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@ Repetition: MOP Solution and Constant Propagation
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The MOP Solution

Definition (MOP solution)

Let S=(L,E,F,(D,C),t, ) be a dataflow system where
L={h,...,l}. The MOP solution for S is determined by

mop(S) := (mop(h),...,mop(/,)) € D"

where, for every | € L,

mop(1) i=|_Jp(0) | p € Path(1)}.

Remark:
e Path(/) is generally infinite
— not clear how to compute mop(/)

@ In fact: MOP solution generally undecidable (later)
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Formalizing Constant Propagation Analysis |

The dataflow system S = (L, E, F,(D,C), ¢, ) is given by
@ set of labels L := L,
e extremal labels E := {init(c)} (forward problem),
o flow relation F := flow(c) (forward problem),
e complete lattice (D, C) where
o D:={6|0:Varc - ZU{L, T}}
e d(x) =z € Z: x has constant value z
@ §(x) = L: x undefined
@ 0(x) = T: x overdefined (i.e., different possible values)
o T C D x D defined by pointwise extension of L. C zC T

(for every z € Z)

Var. = {w,x,y,2},

612(\ 1 9\ 1 PR 2 9\ T ,)v
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Formalizing Constant Propagation Analysis Il

Dataflow system S = (L, E, F,(D,C), ¢, ) (continued):

o extremal value ¢ := 61 € D where d7(x) := T for every x € Var,
(i.e., every x has (unknown) default value)

e transfer functions {¢; | | € L} defined by

(5) := Y if Bl = skip or B e BExp
POV =\ 61x v vals(a)] if B = (x := a)
where
= z10pz fz1,20 €7
‘CZ&E;; - g(X) vals(aiop a2) := q L ifzz=lorz=_1
nE T otherwise

for z; := vals(a1) and z := vals(az)
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© MOP vs. Fixpoint Solution
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MOP vs. Fixpoint Solution |

Example 7.1 (Constant Propagation)

c:=1if [z > 0]! then

[x := 2;]?
[y := 3

else
[x := 3;]*
ly := 2;]°

[z := x+y;]°

[L.]
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MOP vs. Fixpoint Solution |

Example 7.1 (Constant Propagation)

c:=1if [z > 0]! then
[x := 2;]?
[y = 3]
else
[x := 3;]*
ly := 2;]°
[z := x+y;]°
[...]

Transfer functions

(for 6 = (6(x),(y), 6(z)) € D):
901((37 bv C)) = (av ba C)
902((‘97 b7 C)) = (27 b, C)
v3((a, b, c)) = (8,3, ¢)
@4((3, ba C)) = (37 b7 C)
905((37 bv C)) = (av 2a C)
ve((a, b,c)) = (a,b,a+ b)

v
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MOP vs. Fixpoint Solution |

Example 7.1 (Constant Propagation)

c:=1if [z > 0]! then
[x := 2;]?
[y := 3P
else
[x := 3;]*
ly == 25
x+y;]°

Transfer functions

(for 6 = (d(x), d(y), 0(z
901((37 bv C)) = (av ba c
902((‘97 b7 C)) = (27 b, c
v3((a, b, c)) = (8,3, ¢
va((a, b, c)) = (3,b,¢
@5((37 bv C)) = (av 2a C
ve((a,b,c)) = (a, b, a

) € D):

—

+
=

@ Fixpoint solution:

CP1 =1 =(T,T,T)
CP2 — <p1(CP1) = (T, T7T)
CP3 = (p2(CP2) = (Q,T,T)
CP4 = <p1(CP1) = (T, T,T)
CP5 = @4(CP4) = (37T,T)
CPs = 3(CP3) U ¢5(CPs)

- (2737T) L (3727T) = (T’ Tv—l—)
CP7 — <p6(CP5) = (T, T7T)
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MOP vs. Fixpoint Solution |

Example 7.1 (Constant Propagation)

c:=1if [z > 0]! then
[x := 2;]? @ Fixpoint solution:
[y = 3;]3 CPlp: L = (TaTvT)
else a CPy = 1(CP1) =(T,T,T)
kv G CP3 = 2(CP>) =(2,1,T)
[y = 2;]6 CP4 = WI(CPI) = (TvT’T)
[z i x+y;] CPs = 4(CP4) =G,T.T)
[ ] CPe = 3(CP3) U ¢5(CPs)
Transfer functions =(2,3,T)U(3,2,T)=(T,T,T)
(for & = (8(x), (y), 8(z)) € D): CP7 = ¢6(CPe) =(T,T,T)
901&37 gv C;; 8 Z % @ MOP solution:
woa((a,b,C)) = , C m =
es((a,b, ) = (3,3.6) R S
¢4EE37 2 ng = E3 g g = (2,3,5)U(3,2,5)
ws((a,b,c)) = (a _
fel(2.5.0)) = (a.b.a+ b) -0
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MOP vs. Fixpoint Solution Il

Theorem 7.2 (MOP vs. Fixpoint Solution)

Let S=(L,E,F,(D,C),¢,¢) be a dataflow system. Then

mop(S) C fix(Ps)

Reminder: by Definition 4.9,
®s: D" — D" (di,....dn) — (dl,....,d)
where L ={1,...,n} and, foreach 1 </ < n,

g if | € E
P WHer(dr) [ (K1) € F} o otherwise
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MOP vs. Fixpoint Solution Il

Theorem 7.2 (MOP vs. Fixpoint Solution)

Let S=(L,E,F,(D,C),¢,¢) be a dataflow system. Then

mop(S) C fix(Ps)

Reminder: by Definition 4.9,
®s: D" — D" (di,....dn) — (dl,....,d)
where L ={1,...,n} and, foreach 1 </ < n,

g if | € E
P WHer(dr) [ (K1) € F} o otherwise

on the board ]

Remark: as Example 7.1 shows, mop(S) # fix(®s) is possible
R\WNTH



Distributive Transfer Functions |

A sufficient criterion for the coincidence of MOP and Fixpoint Solution is
the distributivity of the transfer functions.

Definition 7.3 (Distributivity)

e Let (D,C) and (D',C') be complete lattices, and let F: D — D'. F
is called distributive (w.r.t. (D,C) and (D', ') if, for every
di,dr € D,

F(dl Up d2) = F(dl) Upr F(dg).
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Distributive Transfer Functions |

A sufficient criterion for the coincidence of MOP and Fixpoint Solution is
the distributivity of the transfer functions.

Definition 7.3 (Distributivity)
e Let (D,C) and (D',C') be complete lattices, and let F: D — D'. F
is called distributive (w.r.t. (D,C) and (D', ') if, for every
di,dr € D,
F(dl Up d2) = F(dl) Upr F(dg).

e A dataflow system S = (L, E, F,(D,C), ¢, ) is called distributive if
every ¢;: D — D (I € L) is so.
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Distributive Transfer Functions |l

Example 7.4

@ The Available Expressions dataflow system is distributive: see
Exercise 2.3

@ The Live Variables dataflow system is distributive: see Exercise 2.3

© The Constant Propagation dataflow system is not distributive:

(T, T,T) = @z:=x4y((2,3, T) U (3,2, T))

7 Pz:i=ry((2,3, T)) U pzimy (3,2, T))
= (T, T,5)
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Coincidence of MOP and Fixpoint Solution

Theorem 7.5 (MOP vs. Fixpoint Solution)
Let S=(L,E,F,(D,C),¢,) be a distributive dataflow system. Then

mop(S) = fix(Ps)
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Coincidence of MOP and Fixpoint Solution

Theorem 7.5 (MOP vs. Fixpoint Solution)
Let S=(L,E,F,(D,C),¢,p) be a distributive dataflow system. Then

mop(S) = fix(Ps)

e ®5(mop(S)) = mop(S): on the board
@ mop(S) C fix(®s): Theorem 7.2

= claim
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© Dataflow Analysis with Non-ACC Domains
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Dataflow Analysis with Non-ACC Domains

e Reminder: (D, C) satisfies ACC if each ascending chain
di C dh C ... eventually stabilizes, i.e., there exists n € N such that
dn = dn4+1 = .-

@ If height (= maximal chain length) of (D,C) is m, then fixpoint
computation terminates after < |L| - m iterations
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Dataflow Analysis with Non-ACC Domains

e Reminder: (D, C) satisfies ACC if each ascending chain
di C dh C ... eventually stabilizes, i.e., there exists n € N such that

dn = dn4+1 = .-

@ If height (= maximal chain length) of (D,C) is m, then fixpoint
computation terminates after < |L| - m iterations

@ But: if (D,C) has infinite ascending chains
— algorithm may not terminate
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Dataflow Analysis with Non-ACC Domains

e Reminder: (D, C) satisfies ACC if each ascending chain
di C dh C ... eventually stabilizes, i.e., there exists n € N such that
dn = dn4+1 = .-

@ If height (= maximal chain length) of (D,C) is m, then fixpoint
computation terminates after < |L| - m iterations

@ But: if (D,C) has infinite ascending chains
— algorithm may not terminate

@ Solution: use widening operators to enforce termination
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Widening Operators

Definition 7.6 (Widening operator)

Let (D,C) be a complete lattice. A mapping V : D x D — D is called
widening operator if

o for every di,dr € D,
dUd, C diVdy
and
o for all ascending chains dy C d; C ..., the ascending chain
dy C dY C ... eventually stabilizes where
doV = dp and dv1 = d Vdiyq for i € N

Remarks:

o (d¥)jen is clearly an ascending chain as
d¥, =d¥Vdip1 3 dY Udiyy JdY
@ In contrast to LI, V does not have to be commutative, associative,
monotonic, nor absorptive (dVd = d)
@ The requirement di U dr C dqVd guarantees soundness of widening
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@ Example: Interval Analysis

“er Static Program Analysis Summer Semester 2011 7.15



Example: Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting)
program point, a safe interval for the values of the (interesting) program
variables.

Interval analysis is actually a generalization of constant propagation
(= interval analysis with 1-element intervals)
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Example: Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting)
program point, a safe interval for the values of the (interesting) program
variables.

Interval analysis is actually a generalization of constant propagation
(= interval analysis with 1-element intervals)

Example 7.7 (Interval Analysis)

var a[100]: int;

i := 0;
while i <= 42 do
if i >= 0 A i < 100 then
ali] := i;
i:=1+ 1;
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Example: Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting)
program point, a safe interval for the values of the (interesting) program
variables.

Interval analysis is actually a generalization of constant propagation
(= interval analysis with 1-element intervals)

Example 7.7 (Interval Analysis)

var a[100]: int;

i := 0;

while i <= 42 do

if i >= 0 A i < 100 then =
ali] := i;

i:=1+ 1;
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The Domain of Interval Analysis

@ The domain (Int, C) of intervals over Z is defined by
Int :={[z1,2]|z1 € ZU{—0},z0 € ZU{+00}},z1 < 2} U {0}

where
e —00 <2z z< 400, and —oo < +oo (for all z € Z)
o O C I (forall I € Int)
o [y1,¥2] C lz1,2] iff 2 < y1 and y» < 2
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The Domain of Interval Analysis

@ The domain (Int, C) of intervals over Z is defined by
Int :={[z1,2]|z1 € ZU{—0},z0 € ZU{+00}},z1 < 2} U {0}

where
e —00 <2z z< 400, and —oo < +oo (for all z € Z)
o O C I (forall I € Int)
o [y1,y2] C[z1,2] iff 2z < y1and yr < 2
e (Int,C) is a complete lattice with (for every Z C Int)

Lo if 7=0orZ=1{0}
|—| ~ 1[Z1,2Z2] otherwise

Z]_ = HZU{—OO}{Z]‘ ‘ [21722] € I}
Zz = |_|ZU{+OO}{22 | [21722] € I}
(and thus L =0, T = [—o0, +0])

where
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The Domain of Interval Analysis

@ The domain (Int, C) of intervals over Z is defined by

Int :={[z1,2]|z1 € ZU{—0},z0 € ZU{+00}},z1 < 2} U {0}

where
e —00 <2z z< 400, and —oo < +oo (for all z € Z)
o O C I (forall I € Int)
o [y1,y2] C[z1,2] iff 2z < y1and yr < 2
e (Int,C) is a complete lattice with (for every Z C Int)

- if 7=0orZ=1{0}
|—| [Zl, Zy] otherwise

Zy = [p—oaiiar | [21, 2] € I}
2 = pupie{z2 | [21, 2] € T}
(and thus L =0, T = [—o00,+q])
o Clearly (Int,C) has infinite ascending chains, such as

PCL,1]CL,2]CL3C..

where
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The Complete Lattice of Interval Analysis

[—OO,-‘,—OO]
[~o0,1] : ) (-1, +o0]
/ AN
[—O0,0] N [_2’2] L [0"’_00]
/ N L AN
[790771] N [725 1] [7172] , [1,+OO]
‘ SN N
[-2,0] [-1,1] [0,2]
NV N NV N
[-2,-1] [-1,0] [0,1] [1,2]
SN SN SN SN
el 27 [-1,-1] [0,0] [1,1] 2,2 .-

""""" =
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