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Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (L, E, F,(D,C),t, ) consists of

a finite set of (program) labels L (here: L),

@ a set of extremal labels E C L (here: {init(c)} or final(c)),
e a flow relation F C L x L (here: flow(c) or flow®(c)),
°

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

@ an extremal value ¢ € D (for the extremal labels), and

@ a collection of monotonic transfer functions {¢; | | € L} of type
w;:D—D.
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Dataflow Systems and Fixpoints

Definition (Dataflow equation system)
Given: dataflow system S = (L, E, F,(D,C),¢,¢), L={1,...,n} (w.l.o.g.)

@ S determines the equation system (where | € L)

|

L if e E
L {er(Aly) | (I',]) € F}  otherwise
@ (di,...,dp) € D" is called a solution if
d=dt ifle E
"T A Her(dr) | (I',1) € F}  otherwise
@ S determines the transformation
®s: D" D" (dy,...,dn) = (d!,...,d")

where
J =t ifle E
W (dr) [ (I,1) € F} o otherwise
(di,...,dn) € D" solves the equation system iff it is a fixpoint of ®g
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The Fixpoint Theorem

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D,C) be a complete lattice satisfying ACC and ® : D — D
monotonic. Then

fix(®) := || {®¥ (L) | k € N}
is the least fixpoint of ® where
®0(d) := d and d*T1(d) := d(dk(d)).

Remark: ACC = (®*(L) | k € N) stabilizes at some ky € N with
fix(®) = ®ko (L) (where kg bounded by maximal chain length in (D, C))
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© Uniqueness of Solutions
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Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.
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Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2
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Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do

[skip]2;
[x := X+1]3;
[y := o]

RWTH Static Program Analysis Summer Semester 2011 5.7



Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV; U {x}

[x := x+1]3; LV3 = LV4 \ {y}

[y := 0]* Vs = {x,y}
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Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV U {x}
[x := X+1]3; LV3 = LV4 \ {y}
[y := o] LV4 = {x,y}
= LV3 = {X}
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Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV U {x}
[x := X+1]3; LV3 = LV4 \ {y}
[y :=0]* V4 = {x,y}
= LV3 = {X}
= LV; =LV, U {X}
=LV U {X}
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Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV U {x}
[x := X+1]3; LV3 = LV4 \ {y}
[y :=0]* V4 = {x,y}
= LV3 = {X}
= LV; =LV, U {X}
=LV U {X}

= Solutions: LV; = Vo = ({x} or {x,v}),
V3 = {x},LV4a = {x,y}
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Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

@ Available Expressions: see Exercise 0.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV U {x}
[x := X+1]3; LV3 = LV4 \ {y}
[y :=0]* V4 = {x,y}
= LV3 = {X}
= LV; =LV, U {X}
=LV U {X}

= Solutions: LV; = Vo = ({x} or {x,v}),
V3 = {x},LV4a = {x,y}
Here: least solution {x} (maximal potential for optimization)
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© Efficient Fixpoint Computation
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A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
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A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
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A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist
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A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),¢, )
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A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),¢, )
Variables: W e (Lx L)*, {Al; e D|Il€ L}
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A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),¢, )
Variables: W e (Lx L)*, {Al; e D|Il€ L}
Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialize W

for /| € L do % Initialize Al
if | € E then Al, := . else Al, := 1 p;
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A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),¢, )
Variables: W e (Lx L)*, {Al; e D|Il€ L}
Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialize W
for / € L do % Initialize Al
if | € E then Al, := . else Al, := 1 p;
while W +# ¢ do
(1,I) := head(W); W := tail(W);
if o/(Al}) Z Al then % Fixpoint not yet reached
Aly = Al U @/(Al/);
for (I',1") € F do
if (I,1") not in W then W :=(I',1") - W;
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A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Al; at no F-predecessor /" changed
— optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),¢, )
Variables: W e (Lx L)*, {Al; e D|Il€ L}

Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialize W
for / € L do % Initialize Al
if | € E then Al, := . else Al, := 1 p;
while W +# ¢ do
(1,I) := head(W); W := tail(W);
if o/(Al}) Z Al then % Fixpoint not yet reached
Aly = Al U @/(Al/);
for (I',1") € F do
if (I,1") not in W then W :=(I',1") - W;
Output: {Al; |/ €L}
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A Worklist Algorithm Il

Example 5.3 (Worklist algorithm)

Available Expression analysis for ¢ = [x := a+b]!;
[y := a*b]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

(cf. Examples 2.9 and 4.11)

Transfer functions: ¢1(A) = AU {a+b}
©2(A) = AU {a*b}
<p3(A) AU {a+b}
va(A) = A\ {a+b, axb,a+1}
v5(A) = AU {a+b}

Computation protocol: on the board
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A Worklist Algorithm IlI

Properties of the algorithm:

Theorem 5.4 (Correctness of worklist algorithm)

Given a dataflow system S = (L, E, F,(D,C), ¢, ), Algorithm 5.2 always
terminates and computes fix(®s).
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A Worklist Algorithm IlI

Properties of the algorithm:

Theorem 5.4 (Correctness of worklist algorithm)

Given a dataflow system S = (L, E, F,(D,C), ¢, ), Algorithm 5.2 always
terminates and computes fix(®s).

see [Nielson/Nielson/Hankin 2005, p. 75 ff]
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@ The MOP Solution
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The MOP Solution |

@ Other solution method for dataflow systems
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The MOP Solution |

@ Other solution method for dataflow systems
@ MOP = Meet Over all Paths
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The MOP Solution |

@ Other solution method for dataflow systems
@ MOP = Meet Over all Paths

@ Analysis information for block B/ = least upper bound over all paths
leading to /
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The MOP Solution |

@ Other solution method for dataflow systems
@ MOP = Meet Over all Paths

@ Analysis information for block B/ = least upper bound over all paths
leading to /

Definition 5.5 (Paths)

Let S=(L,E,F,(D,C),t, ) be a dataflow system. For every / € L, the
set of paths up to / is given by

Path(l) := {[h,..., k1] | kK > 1,1 € E,
(liyliy1) € F forevery 1 < i < k, I, = I}.

V.
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The MOP Solution |

@ Other solution method for dataflow systems
@ MOP = Meet Over all Paths
@ Analysis information for block B/ = least upper bound over all paths

leading to /
Definition 5.5 (Paths)

Let S=(L,E,F,(D,C),t, ) be a dataflow system. For every / € L, the
set of paths up to / is given by

Path(l) := {[h,..., k1] | kK > 1,1 € E,
(liyliy1) € F forevery 1 < i < k, I, = I}.

For a path p = [h, ..., lk—1] € Path(/), we define the transfer function
¢p:D— D by

Pp =Pl ©...0py0idp
(so that ¢ = idp).

V.
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The MOP Solution Il

Definition 5.6 (MOP solution)

Let S=(L,E,F,(D,C),t, ) be a dataflow system where
L={h,...,l}. The MOP solution for S is determined by

mop(S) := (mop(h),...,mop(/,)) € D"

where, for every | € L,

mop(1) i=|_Jp(0) | p € Path(1)}.
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The MOP Solution Il

Definition 5.6 (MOP solution)

Let S=(L,E,F,(D,C),t, ) be a dataflow system where
L={h,...,l}. The MOP solution for S is determined by

mop(S) := (mop(h),...,mop(/,)) € D"

where, for every | € L,

mop(1) i=|_Jp(0) | p € Path(1)}.

Remark:
e Path(/) is generally infinite

— not clear how to compute mop(/)
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The MOP Solution Il

Definition 5.6 (MOP solution)

Let S=(L,E,F,(D,C),t, ) be a dataflow system where
L={h,...,l}. The MOP solution for S is determined by

mop(S) := (mop(h),...,mop(/,)) € D"

where, for every | € L,

mop(1) i=|_Jp(0) | p € Path(1)}.

Remark:
e Path(/) is generally infinite
— not clear how to compute mop(/)

@ In fact: MOP solution generally undecidable (later)
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The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]*;
[y := 4]
[x := 1]3;
if [y > 0]* then
[z := x]°
else
[z = yxy]°;
[x := z]’
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The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)
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The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]1§ — mop(1) = <P[7,5,4,3,2](L) U <P[7,6,4,3,2](L)
[y := 4%
[x := 1]3;
if [y > 0]* then
[z := x]°
else
[z := y*y]%;
[x := z]7
= Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}
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The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

= 2]'; = mop(1) = Y75.4,32](t) U @p7,6.432/(t)
[y := 4] = 02(p3(pa(ps(wr({x,v,2})))) U
.= 1]3; p2(p3(pa(vs(p7({x,y,2})))))
if [y > 0]* then
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The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]} = mop(l)—<P[75432]()'—'<P[76432(L)
[y := 4% = 2(p3(pa(es(pr({x,y,2}))))) U
[x := 1]3; ©2(p3(pa(pe(vr({x,7.2})))))
if [y > 0] then = ¢2(p3(wa(es({y,z})))) U
[z := x]° p2(3(palps({y,2}))))
else
[z = yxy]°;
[x := z]’
— Path(1) = {[7,5,4,3,2),
[7,6,4,3,2]}
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The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]} = mop(l)—<P[75432]()'—'<P[76432(L)
[y := 4% = 2(p3(wales(er({x,y,2})
[x := 1]3; ©2(p3(a(we(pr({x,y,2})
if [y > 0]* then = ¢2(p3(wa(es({y,z})))) U
[z := x]° p2(p3(pa(ve({y,2}))))
else = pa(p3(pa({x,y}))) U
[Z = y*y]6 @2(903(904({ })))
[x := 2]

— Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}

)
)

)
)

)
)

L
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The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

2]*;

4]%;

13;

if [y > 0]* then
[z := x]°

else
[z :

—

— Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}

mop(1) = ¢[75.4,32(¢) U ¥[7.6.4,3,2(¢)

= oa(p3(als(er({x,y, Z})))))
©2(e3(eales(e7({x,y,2})))))

= p2(p3(pa(es({y,z})))) U
©2(p3(pa(ve({y,z}))))

= pa(p3(pa({x,y}))) U
©2(e3(wa({y})))

= p2(p3({x,7})) U w2(w3({y}))

L
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The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]} = mop(1) = Y75.4,32](t) U @p7,6.432/(t)
[y := 4]% = 2(p3(wales(er({x,y,2}))))) U
[x := 1]3; ©2(3(a(ws(er({x,5,2})))))
if [y > 0]* then = ¢2(p3(a(ps({y,2})))) U
[z := x]° p2(3(pa(ps({y, 2}))))
else = 802(903(804({3(’31}))) L
[z := y*y]°; p2(03(pa({y})))
[x := 2]’ = ¢2(p3({x,})) U p2(3({y}))
. Path(1) = {[7.5.4.3.2] e2({y}) Up2({y})
[7,6,4,3,2]}
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The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]} = mop(l)=<P[75432]()'—'<P[76432(L)
[y := 4% = pa(p3(pa(es(er({x,y,2}))))) U
[x := 13; w2(p3(a(ws(07({x,5,2})))))
if [y > 0]* then = ¢2(p3(a(ps({y,2})))) U
[z := x]° p2(3(pa(ps({y, 2}))))
else = pa(p3(pa({x,y}))) U
[Z = y*y]ﬁ; @2(903(904({3’})))
[x := 2]’ = ¢2(p3({x,})) U p2(3({y}))
—> Path(1) = {[7,5,4,3.2], —gRgn ety
[7,6,4,3,2]}
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The MOP Solution 111

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c=[x := 2]} = mop(1) = Y75.4,32](t) U @p7,6.432/(t)
[y := 4]% = 2(p3(wales(er({x,y,2}))))) U
[x := 1]3; ©2(3(a(ws(er({x,5,2})))))
if [y > 0]* then = ¢2(p3(a(ps({y,2})))) U
[z := x]° p2(3(pa(ps({y, 2}))))
else = 802(903(804({3(’31}))) L
[z := y*y]°; p2(03(pa({y})))
[x := 2]’ = wz(wa({}ay})) U e2(03({y}))
— Path(1) = {[7,5,4,3,2)], :gﬁ‘gy}) P2(iy})
[7,6,4,3,2]} — 0
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© Another Analysis: Constant Propagation
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

[x := 1]}
= 1]?;
A
while [z > 0]* do
o = %yl
if [w = 2]° then
[x := y+2]7

<
1

v
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)
[x := 1]1;

: 1]2; @ vy =z =1 at labels 4-7
[z := 1]3; y=2z=

<
1

while [z > 0]* do
[ o= xyl?s

if [w = 2]° then
[ += y+2]’

v
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

fx i= 11
= 1]2-
FZ’ = Ha o y =z =1 at labels 4-7
while [z > 0]* do @ w, x not constant at labels 4-7
[w := x+y]°;
if [w = 2]° then
[x := y+2]”

v
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

[x := 1]}
= 112.
FZ’ = Ha o y =z =1 at labels 4-7
while [z > 0]* do @ w, x not constant at labels 4-7
[w := x+y]°; @ possible optimizations:
if [w = 2|° then [w := x+1]° [x := 3]’
[x := y+2]7

v
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Formalizing Constant Propagation Analysis |

The dataflow system S = (L, E, F,(D,C), ¢, ) is given by
@ set of labels L := L,
e extremal labels E := {init(c)} (forward problem),
o flow relation F := flow(c) (forward problem),
e complete lattice (D, C) where
o D:={6|0:Varc - ZU{L, T}}
e d(x) =z € Z: x has constant value z
@ §(x) = L: x undefined
@ 0(x) = T: x overdefined (i.e., different possible values)
o T C D x D defined by pointwise extension of L. C zC T

(for every z € Z)
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Formalizing Constant Propagation Analysis |

The dataflow system S = (L, E, F,(D,C), ¢, ) is given by
@ set of labels L := L,
e extremal labels E := {init(c)} (forward problem),
o flow relation F := flow(c) (forward problem),
e complete lattice (D, C) where
o D:={6|0:Varc - ZU{L, T}}
e d(x) =z € Z: x has constant value z
@ §(x) = L: x undefined
@ 0(x) = T: x overdefined (i.e., different possible values)
o T C D x D defined by pointwise extension of L. C zC T

(for every z € Z)

Example 5.9

Var. = {w,x,y,2},
612( —L7 1 9 2 9 T )v
NN NG NG
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Formalizing Constant Propagation Analysis Il

Dataflow system S = (L, E, F,(D,C), ¢, ) (continued):

o extremal value ¢ := 61 € D where d7(x) := T for every x € Var,
(i.e., every x has (unknown) default value)

e transfer functions {¢; | | € L} defined by

(5) := Y if Bl = skip or B e BExp
POV =\ 61x v vals(a)] if B = (x := a)
where
= z10pz fz1,20 €7
‘CZ&E;; - g(X) vals(aiop a2) := q L ifzz=lorz=_1
nE T otherwise

for z; := vals(a1) and z := vals(az)
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Formalizing Constant Propagation Analysis Il

Example 5.10

Ifo=(_L, 1,2, T) then
w X y z
(0, 1,2 T) ifB =(w:=0)
=
W X y z
0 | _ .
) B ==y
_ w X y z
PO=0(1, 1,2, T) ifB = := w)
S o
W X y z
(T, 1,.2,T) ifB'=(@w :=z+2)
SN S
\ v X y z
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