

Static Program Analysis

Lecture 5: Dataflow Analysis IV

(Worklist Algorithm & MOP Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/spa11/>

Summer Semester 2011

- 1 Repetition: Dataflow Systems
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- 4 The MOP Solution
- 5 Another Analysis: Constant Propagation

Definition (Dataflow system)

A **dataflow system** $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) **labels** L (here: L_c),
- a set of **extremal labels** $E \subseteq L$ (here: $\{\text{init}(c)\}$ or $\text{final}(c)$),
- a **flow relation** $F \subseteq L \times L$ (here: $\text{flow}(c)$ or $\text{flow}^R(c)$),
- a **complete lattice** (D, \sqsubseteq) that satisfies ACC
(with LUB operator \sqcup and least element \perp),
- an **extremal value** $\iota \in D$ (for the extremal labels), and
- a collection of **monotonic transfer functions** $\{\varphi_I \mid I \in L\}$ of type
 $\varphi_I : D \rightarrow D$.

Definition (Dataflow equation system)

Given: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$, $L = \{1, \dots, n\}$ (w.l.o.g.)

- S determines the **equation system** (where $I \in L$)

$$\text{AI}_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(\text{AI}_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

- $(d_1, \dots, d_n) \in D^n$ is called a **solution** if

$$d_I = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(d_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

- S determines the **transformation**

$$\Phi_S : D^n \rightarrow D^n : (d_1, \dots, d_n) \mapsto (d'_1, \dots, d'_n)$$

where

$$d'_I := \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{I'}(d_{I'}) \mid (I', I) \in F\} & \text{otherwise} \end{cases}$$

Corollary

$(d_1, \dots, d_n) \in D^n$ **solves** the equation system iff it is a **fixpoint** of Φ_S

The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D, \sqsubseteq) be a complete lattice satisfying ACC and $\Phi : D \rightarrow D$ monotonic. Then

$$\text{fix}(\Phi) := \bigsqcup \{ \Phi^k(\perp) \mid k \in \mathbb{N} \}$$

is the *least fixpoint of Φ* where

$$\Phi^0(d) := d \text{ and } \Phi^{k+1}(d) := \Phi(\Phi^k(d)).$$

Remark: ACC $\implies (\Phi^k(\perp) \mid k \in \mathbb{N})$ stabilizes at some $k_0 \in \mathbb{N}$ with $\text{fix}(\Phi) = \Phi^{k_0}(\perp)$ (where k_0 bounded by maximal chain length in (D, \sqsubseteq))

- 1 Repetition: Dataflow Systems
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- 4 The MOP Solution
- 5 Another Analysis: Constant Propagation

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are **not always unique.**

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are **not always unique**.

Example 5.1

- ① Available Expressions: see Exercise 0.2

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are **not always unique**.

Example 5.1

- ➊ Available Expressions: see Exercise 0.2
- ➋ Live Variables: consider

```
while [x>1]1 do
  [skip]2;
  [x := x+1]3;
  [y := 0]4
```

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are **not always unique**.

Example 5.1

- ➊ Available Expressions: see Exercise 0.2
- ➋ Live Variables: consider

<code>while [x>1]¹ do</code>	\implies	$LV_1 = LV_2 \cup (LV_3 \cup \{x\})$
<code> [skip]²;</code>		$LV_2 = LV_1 \cup \{x\}$
<code> [x := x+1]³;</code>		$LV_3 = LV_4 \setminus \{y\}$
<code> [y := 0]⁴</code>		$LV_4 = \{x, y\}$

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are **not always unique**.

Example 5.1

① Available Expressions: see Exercise 0.2

② Live Variables: consider

```
while [x>1]1 do       $\implies$  LV1 = LV2  $\cup$  (LV3  $\cup$  {x})  
    [skip]2 ;          LV2 = LV1  $\cup$  {x}  
    [x := x+1]3 ;    LV3 = LV4 \ {y}  
    [y := 0]4          LV4 = {x, y}  
                       $\implies$  LV3 = {x}
```

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are **not always unique**.

Example 5.1

① Available Expressions: see Exercise 0.2

② Live Variables: consider

```
while [x>1]1 do       $\implies LV_1 = LV_2 \cup (LV_3 \cup \{x\})$   
    [skip]2;  
    [x := x+1]3;  
    [y := 0]4       $LV_2 = LV_1 \cup \{x\}$   
                     $LV_3 = LV_4 \setminus \{y\}$   
                     $LV_4 = \{x, y\}$   
                     $\implies LV_3 = \{x\}$   
                     $\implies LV_1 = LV_2 \cup \{x\}$   
                     $= LV_1 \cup \{x\}$ 
```

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are **not always unique**.

Example 5.1

① Available Expressions: see Exercise 0.2

② Live Variables: consider

$$\begin{array}{ll} \text{while } [x > 1]^1 \text{ do} & \implies LV_1 = LV_2 \cup (LV_3 \cup \{x\}) \\ \quad [skip]^2; & LV_2 = LV_1 \cup \{x\} \\ \quad [x := x+1]^3; & LV_3 = LV_4 \setminus \{y\} \\ \quad [y := 0]^4 & LV_4 = \{x, y\} \\ & \implies LV_3 = \{x\} \\ & \implies LV_1 = LV_2 \cup \{x\} \\ & \quad = LV_1 \cup \{x\} \end{array}$$

\implies **Solutions**: $LV_1 = LV_2 = (\{x\} \text{ or } \{x, y\})$,
 $LV_3 = \{x\}$, $LV_4 = \{x, y\}$

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are **not always unique**.

Example 5.1

① Available Expressions: see Exercise 0.2

② Live Variables: consider

```
while [x>1]1 do       $\implies LV_1 = LV_2 \cup (LV_3 \cup \{x\})$   
  [skip]2;  
  [x := x+1]3;  
  [y := 0]4           $LV_2 = LV_1 \cup \{x\}$   
                       $LV_3 = LV_4 \setminus \{y\}$   
                       $LV_4 = \{x, y\}$   
       $\implies LV_3 = \{x\}$   
       $\implies LV_1 = LV_2 \cup \{x\}$   
                       $= LV_1 \cup \{x\}$   
  
 $\implies$  Solutions:  $LV_1 = LV_2 = (\{x\} \text{ or } \{x, y\})$ ,  
           $LV_3 = \{x\}$ ,  $LV_4 = \{x, y\}$ 
```

Here: **least** solution $\{x\}$ (maximal potential for optimization)

- 1 Repetition: Dataflow Systems
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- 4 The MOP Solution
- 5 Another Analysis: Constant Propagation

Observation: fixpoint iteration re-computes every A_{I_j} in every step

Observation: fixpoint iteration re-computes every $A_{I'}$ in every step
⇒ **redundant** if $A_{I'}$ at no F -predecessor I' changed

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every $A_{I'}$ in every step

⇒ **redundant** if $A_{I'}$ at no F -predecessor I' changed

⇒ optimization by **worklist**

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every $A_{I'}$ in every step

⇒ **redundant** if $A_{I'}$ at no F -predecessor I' changed

⇒ optimization by **worklist**

Algorithm 5.2 (Worklist algorithm)

Input: *dataflow system* $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AI_I in every step

⇒ **redundant** if $AI_{I'}$ at no F -predecessor I' changed

⇒ optimization by **worklist**

Algorithm 5.2 (Worklist algorithm)

Input: *dataflow system* $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (L \times L)^*$, $\{AI_I \in D \mid I \in L\}$

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AI_I in every step

⇒ **redundant** if $AI_{I'}$ at no F -predecessor I' changed

⇒ optimization by **worklist**

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (L \times L)^*$, $\{AI_I \in D \mid I \in L\}$

Procedure: $W := \varepsilon$; **for** $(I, I') \in F$ **do** $W := W \cdot (I, I')$; % Initialize W
for $I \in L$ **do** % Initialize AI_I
 if $I \in E$ **then** $AI_I := \iota$ **else** $AI_I := \perp_D$;

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AI_I in every step

⇒ **redundant** if $AI_{I'}$ at no F -predecessor I' changed

⇒ optimization by **worklist**

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (L \times L)^*$, $\{AI_I \in D \mid I \in L\}$

Procedure: $W := \varepsilon$; **for** $(I, I') \in F$ **do** $W := W \cdot (I, I')$; % Initialize W
for $I \in L$ **do** % Initialize AI_I

if $I \in E$ **then** $AI_I := \iota$ **else** $AI_I := \perp_D$;

while $W \neq \varepsilon$ **do**

$(I, I') := \mathbf{head}(W)$; $W := \mathbf{tail}(W)$;

if $\varphi_I(AI_I) \not\subseteq AI_{I'}$ **then** % Fixpoint not yet reached

$AI_{I'} := AI_{I'} \sqcup \varphi_I(AI_I)$;

for $(I', I'') \in F$ **do**

if (I', I'') not in W **then** $W := (I', I'') \cdot W$;

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AI_I in every step

⇒ **redundant** if $AI_{I'}$ at no F -predecessor I' changed

⇒ optimization by **worklist**

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (L \times L)^*$, $\{AI_I \in D \mid I \in L\}$

Procedure: $W := \varepsilon$; **for** $(I, I') \in F$ **do** $W := W \cdot (I, I')$; % Initialize W
for $I \in L$ **do** % Initialize AI_I

if $I \in E$ **then** $AI_I := \iota$ **else** $AI_I := \perp_D$;

while $W \neq \varepsilon$ **do**

$(I, I') := \mathbf{head}(W)$; $W := \mathbf{tail}(W)$;

if $\varphi_I(AI_I) \not\subseteq AI_{I'}$ **then** % Fixpoint not yet reached

$AI_{I'} := AI_{I'} \sqcup \varphi_I(AI_I)$;

for $(I', I'') \in F$ **do**

if (I', I'') not in W **then** $W := (I', I'') \cdot W$;

Output: $\{AI_I \mid I \in L\}$

Example 5.3 (Worklist algorithm)

Available Expression analysis for $c = [x := a+b]^1;$
 $[y := a*b]^2;$
 $\text{while } [y > a+b]^3 \text{ do}$
 $[a := a+1]^4;$
 $[x := a+b]^5$

(cf. Examples 2.9 and 4.11)

Transfer functions:

- $\varphi_1(A) = A \cup \{a+b\}$
- $\varphi_2(A) = A \cup \{a*b\}$
- $\varphi_3(A) = A \cup \{a+b\}$
- $\varphi_4(A) = A \setminus \{a+b, a*b, a+1\}$
- $\varphi_5(A) = A \cup \{a+b\}$

Computation protocol: on the board

Properties of the algorithm:

Theorem 5.4 (Correctness of worklist algorithm)

Given a dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$, Algorithm 5.2 always terminates and computes $\text{fix}(\Phi_S)$.

Properties of the algorithm:

Theorem 5.4 (Correctness of worklist algorithm)

Given a dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$, Algorithm 5.2 always terminates and computes $\text{fix}(\Phi_S)$.

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

- 1 Repetition: Dataflow Systems
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- 4 The MOP Solution
- 5 Another Analysis: Constant Propagation

- Other **solution method** for dataflow systems

- Other **solution method** for dataflow systems
- MOP = **Meet Over all Paths**

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block B^I = least upper bound over all paths leading to I

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block B^I = least upper bound over all paths leading to I

Definition 5.5 (Paths)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $I \in L$, the set of paths up to I is given by

$$\text{Path}(I) := \{[l_1, \dots, l_{k-1}] \mid k \geq 1, l_1 \in E, (l_i, l_{i+1}) \in F \text{ for every } 1 \leq i \leq k, l_k = I\}.$$

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block B^I = least upper bound over all paths leading to I

Definition 5.5 (Paths)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $I \in L$, the set of paths up to I is given by

$$\text{Path}(I) := \{[l_1, \dots, l_{k-1}] \mid k \geq 1, l_1 \in E, (l_i, l_{i+1}) \in F \text{ for every } 1 \leq i \leq k, l_k = I\}.$$

For a path $p = [l_1, \dots, l_{k-1}] \in \text{Path}(I)$, we define the transfer function $\varphi_p : D \rightarrow D$ by

$$\varphi_p := \varphi_{l_{k-1}} \circ \dots \circ \varphi_{l_1} \circ \text{id}_D$$

(so that $\varphi_{[]} = \text{id}_D$).

Definition 5.6 (MOP solution)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L = \{I_1, \dots, I_n\}$. The **MOP solution** for S is determined by

$$\text{mop}(S) := (\text{mop}(I_1), \dots, \text{mop}(I_n)) \in D^n$$

where, for every $I \in L$,

$$\text{mop}(I) := \bigsqcup \{\varphi_p(\iota) \mid p \in \text{Path}(I)\}.$$

Definition 5.6 (MOP solution)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L = \{I_1, \dots, I_n\}$. The **MOP solution** for S is determined by

$$\text{mop}(S) := (\text{mop}(I_1), \dots, \text{mop}(I_n)) \in D^n$$

where, for every $I \in L$,

$$\text{mop}(I) := \bigsqcup \{\varphi_p(\iota) \mid p \in \text{Path}(I)\}.$$

Remark:

- $\text{Path}(I)$ is generally infinite

⇒ not clear how to compute $\text{mop}(I)$

Definition 5.6 (MOP solution)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L = \{I_1, \dots, I_n\}$. The **MOP solution** for S is determined by

$$\text{mop}(S) := (\text{mop}(I_1), \dots, \text{mop}(I_n)) \in D^n$$

where, for every $I \in L$,

$$\text{mop}(I) := \bigsqcup \{\varphi_p(\iota) \mid p \in \text{Path}(I)\}.$$

Remark:

- $\text{Path}(I)$ is generally infinite

⇒ not clear how to compute $\text{mop}(I)$

- In fact: MOP solution generally undecidable (later)

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

```
c = [x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
         [z := x]5  
     else  
         [z := y*y]6;  
     [x := z]7
```

$\implies \text{Path}(1) = \{[7, 5, 4, 3, 2],$
 $[7, 6, 4, 3, 2]\}$

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

```
c = [x := 2]1 ;           ⇒ mop(1) = φ[7,5,4,3,2](l) ∪ φ[7,6,4,3,2](l)
  [y := 4]2 ;
  [x := 1]3 ;
  if [y > 0]4 then
    [z := x]5
  else
    [z := y*y]6 ;
  [x := z]7
```

⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
       [z := x]5  
     else  
       [z := y*y]6;  
     [x := z]7
```

$$\begin{aligned} \Rightarrow \text{mop}(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))))) \end{aligned}$$

$$\Rightarrow \text{Path}(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\}$$

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
       [z := x]5  
     else  
       [z := y*y]6;  
     [x := z]7
```

$\Rightarrow Path(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\}$

$$\begin{aligned} \Rightarrow mop(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))))) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\})))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y, z\})))) \end{aligned}$$

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
       [z := x]5  
     else  
       [z := y*y]6;  
     [x := z]7
```

$$\begin{aligned} \Rightarrow \text{mop}(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x,y,z\})))))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x,y,z\})))))) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y,z\})))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y,z\})))) \\ &= \varphi_2(\varphi_3(\varphi_4(\{x,y\}))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\{y\}))) \end{aligned}$$

$$\Rightarrow \text{Path}(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\}$$

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
         [z := x]5  
     else  
         [z := y*y]6;  
     [x := z]7
```

$\Rightarrow Path(1) = \{[7, 5, 4, 3, 2],$
 $[7, 6, 4, 3, 2]\}$

$$\begin{aligned}\Rightarrow mop(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))))) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\})))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y, z\})))) \\ &= \varphi_2(\varphi_3(\varphi_4(\{x, y\}))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\{y\}))) \\ &= \varphi_2(\varphi_3(\{x, y\})) \sqcup \varphi_2(\varphi_3(\{y\}))\end{aligned}$$

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
         [z := x]5  
     else  
         [z := y*y]6;  
     [x := z]7  
⇒ Path(1) = {[7, 5, 4, 3, 2],  
               [7, 6, 4, 3, 2]}
```

$$\begin{aligned} \Rightarrow \text{mop}(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x,y,z\})))))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x,y,z\})))))) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y,z\})))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y,z\})))) \\ &= \varphi_2(\varphi_3(\varphi_4(\{x,y\}))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\{y\}))) \\ &= \varphi_2(\varphi_3(\{x,y\})) \sqcup \varphi_2(\varphi_3(\{y\})) \\ &= \varphi_2(\{y\}) \sqcup \varphi_2(\{y\}) \end{aligned}$$

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
         [z := x]5  
     else  
         [z := y*y]6;  
     [x := z]7  
⇒ Path(1) = {[7, 5, 4, 3, 2],  
              [7, 6, 4, 3, 2]}
```

$$\begin{aligned} \Rightarrow \text{mop}(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x,y,z\})))))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x,y,z\})))))) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y,z\})))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y,z\})))) \\ &= \varphi_2(\varphi_3(\varphi_4(\{x,y\}))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\{y\}))) \\ &= \varphi_2(\varphi_3(\{x,y\})) \sqcup \varphi_2(\varphi_3(\{y\})) \\ &= \varphi_2(\{y\}) \sqcup \varphi_2(\{y\}) \\ &= \emptyset \sqcup \emptyset \end{aligned}$$

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
         [z := x]5  
     else  
         [z := y*y]6;  
     [x := z]7  
⇒ Path(1) = {[7, 5, 4, 3, 2],  
               [7, 6, 4, 3, 2]}
```

$$\begin{aligned} \Rightarrow \text{mop}(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x,y,z\})))))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x,y,z\})))))) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y,z\})))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y,z\})))) \\ &= \varphi_2(\varphi_3(\varphi_4(\{x,y\}))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\{y\}))) \\ &= \varphi_2(\varphi_3(\{x,y\})) \sqcup \varphi_2(\varphi_3(\{y\})) \\ &= \varphi_2(\{y\}) \sqcup \varphi_2(\{y\}) \\ &= \emptyset \sqcup \emptyset \\ &= \emptyset \end{aligned}$$

- 1 Repetition: Dataflow Systems
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- 4 The MOP Solution
- 5 Another Analysis: Constant Propagation

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value and evaluate constant expressions

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

```
[x := 1]1;  
[y := 1]2;  
[z := 1]3;  
while [z > 0]4 do  
  [w := x+y]5;  
  if [w = 2]6 then  
    [x := y+2]7
```

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

```
[x := 1]1;  
[y := 1]2;  
[z := 1]3;  
while [z > 0]4 do  
  [w := x+y]5;  
  if [w = 2]6 then  
    [x := y+2]7
```

- $y = z = 1$ at labels 4–7

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

```
[x := 1]1;  
[y := 1]2;  
[z := 1]3;  
while [z > 0]4 do      • y = z = 1 at labels 4–7  
  [w := x+y]5;  
  if [w = 2]6 then    • w, x not constant at labels 4–7  
    [x := y+2]7
```

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

```
[x := 1]1;  
[y := 1]2;  
[z := 1]3;  
while [z > 0]4 do  
  [w := x+y]5;  
  if [w = 2]6 then  
    [x := y+2]7
```

- $y = z = 1$ at labels 4–7
- w, x not constant at labels 4–7
- possible optimizations:
 $[w := x+1]⁵ [x := 3]⁷$

Formalizing Constant Propagation Analysis I

The **dataflow system** $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels $L := L_c$,
- extremal labels $E := \{\text{init}(c)\}$ (forward problem),
- flow relation $F := \text{flow}(c)$ (forward problem),
- complete lattice (D, \sqsubseteq) where
 - $D := \{\delta \mid \delta : \text{Var}_c \rightarrow \mathbb{Z} \cup \{\perp, \top\}\}$
 - $\delta(x) = z \in \mathbb{Z}$: x has **constant value** z
 - $\delta(x) = \perp$: x **undefined**
 - $\delta(x) = \top$: x **overdefined** (i.e., different possible values)
 - $\sqsubseteq \subseteq D \times D$ defined by pointwise extension of $\perp \sqsubseteq z \sqsubseteq \top$
(for every $z \in \mathbb{Z}$)

Formalizing Constant Propagation Analysis I

The **dataflow system** $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels $L := L_c$,
- extremal labels $E := \{\text{init}(c)\}$ (forward problem),
- flow relation $F := \text{flow}(c)$ (forward problem),
- complete lattice (D, \sqsubseteq) where
 - $D := \{\delta \mid \delta : \text{Var}_c \rightarrow \mathbb{Z} \cup \{\perp, \top\}\}$
 - $\delta(x) = z \in \mathbb{Z}$: x has **constant value** z
 - $\delta(x) = \perp$: x **undefined**
 - $\delta(x) = \top$: x **overdefined** (i.e., different possible values)
 - $\sqsubseteq \subseteq D \times D$ defined by pointwise extension of $\perp \sqsubseteq z \sqsubseteq \top$
(for every $z \in \mathbb{Z}$)

Example 5.9

$$\begin{aligned}\text{Var}_c &= \{\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}\}, \\ \delta_1 &= (\underbrace{\perp}_{\mathbf{w}}, \underbrace{1}_{\mathbf{x}}, \underbrace{2}_{\mathbf{y}}, \underbrace{\top}_{\mathbf{z}}), \quad \delta_2 = (\underbrace{3}_{\mathbf{w}}, \underbrace{1}_{\mathbf{x}}, \underbrace{4}_{\mathbf{y}}, \underbrace{\top}_{\mathbf{z}}) \\ \implies \delta_1 \sqcup \delta_2 &= (\underbrace{3}_{\mathbf{w}}, \underbrace{1}_{\mathbf{x}}, \underbrace{\top}_{\mathbf{y}}, \underbrace{\top}_{\mathbf{z}})\end{aligned}$$

Dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ (continued):

- extremal value $\iota := \delta_{\top} \in D$ where $\delta_{\top}(x) := \top$ for every $x \in \text{Var}_c$
(i.e., every x has (unknown) default value)
- transfer functions $\{\varphi_I \mid I \in L\}$ defined by

$$\varphi_I(\delta) := \begin{cases} \delta & \text{if } B^I = \text{skip} \text{ or } B^I \in BExp \\ \delta[x \mapsto \text{val}_{\delta}(a)] & \text{if } B^I = (x := a) \end{cases}$$

where

$$\begin{aligned} \text{val}_{\delta}(x) &:= \delta(x) & \text{val}_{\delta}(a_1 \text{ op } a_2) &:= \begin{cases} z_1 \text{ op } z_2 & \text{if } z_1, z_2 \in \mathbb{Z} \\ \perp & \text{if } z_1 = \perp \text{ or } z_2 = \perp \\ \top & \text{otherwise} \end{cases} \\ \text{val}_{\delta}(z) &:= z \end{aligned}$$

for $z_1 := \text{val}_{\delta}(a_1)$ and $z_2 := \text{val}_{\delta}(a_2)$

Example 5.10

If $\delta = (\underbrace{\perp}_{w}, \underbrace{1}_{x}, \underbrace{2}_{y}, \underbrace{\top}_{z})$, then

$$\varphi_I(\delta) = \begin{cases} (\underbrace{0}_{w}, \underbrace{1}_{x}, \underbrace{2}_{y}, \underbrace{\top}_{z}) & \text{if } B^I = (w := 0) \\ (\underbrace{3}_{w}, \underbrace{1}_{x}, \underbrace{2}_{y}, \underbrace{\top}_{z}) & \text{if } B^I = (w := y+1) \\ (\underbrace{\perp}_{w}, \underbrace{1}_{x}, \underbrace{2}_{y}, \underbrace{\top}_{z}) & \text{if } B^I = (w := w+x) \\ (\underbrace{\top}_{w}, \underbrace{1}_{x}, \underbrace{2}_{y}, \underbrace{\top}_{z}) & \text{if } B^I = (w := z+2) \end{cases}$$