Y75.4,32](t) U @p7,6.432/(t)
[y := 4]% = 2(p3(wales(er({x,y,2}))))) U
[x := 1]3; ©2(3(a(ws(er({x,5,2})))))
if [y > 0]* then = ¢2(p3(a(ps({y,2})))) U
[z := x]° p2(3(pa(ps({y, 2}))))
else = 802(903(804({3(’31}))) L
[z := y*y]°; p2(03(pa({y})))
[x := 2]’ = ¢2(p3({x,})) U p2(3({y}))
. Path(1) = {[7.5.4.3.2] e2({y}) Up2({y})
[7,6,4,3,2]}

Static Program Analysis



The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]} = mop(l)=<P[75432]()'—'<P[76432(L)
[y := 4% = pa(p3(pa(es(er({x,y,2}))))) U
[x := 13; w2(p3(a(ws(07({x,5,2})))))
if [y > 0]* then = ¢2(p3(a(ps({y,2})))) U
[z := x]° p2(3(pa(ps({y, 2}))))
else = pa(p3(pa({x,y}))) U
[Z = y*y]ﬁ; @2(903(904({3’})))
[x := 2]’ = ¢2(p3({x,})) U p2(3({y}))
—> Path(1) = {[7,5,4,3.2], —gRgn ety
[7,6,4,3,2]}

Static Program Analysis



The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]} = mop(1) = Y75.4,32](t) U @p7,6.432/(t)
[y := 4]% = 2(p3(wales(er({x,y,2}))))) U
[x := 1]3; ©2(3(a(ws(er({x,5,2})))))
if [y > 0]* then = ¢2(p3(a(ps({y,2})))) U
[z := x]° p2(3(pa(ps({y, 2}))))
else = 802(903(804({3(’31}))) L
[z := y*y]°; p2(03(pa({y})))
[x := 2]’ = wz(wa({}ay})) U e2(03({y}))
— Path(1) = {[7,5,4,3,2)], :gﬁ‘gy}) P2(iy})
[7,6,4,3,2]} — 0

Static Program Analysis



© Another Analysis: Constant Propagation

“er Static Program Analysis Summer Semester 2011 5.16



Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

“er Static Program Analysis Summer Semester 2011 5.17



Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

“er Static Program Analysis Summer Semester 2011 5.17



Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

[x := 1]}
= 1]?;
A
while [z > 0]* do
o = %yl
if [w = 2]° then
[x := y+2]7

<
1

v

RWTH Static Program Analysis Summer Semester 2011 5.17



Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)
[x := 1]1;

: 1]2; @ vy =z =1 at labels 4-7
[z := 1]3; y=2z=

<
1

while [z > 0]* do
[ o= xyl?s

if [w = 2]° then
[ += y+2]’

v

RWTH Static Program Analysis Summer Semester 2011 5.17



Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

fx i= 11
= 1]2-
FZ’ = Ha o y =z =1 at labels 4-7
while [z > 0]* do @ w, x not constant at labels 4-7
[w := x+y]°;
if [w = 2]° then
[x := y+2]”

v

RWTH Static Program Analysis Summer Semester 2011 5.17



Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

[x := 1]}
= 112.
FZ’ = Ha o y =z =1 at labels 4-7
while [z > 0]* do @ w, x not constant at labels 4-7
[w := x+y]°; @ possible optimizations:
if [w = 2|° then [w := x+1]° [x := 3]’
[x := y+2]7

v

RWTH Static Program Analysis Summer Semester 2011 5.17



Formalizing Constant Propagation Analysis |

The dataflow system S = (L, E, F,(D,C), ¢, ) is given by
@ set of labels L := L,
e extremal labels E := {init(c)} (forward problem),
o flow relation F := flow(c) (forward problem),
e complete lattice (D, C) where
o D:={6|0:Varc - ZU{L, T}}
e d(x) =z € Z: x has constant value z
@ §(x) = L: x undefined
@ 0(x) = T: x overdefined (i.e., different possible values)
o T C D x D defined by pointwise extension of L. C zC T

(for every z € Z)

“er Static Program Analysis Summer Semester 2011

5.18



Formalizing Constant Propagation Analysis |

The dataflow system S = (L, E, F,(D,C), ¢, ) is given by
@ set of labels L := L,
e extremal labels E := {init(c)} (forward problem),
o flow relation F := flow(c) (forward problem),
e complete lattice (D, C) where
o D:={6|0:Varc - ZU{L, T}}
e d(x) =z € Z: x has constant value z
@ §(x) = L: x undefined
@ 0(x) = T: x overdefined (i.e., different possible values)
o T C D x D defined by pointwise extension of L. C zC T

(for every z € Z)

Example 5.9

Var. = {w,x,y,2},
612( —L7 1 9 2 9 T )v
NN NG NG

RWTH Static Program Analysis Summer Semester 2011 5.18



Formalizing Constant Propagation Analysis Il

Dataflow system S = (L, E, F,(D,C), ¢, ) (continued):

o extremal value ¢ := 61 € D where d7(x) := T for every x € Var,
(i.e., every x has (unknown) default value)

e transfer functions {¢; | | € L} defined by

(5) := Y if Bl = skip or B e BExp
POV =\ 61x v vals(a)] if B = (x := a)
where
= z10pz fz1,20 €7
‘CZ&E;; - g(X) vals(aiop a2) := q L ifzz=lorz=_1
nE T otherwise

for z; := vals(a1) and z := vals(az)

“er Static Program Analysis Summer Semester 2011 5.19



Formalizing Constant Propagation Analysis Il

Example 5.10

Ifo=(_L, 1,2, T) then
w X y z
(0, 1,2 T) ifB =(w:=0)
=
W X y z
0 | _ .
) B ==y
_ w X y z
PO=0(1, 1,2, T) ifB = := w)
S o
W X y z
(T, 1,.2,T) ifB'=(@w :=z+2)
SN S
\ v X y z

RWTH Static Program Analysis Summer Semester 2011 5.20



	Repetition: Dataflow Systems
	Uniqueness of Solutions
	Efficient Fixpoint Computation
	The MOP Solution
	Another Analysis: Constant Propagation

