
Static Program Analysis
Lecture 5: Dataflow Analysis IV

(Worklist Algorithm & MOP Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Repetition: Dataflow Systems

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

5 Another Analysis: Constant Propagation

Static Program Analysis Summer Semester 2011 5.2

Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (L,E ,F , (D,v), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L× L (here: flow(c) or flowR(c)),

a complete lattice (D,v) that satisfies ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.

Static Program Analysis Summer Semester 2011 5.3

Dataflow Systems and Fixpoints

Definition (Dataflow equation system)

Given: dataflow system S = (L,E ,F , (D,v), ι, ϕ), L = {1, ..., n} (w.l.o.g.)

S determines the equation system (where l ∈ L)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′1, . . . , d

′
n)

where

d ′l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS

Static Program Analysis Summer Semester 2011 5.4

The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a complete lattice satisfying ACC and Φ : D → D
monotonic. Then

fix(Φ) :=
⊔{

Φk (⊥) | k ∈ N
}

is the least fixpoint of Φ where
Φ0(d) := d and Φk+1(d) := Φ(Φk(d)).

Remark: ACC =⇒
(
Φk (⊥) | k ∈ N

)
stabilizes at some k0 ∈ N with

fix(Φ) = Φk0 (⊥) (where k0 bounded by maximal chain length in (D,v))

Static Program Analysis Summer Semester 2011 5.5

Outline

1 Repetition: Dataflow Systems

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

5 Another Analysis: Constant Propagation

Static Program Analysis Summer Semester 2011 5.6

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

1 Available Expressions: see Exercise 0.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}
=⇒ LV1 = LV2 ∪ {x}

= LV1 ∪ {x}
=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}),

LV3 = {x}, LV4 = {x, y}
Here: least solution {x} (maximal potential for optimization)

Static Program Analysis Summer Semester 2011 5.7

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

1 Available Expressions: see Exercise 0.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}
=⇒ LV1 = LV2 ∪ {x}

= LV1 ∪ {x}
=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}),

LV3 = {x}, LV4 = {x, y}
Here: least solution {x} (maximal potential for optimization)

Static Program Analysis Summer Semester 2011 5.7

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

1 Available Expressions: see Exercise 0.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}
=⇒ LV1 = LV2 ∪ {x}

= LV1 ∪ {x}
=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}),

LV3 = {x}, LV4 = {x, y}
Here: least solution {x} (maximal potential for optimization)

Static Program Analysis Summer Semester 2011 5.7

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

1 Available Expressions: see Exercise 0.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}
=⇒ LV1 = LV2 ∪ {x}

= LV1 ∪ {x}
=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}),

LV3 = {x}, LV4 = {x, y}
Here: least solution {x} (maximal potential for optimization)

Static Program Analysis Summer Semester 2011 5.7

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

1 Available Expressions: see Exercise 0.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}),
LV3 = {x}, LV4 = {x, y}

Here: least solution {x} (maximal potential for optimization)

Static Program Analysis Summer Semester 2011 5.7

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

1 Available Expressions: see Exercise 0.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}
=⇒ LV1 = LV2 ∪ {x}

= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}),
LV3 = {x}, LV4 = {x, y}

Here: least solution {x} (maximal potential for optimization)

Static Program Analysis Summer Semester 2011 5.7

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

1 Available Expressions: see Exercise 0.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}
=⇒ LV1 = LV2 ∪ {x}

= LV1 ∪ {x}
=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}),

LV3 = {x}, LV4 = {x, y}

Here: least solution {x} (maximal potential for optimization)

Static Program Analysis Summer Semester 2011 5.7

Uniqueness of Solutions

(Non-minimal) solutions of dataflow equation systems are not always
unique.

Example 5.1

1 Available Expressions: see Exercise 0.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}
=⇒ LV1 = LV2 ∪ {x}

= LV1 ∪ {x}
=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}),

LV3 = {x}, LV4 = {x, y}
Here: least solution {x} (maximal potential for optimization)

Static Program Analysis Summer Semester 2011 5.7

Outline

1 Repetition: Dataflow Systems

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

5 Another Analysis: Constant Propagation

Static Program Analysis Summer Semester 2011 5.8

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step

=⇒ redundant if AIl ′ at no F -predecessor l ′ changed
=⇒ optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W

for l ∈ L do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W); W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′ t ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}

Static Program Analysis Summer Semester 2011 5.9

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step
=⇒ redundant if AIl ′ at no F -predecessor l ′ changed

=⇒ optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W

for l ∈ L do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W); W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′ t ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}

Static Program Analysis Summer Semester 2011 5.9

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step
=⇒ redundant if AIl ′ at no F -predecessor l ′ changed
=⇒ optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W

for l ∈ L do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W); W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′ t ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}

Static Program Analysis Summer Semester 2011 5.9

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step
=⇒ redundant if AIl ′ at no F -predecessor l ′ changed
=⇒ optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W

for l ∈ L do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W); W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′ t ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}

Static Program Analysis Summer Semester 2011 5.9

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step
=⇒ redundant if AIl ′ at no F -predecessor l ′ changed
=⇒ optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}

Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W
for l ∈ L do % Initialize AI

if l ∈ E then AIl := ι else AIl := ⊥D ;
while W 6= ε do

(l , l ′) := head(W); W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′ t ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}

Static Program Analysis Summer Semester 2011 5.9

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step
=⇒ redundant if AIl ′ at no F -predecessor l ′ changed
=⇒ optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W

for l ∈ L do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W); W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′ t ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}

Static Program Analysis Summer Semester 2011 5.9

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step
=⇒ redundant if AIl ′ at no F -predecessor l ′ changed
=⇒ optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W

for l ∈ L do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W); W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′ t ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}

Static Program Analysis Summer Semester 2011 5.9

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step
=⇒ redundant if AIl ′ at no F -predecessor l ′ changed
=⇒ optimization by worklist

Algorithm 5.2 (Worklist algorithm)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W

for l ∈ L do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W); W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′ t ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}
Static Program Analysis Summer Semester 2011 5.9

A Worklist Algorithm II

Example 5.3 (Worklist algorithm)

Available Expression analysis for c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

(cf. Examples 2.9 and 4.11)

Transfer functions: ϕ1(A) = A ∪ {a+b}
ϕ2(A) = A ∪ {a*b}
ϕ3(A) = A ∪ {a+b}
ϕ4(A) = A \ {a+b, a*b, a+1}
ϕ5(A) = A ∪ {a+b}

Computation protocol: on the board

Static Program Analysis Summer Semester 2011 5.10

A Worklist Algorithm III

Properties of the algorithm:

Theorem 5.4 (Correctness of worklist algorithm)

Given a dataflow system S = (L,E ,F , (D,v), ι, ϕ), Algorithm 5.2 always
terminates and computes fix(ΦS).

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

Static Program Analysis Summer Semester 2011 5.11

A Worklist Algorithm III

Properties of the algorithm:

Theorem 5.4 (Correctness of worklist algorithm)

Given a dataflow system S = (L,E ,F , (D,v), ι, ϕ), Algorithm 5.2 always
terminates and computes fix(ΦS).

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

Static Program Analysis Summer Semester 2011 5.11

Outline

1 Repetition: Dataflow Systems

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

5 Another Analysis: Constant Propagation

Static Program Analysis Summer Semester 2011 5.12

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block B l = least upper bound over all paths
leading to l

Definition 5.5 (Paths)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system. For every l ∈ L, the
set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E ,
(li , li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Static Program Analysis Summer Semester 2011 5.13

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block B l = least upper bound over all paths
leading to l

Definition 5.5 (Paths)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system. For every l ∈ L, the
set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E ,
(li , li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Static Program Analysis Summer Semester 2011 5.13

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block B l = least upper bound over all paths
leading to l

Definition 5.5 (Paths)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system. For every l ∈ L, the
set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E ,
(li , li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Static Program Analysis Summer Semester 2011 5.13

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block B l = least upper bound over all paths
leading to l

Definition 5.5 (Paths)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system. For every l ∈ L, the
set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E ,
(li , li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Static Program Analysis Summer Semester 2011 5.13

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block B l = least upper bound over all paths
leading to l

Definition 5.5 (Paths)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system. For every l ∈ L, the
set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E ,
(li , li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Static Program Analysis Summer Semester 2011 5.13

The MOP Solution II

Definition 5.6 (MOP solution)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔
{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Static Program Analysis Summer Semester 2011 5.14

The MOP Solution II

Definition 5.6 (MOP solution)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔
{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Static Program Analysis Summer Semester 2011 5.14

The MOP Solution II

Definition 5.6 (MOP solution)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔
{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Static Program Analysis Summer Semester 2011 5.14

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅

Static Program Analysis Summer Semester 2011 5.15

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅

Static Program Analysis Summer Semester 2011 5.15

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)

= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅

Static Program Analysis Summer Semester 2011 5.15

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅

Static Program Analysis Summer Semester 2011 5.15

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅

Static Program Analysis Summer Semester 2011 5.15

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅

Static Program Analysis Summer Semester 2011 5.15

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))

= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅

Static Program Analysis Summer Semester 2011 5.15

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})

= ∅ t ∅
= ∅

Static Program Analysis Summer Semester 2011 5.15

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅

= ∅

Static Program Analysis Summer Semester 2011 5.15

The MOP Solution III

Example 5.7 (Live Variables; cf. Examples 3.3 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅

Static Program Analysis Summer Semester 2011 5.15

Outline

1 Repetition: Dataflow Systems

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

5 Another Analysis: Constant Propagation

Static Program Analysis Summer Semester 2011 5.16

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations:
[w := x+1]5 [x := 3]7

Static Program Analysis Summer Semester 2011 5.17

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations:
[w := x+1]5 [x := 3]7

Static Program Analysis Summer Semester 2011 5.17

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations:
[w := x+1]5 [x := 3]7

Static Program Analysis Summer Semester 2011 5.17

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations:
[w := x+1]5 [x := 3]7

Static Program Analysis Summer Semester 2011 5.17

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations:
[w := x+1]5 [x := 3]7

Static Program Analysis Summer Semester 2011 5.17

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.8 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations:
[w := x+1]5 [x := 3]7

Static Program Analysis Summer Semester 2011 5.17

Formalizing Constant Propagation Analysis I

The dataflow system S = (L,E ,F , (D,v), ι, ϕ) is given by

set of labels L := Lc ,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z
δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Example 5.9

Var c = {w, x, y, z},
δ1 = (⊥︸︷︷︸

w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

), δ2 = (3︸︷︷︸
w

, 1︸︷︷︸
x

, 4︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ δ1 t δ2 = (3︸︷︷︸
w

, 1︸︷︷︸
x

, >︸︷︷︸
y

, >︸︷︷︸
z

)

Static Program Analysis Summer Semester 2011 5.18

Formalizing Constant Propagation Analysis I

The dataflow system S = (L,E ,F , (D,v), ι, ϕ) is given by

set of labels L := Lc ,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z
δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Example 5.9

Var c = {w, x, y, z},
δ1 = (⊥︸︷︷︸

w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

), δ2 = (3︸︷︷︸
w

, 1︸︷︷︸
x

, 4︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ δ1 t δ2 = (3︸︷︷︸
w

, 1︸︷︷︸
x

, >︸︷︷︸
y

, >︸︷︷︸
z

)

Static Program Analysis Summer Semester 2011 5.18

Formalizing Constant Propagation Analysis II

Dataflow system S = (L,E ,F , (D,v), ι, ϕ) (continued):

extremal value ι := δ> ∈ D where δ>(x) := > for every x ∈ Var c
(i.e., every x has (unknown) default value)

transfer functions {ϕl | l ∈ L} defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := z

valδ(a1 op a2) :=

z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := valδ(a1) and z2 := valδ(a2)

Static Program Analysis Summer Semester 2011 5.19

Formalizing Constant Propagation Analysis III

Example 5.10

If δ = (⊥︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

), then

ϕl(δ) =



(0︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

) if B l = (w := 0)

(3︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

) if B l = (w := y+1)

(⊥︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

) if B l = (w := w+x)

(>︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

) if B l = (w := z+2)

Static Program Analysis Summer Semester 2011 5.20

	Repetition: Dataflow Systems
	Uniqueness of Solutions
	Efficient Fixpoint Computation
	The MOP Solution
	Another Analysis: Constant Propagation

