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The MOP Solution

Definition (MOP solution)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔
{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)
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Formalizing Constant Propagation Analysis I

The dataflow system S = (L,E ,F , (D,v), ι, ϕ) is given by

set of labels L := Lc ,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z
δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Example

Var c = {w, x, y, z},
δ1 = ( ⊥︸︷︷︸

w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

), δ2 = ( 3︸︷︷︸
w

, 1︸︷︷︸
x

, 4︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ δ1 t δ2 = ( 3︸︷︷︸
w

, 1︸︷︷︸
x

, >︸︷︷︸
y

, >︸︷︷︸
z

)
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Formalizing Constant Propagation Analysis II

Dataflow system S = (L,E ,F , (D,v), ι, ϕ) (continued):

extremal value ι := δ> ∈ D where δ>(x) := > for every x ∈ Var c
(i.e., every x has (unknown) default value)

transfer functions {ϕl | l ∈ L} defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := z

valδ(a1 op a2) :=

z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := valδ(a1) and z2 := valδ(a2)
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MOP vs. Fixpoint Solution I

Example 7.1 (Constant Propagation)

c := if [z > 0]1 then
[x := 2;]2

[y := 3;]3

else
[x := 3;]4

[y := 2;]5

[z := x+y;]6

[. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a + b)

1 Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>)t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)

Static Program Analysis Summer Semester 2011 7.7



MOP vs. Fixpoint Solution I

Example 7.1 (Constant Propagation)

c := if [z > 0]1 then
[x := 2;]2

[y := 3;]3

else
[x := 3;]4

[y := 2;]5

[z := x+y;]6

[. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a + b)

1 Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>)t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)

Static Program Analysis Summer Semester 2011 7.7



MOP vs. Fixpoint Solution I

Example 7.1 (Constant Propagation)

c := if [z > 0]1 then
[x := 2;]2

[y := 3;]3

else
[x := 3;]4

[y := 2;]5

[z := x+y;]6

[. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a + b)

1 Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>)t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)

Static Program Analysis Summer Semester 2011 7.7



MOP vs. Fixpoint Solution I

Example 7.1 (Constant Propagation)

c := if [z > 0]1 then
[x := 2;]2

[y := 3;]3

else
[x := 3;]4

[y := 2;]5

[z := x+y;]6

[. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a + b)

1 Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>)t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)

Static Program Analysis Summer Semester 2011 7.7



MOP vs. Fixpoint Solution II

Theorem 7.2 (MOP vs. Fixpoint Solution)

Let S = (L,E ,F , (D,v), ι, ϕ) be a dataflow system. Then

mop(S) v fix(ΦS)

Reminder: by Definition 4.9,

ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′1, . . . , d
′
n)

where L = {1, . . . , n} and, for each 1 ≤ l ≤ n,

d ′l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Proof.

on the board

Remark: as Example 7.1 shows, mop(S) 6= fix(ΦS) is possible
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Distributive Transfer Functions I

A sufficient criterion for the coincidence of MOP and Fixpoint Solution is
the distributivity of the transfer functions.

Definition 7.3 (Distributivity)

Let (D,v) and (D ′,v′) be complete lattices, and let F : D → D ′. F
is called distributive (w.r.t. (D,v) and (D ′,v′)) if, for every
d1, d2 ∈ D,

F (d1 tD d2) = F (d1) tD′ F (d2).

A dataflow system S = (L,E ,F , (D,v), ι, ϕ) is called distributive if
every ϕl : D → D (l ∈ L) is so.
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Distributive Transfer Functions II

Example 7.4

1 The Available Expressions dataflow system is distributive: see
Exercise 2.3

2 The Live Variables dataflow system is distributive: see Exercise 2.3

3 The Constant Propagation dataflow system is not distributive:

(>,>,>) = ϕz:=x+y((2, 3,>) t (3, 2,>))
6= ϕz:=x+y((2, 3,>)) t ϕz:=x+y((3, 2,>))
= (>,>, 5)
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Coincidence of MOP and Fixpoint Solution

Theorem 7.5 (MOP vs. Fixpoint Solution)

Let S = (L,E ,F , (D,v), ι, ϕ) be a distributive dataflow system. Then

mop(S) = fix(ΦS)

Proof.

ΦS(mop(S)) = mop(S): on the board

mop(S) v fix(ΦS): Theorem 7.2

⇒ claim
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Dataflow Analysis with Non-ACC Domains

Reminder: (D,v) satisfies ACC if each ascending chain
d1 v d2 v . . . eventually stabilizes, i.e., there exists n ∈ N such that
dn = dn+1 = . . .

If height (= maximal chain length) of (D,v) is m, then fixpoint
computation terminates after ≤ |L| ·m iterations

But: if (D,v) has infinite ascending chains
=⇒ algorithm may not terminate

Solution: use widening operators to enforce termination

Static Program Analysis Summer Semester 2011 7.13



Dataflow Analysis with Non-ACC Domains

Reminder: (D,v) satisfies ACC if each ascending chain
d1 v d2 v . . . eventually stabilizes, i.e., there exists n ∈ N such that
dn = dn+1 = . . .

If height (= maximal chain length) of (D,v) is m, then fixpoint
computation terminates after ≤ |L| ·m iterations

But: if (D,v) has infinite ascending chains
=⇒ algorithm may not terminate

Solution: use widening operators to enforce termination

Static Program Analysis Summer Semester 2011 7.13



Dataflow Analysis with Non-ACC Domains

Reminder: (D,v) satisfies ACC if each ascending chain
d1 v d2 v . . . eventually stabilizes, i.e., there exists n ∈ N such that
dn = dn+1 = . . .

If height (= maximal chain length) of (D,v) is m, then fixpoint
computation terminates after ≤ |L| ·m iterations

But: if (D,v) has infinite ascending chains
=⇒ algorithm may not terminate

Solution: use widening operators to enforce termination

Static Program Analysis Summer Semester 2011 7.13



Widening Operators

Definition 7.6 (Widening operator)

Let (D,v) be a complete lattice. A mapping ∇ : D × D → D is called
widening operator if

for every d1, d2 ∈ D,
d1 t d2 v d1∇d2

and

for all ascending chains d0 v d1 v . . ., the ascending chain
d∇0 v d∇1 v . . . eventually stabilizes where

d∇0 := d0 and d∇i+1 := d∇i ∇di+1 for i ∈ N

Remarks:

(d∇i )i∈N is clearly an ascending chain as
d∇i+1 = d∇i ∇di+1 w d∇i t di+1 w d∇i

In contrast to t, ∇ does not have to be commutative, associative,
monotonic, nor absorptive (d∇d = d)

The requirement d1 t d2 v d1∇d2 guarantees soundness of widening

Static Program Analysis Summer Semester 2011 7.14



Outline

1 Repetition: MOP Solution and Constant Propagation

2 MOP vs. Fixpoint Solution

3 Dataflow Analysis with Non-ACC Domains

4 Example: Interval Analysis

Static Program Analysis Summer Semester 2011 7.15



Example: Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting)
program point, a safe interval for the values of the (interesting) program
variables.

Interval analysis is actually a generalization of constant propagation
(≈ interval analysis with 1-element intervals)

Example 7.7 (Interval Analysis)

var a[100]: int;
. . .
i := 0;
while i <= 42 do
if i >= 0 ∧ i < 100 then

⇐=

a[i] := i;
i := i + 1;

Here: redundant array bounds check can be removed
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The Domain of Interval Analysis

The domain (Int,⊆) of intervals over Z is defined by

Int := {[z1, z2] | z1 ∈ Z ∪ {−∞}, z2 ∈ Z ∪ {+∞}}, z1 ≤ z2} ∪ {∅}
where

−∞ ≤ z , z ≤ +∞, and −∞ ≤ +∞ (for all z ∈ Z)
∅ ⊆ I (for all I ∈ Int)
[y1, y2] ⊆ [z1, z2] iff z1 ≤ y1 and y2 ≤ z2

(Int,⊆) is a complete lattice with (for every I ⊆ Int)⊔
I =

{
∅ if I = ∅ or I = {∅}
[Z1,Z2] otherwise

where
Z1 :=

d
Z∪{−∞}{z1 | [z1, z2] ∈ I}

Z2 :=
⊔

Z∪{+∞}{z2 | [z1, z2] ∈ I}
(and thus ⊥ = ∅, > = [−∞,+∞])

Clearly (Int,⊆) has infinite ascending chains, such as

∅ ⊆ [1, 1] ⊆ [1, 2] ⊆ [1, 3] ⊆ . . .
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The Complete Lattice of Interval Analysis

∅

[−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2]

[−2,−1] [−1, 0] [0, 1] [1, 2]

[−2, 0] [−1, 1] [0, 2]

[−2, 1] [−1, 2]

[−2, 2]

[−∞,−1]

[−∞, 0]

[−∞, 1] [−1,+∞]

[0,+∞]

[1,+∞]

[−∞,+∞]
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