
Static Program Analysis
Lecture 8: Dataflow Analysis VII
(Interval Analysis & Widening)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Repetition: Dataflow Analysis with Non-ACC Domains

2 Formalizing Interval Analysis

3 Applying Widening to Interval Analysis

Static Program Analysis Summer Semester 2011 8.2

Dataflow Analysis with Non-ACC Domains

Reminder: (D,v) satisfies ACC if each ascending chain
d1 v d2 v . . . eventually stabilizes, i.e., there exists n ∈ N such that
dn = dn+1 = . . .

If height (= maximal chain length) of (D,v) is m, then fixpoint
computation terminates after ≤ |L| ·m iterations

But: if (D,v) has infinite ascending chains
=⇒ algorithm may not terminate

Solution: use widening operators to enforce termination

Static Program Analysis Summer Semester 2011 8.3

Widening Operators

Definition (Widening operator)

Let (D,v) be a complete lattice. A mapping ∇ : D × D → D is called
widening operator if

for every d1, d2 ∈ D,
d1 t d2 v d1∇d2

and

for all ascending chains d0 v d1 v . . ., the ascending chain
d∇0 v d∇1 v . . . eventually stabilizes where

d∇0 := d0 and d∇i+1 := d∇i ∇di+1 for i ∈ N

Remarks:

(d∇i)i∈N is clearly an ascending chain as
d∇i+1 = d∇i ∇di+1 w d∇i t di+1 w d∇i

In contrast to t, ∇ does not have to be commutative, associative,
monotonic, nor absorptive (d∇d = d)

The requirement d1 t d2 v d1∇d2 guarantees soundness of widening

Static Program Analysis Summer Semester 2011 8.4

The Domain of Interval Analysis

The domain (Int,⊆) of intervals over Z is defined by

Int := {[z1, z2] | z1 ∈ Z ∪ {−∞}, z2 ∈ Z ∪ {+∞}}, z1 ≤ z2} ∪ {∅}
where

−∞ ≤ z , z ≤ +∞, and −∞ ≤ +∞ (for all z ∈ Z)
∅ ⊆ I (for all I ∈ Int)
[y1, y2] ⊆ [z1, z2] iff z1 ≤ y1 and y2 ≤ z2

(Int,⊆) is a complete lattice with (for every I ⊆ Int)⊔
I =

{
∅ if I = ∅ or I = {∅}
[Z1,Z2] otherwise

where
Z1 :=

d
Z∪{−∞}{z1 | [z1, z2] ∈ I}

Z2 :=
⊔

Z∪{+∞}{z2 | [z1, z2] ∈ I}
(and thus ⊥ = ∅, > = [−∞,+∞])

Clearly (Int,⊆) has infinite ascending chains, such as

∅ ⊆ [1, 1] ⊆ [1, 2] ⊆ [1, 3] ⊆ . . .

Static Program Analysis Summer Semester 2011 8.5

The Complete Lattice of Interval Analysis

∅

[−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2]

[−2,−1] [−1, 0] [0, 1] [1, 2]

[−2, 0] [−1, 1] [0, 2]

[−2, 1] [−1, 2]

[−2, 2]

[−∞,−1]

[−∞, 0]

[−∞, 1] [−1,+∞]

[0,+∞]

[1,+∞]

[−∞,+∞]

Static Program Analysis Summer Semester 2011 8.6

Outline

1 Repetition: Dataflow Analysis with Non-ACC Domains

2 Formalizing Interval Analysis

3 Applying Widening to Interval Analysis

Static Program Analysis Summer Semester 2011 8.7

Formalizing Interval Analysis I

The dataflow system S = (L,E ,F , (D,v), ι, ϕ) is given by

set of labels L := Lc ,

extremal labels E := {init(c)} (forward problem),

flow relation F := flow(c) (forward problem),

complete lattice (D,v) where

D := {δ | δ : Var c → Int}
δ1 v δ2 iff δ1(x) ⊆ δ2(x) for every x ∈ Var c

ι := >D : Var c → Int : x 7→ >Int = [−∞,+∞]

ϕ: see next slide

Static Program Analysis Summer Semester 2011 8.8

Formalizing Interval Analysis II

Transfer functions {ϕl | l ∈ L} are defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := [z , z]

valδ(a1+a2) := valδ(a1)⊕ valδ(a2)
valδ(a1-a2) := valδ(a1)	 valδ(a2)
valδ(a1*a2) := valδ(a1)� valδ(a2)

with
∅ ⊕ I := I ⊕ ∅ := ∅ 	 I := . . . := ∅

[y1, y2]⊕ [z1, z2] := [y1 + z1, y2 + z2]
[y1, y2]	 [z1, z2] := [y1 − z2, y2 − z1]
[y1, y2]� [z1, z2] := [miny∈[y1,y2],z∈[z1,z2] y · z ,maxy∈[y1,y2],z∈[z1,z2] y · z]

Remarks:
Possible refinement of DFA to take conditional blocks bl into account

essentially: b as edge label, ϕl(δ)(x) = δ(x) \ {z ∈ Z | x = z =⇒ ¬b}
(cf. “Conditions and Assertions” later)

Important: soundness and optimality of abstract operations
soundness: z1 ∈ I1, z2 ∈ I2 =⇒ z1 + z2 ∈ I1 ⊕ I2
optimality: I1 ⊕ I2 as small as possible

Static Program Analysis Summer Semester 2011 8.9

Outline

1 Repetition: Dataflow Analysis with Non-ACC Domains

2 Formalizing Interval Analysis

3 Applying Widening to Interval Analysis

Static Program Analysis Summer Semester 2011 8.10

Applying Widening to Interval Analysis

A widening operator: ∇ : Int × Int → Int with
∅∇I := I∇∅ := I

[x1, x2]∇[y1, y2] := [z1, z2] where

z1 :=

{
x1 if x1 ≤ y1

−∞ otherwise

z2 :=

{
x2 if y2 ≤ x2

+∞ otherwise

Widening turns infinite ascending chain
I0 = ∅ ⊆ I1 = [1, 1] ⊆ I2 = [1, 2] ⊆ I3 = [1, 3] ⊆ . . .

into a finite one:
I∇0 = I0 = ∅
I∇1 = I∇0 ∇I1 = ∅∇[1, 1] = [1, 1]
I∇2 = I∇1 ∇I2 = [1, 1]∇[1, 2] = [1,+∞]
I∇3 = I∇2 ∇I3 = [1,+∞]∇[1, 3] = [1,+∞]

In fact, the maximal chain length arising with this operator is 4:
∅ ⊆ [3, 7] ⊆ [3,+∞] ⊆ [−∞,+∞]

Static Program Analysis Summer Semester 2011 8.11

Worklist Algorithm with Widening I

Goal: extend Algorithm 5.2 by widening to ensure termination

Algorithm 8.1 (Worklist algorithm with widening)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W

for l ∈ L do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W); W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′∇ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}, denoted by fix∇(ΦS)

Remark: due to widening, only fix(ΦS) v fix∇(ΦS) is guaranteed
(cf. Thm. 5.4)

Static Program Analysis Summer Semester 2011 8.12

Worklist Algorithm with Widening II

Example 8.2

[x := 1]1

while [. . .]2

[x := x + 1]3

Transfer functions (for δ(x) = I):

ϕ1(I) = [1, 1]

ϕ2(I) = I

ϕ3(∅) = ∅
ϕ3([x1, x2]) = [x1 + 1, x2 + 1]

Application of worklist algorithm (on the board)

1 without widening: does not terminate

2 with widening: terminates with expected result for AI2 ([1,+∞])

Static Program Analysis Summer Semester 2011 8.13

	Repetition: Dataflow Analysis with Non-ACC Domains
	Formalizing Interval Analysis
	Applying Widening to Interval Analysis

