Static Program Analysis

Lecture 8: Dataflow Analysis VII
(Interval Analysis & Widening)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

@ Repetition: Dataflow Analysis with Non-ACC Domains

“w.rH Static Program Analysis Summer Semester 2011 8.2

Dataflow Analysis with Non-ACC Domains

e Reminder: (D, C) satisfies ACC if each ascending chain
di C dh C ... eventually stabilizes, i.e., there exists n € N such that
dn = dn4+1 = .-

@ If height (= maximal chain length) of (D,C) is m, then fixpoint
computation terminates after < |L| - m iterations

@ But: if (D,C) has infinite ascending chains
— algorithm may not terminate

@ Solution: use widening operators to enforce termination

“er Static Program Analysis Summer Semester 2011 8.3

Widening Operators

Definition (Widening operator)

Let (D,C) be a complete lattice. A mapping V : D x D — D is called
widening operator if
o for every di,dr € D,
dUd, C diVdy
and
o for all ascending chains dy C d; C ..., the ascending chain
dy C dY C ... eventually stabilizes where
doV = dp and dv1 = d Vdiyq for i € N

Remarks:

o (d¥)jen is clearly an ascending chain as
d¥, =d¥Vdip1 3 dY Udiyy JdY
@ In contrast to LI, V does not have to be commutative, associative,
monotonic, nor absorptive (dVd = d)
@ The requirement di U dr C dqVd guarantees soundness of widening

RWTH Static Program Analysis Summer Semester 2011 8.4

The Domain of Interval Analysis

@ The domain (Int, C) of intervals over Z is defined by

Int :={[z1,2]|z1 € ZU{—0},z0 € ZU{+00}},z1 < 2} U {0}

where
e —00 <2z z< 400, and —oo < +oo (for all z € Z)
o O C I (forall I € Int)
o [y1,y2] C[z1,2] iff 2z < y1and yr < 2
e (Int,C) is a complete lattice with (for every Z C Int)

- if T =0orZ=1{0}
|—| [Zl, Zy] otherwise

Zy = [g—ooiiar | [21, 2] € I}
2 = pupge{z2 | [21, 2] € T}
(and thus L =0, T = [—o00, +q])
@ Clearly (Int,C) has infinite ascending chains, such as

PCL,1]CL,2]CL,3C..

where

“er Static Program Analysis Summer Semester 2011 8.5

The Complete Lattice of Interval Analysis

[—OO,-‘,—OO]
[~o0,1] :) (-1, +o0]
/ AN
[—O0,0] N [_2’2] L [0"’_00]
/ N L AN
[790771] N [725 1] [7172] , [1,+OO]
‘ SN N
[-2,0] [-1,1] [0,2]
NV N NV N
[-2,-1] [-1,0] [0,1] [1,2]
SN SN SN SN
el 27 [-1,-1] [0,0] [1,1] 2,2 .-

""""" =

“er Static Program Analysis Summer Semester 2011 8.6

© Formalizing Interval Analysis

“er Static Program Analysis Summer Semester 2011 8.7

Formalizing Interval Analysis |

The dataflow system S = (L, E, F,(D,C),,) is given by
@ set of labels L := L,
e extremal labels E := {init(c)} (forward problem),

o flow relation F := flow(c) (forward problem),
e complete lattice (D, C) where

o D:={6|d: Var. — Int}

e 1 C dy iff d1(x) C da(x) for every x € Var,

@ 1:=Tp: Varc = Int: x— T = [—00, +09]

@ : see next slide

“er Static Program Analysis Summer Semester 2011 8.8

Formalizing Interval Analysis |l

Transfer functions {¢; | | € L} are defined by
(5) =) if B! = skip or B' € BExp
POV = 6[x s valg(a)] if B! = (x := a)

where Is(ar+a2) := val(a1) & vals(an)
L vals(ai+arz) := vals(air) @ vals(az
t‘;?gg _ ?z(xz] vals(ai-az) := vals(a1) © vals(az)
o\ ’ vals(ai*ay) := vals(a1) ® vals(az)
with

ol =1aod=0l=...=0
v1, 2] © [z1, 2] == [y1 + 21, y2 + 2]
v1,2] © [z1, 2] == [y1 — 22, y2 — 1]
1, y2l © [21, 22] == [Minyepy, o) ze(z,2] Y - 2 MaXyely ol zelz,22] Y~ Z]
Remarks:
@ Possible refinement of DFA to take conditional blocks b’ into account
o essentially: b as edge label, ¢/(8)(x) =0(x)\{z €Z | x =2z = —b}
(cf. “Conditions and Assertions” later)
@ Important: soundness and optimality of abstract operations
e soundness: z1 € h,z € b = z1+2€ h®h
e optimality: /1 @ k as small as possible

RWTH Static Program Analysis Summer Semester 2011 8.9

© Applying Widening to Interval Analysis

“er Static Program Analysis Summer Semester 2011 8.10

Applying Widening to Interval Analysis

@ A widening operator: V : Int X Int — Int with
OVI = 1IVD =1
[x1, x2])V[y1, y2] := [21,22] where
X1 if x1 <y
—oo otherwise
x2 ifya <x
400 otherwise

zZ1 =

Zy =

@ Widening turns infinite ascending chain
h=0Ch=[1]Ch=[1,21Ch=][L3]C...
into a finite one:
W=l=0
I =IyVh=0V[1,1] =[1,1]
Y = 1YVh=[1,1]V[1,2] = [1, +o0]
Iy = IV = [1,400]V[1,3] = [1, +0o0]
@ In fact, the maximal chain length arising with this operator is 4:
@ c [377] - [3,—|—OO] - [—OO,—i—OO]

“er Static Program Analysis Summer Semester 2011 8.11

Worklist Algorithm with Widening |

Goal: extend Algorithm 5.2 by widening to ensure termination

Algorithm 8.1 (Worklist algorithm with widening)
Input: dataflow system S = (L, E, F,(D,C),¢,)
Variables: W e (Lx L)*, {Al; e D|l€ L}
Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialize W
for | € L do % Initialize Al
if | € E then Al, := . else Al, := 1 p;
while W # ¢ do
(1,1") :== head(W); W := tail(W);
if p;(Al}) Z Al then % Fixpoint not yet reached
Alp = Alp Ve (Al);
for (I',1") € F do
if (I,1") not in W then W :=(I',1") - W;

Output: {Al; | I € L}, denoted by fix" (®s)

Remark: due to widening, only fix(®s) C fix¥ (®s) is guaranteed
(cf. Thm. 5.4)

Rer Static Program Analysis Summer Semester 2011

8.12

Worklist Algorithm with Widening II

Example 8.2

Transfer functions (for 4(x) = /):

e1(/)
p2(1)
¢3(0)
©3([x1, x2])

Application of worklist algorithm (on the board)

© without widening: does not terminate

[1,1]

/

0

= [+1,x+1]

@ with widening: terminates with expected result for Aly ([1, +0o¢])

RWTH Static Program Analysis

Summer Semester 2011

8.13

	Repetition: Dataflow Analysis with Non-ACC Domains
	Formalizing Interval Analysis
	Applying Widening to Interval Analysis

