Static Program Analysis

Lecture 9: Dataflow Analysis VIII
(Narrowing & DFA with Conditional Branches)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spall/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

© Repetition: Widening

“er Static Program Analysis Summer Semester 2011 9.2

Widening Operators

Definition (Widening operator)

Let (D,C) be a complete lattice. A mapping V : D x D — D is called
widening operator if
o for every di,dr € D,
dUd, C diVdy
and
o for all ascending chains dy C d; C ..., the ascending chain
dy C dY C ... eventually stabilizes where
doV = dp and dv1 = d Vdiyq for i € N

Remarks:

o (d¥)jen is clearly an ascending chain as
d¥, =d¥Vdip1 3 dY Udiyy JdY
@ In contrast to LI, V does not have to be commutative, associative,
monotonic, nor absorptive (dVd = d)
@ The requirement di U dr C dqVd guarantees soundness of widening

RWTH Static Program Analysis Summer Semester 2011 9.3

Applying Widening to Interval Analysis

@ A widening operator: V : Int X Int — Int with
OVI = 1IVD =1
[x1, x2])V[y1, y2] := [21,22] where
X1 if x1 <y
—oo otherwise
x2 ifya <x
400 otherwise

zZ1 =

Zy =

@ Widening turns infinite ascending chain
h=0Ch=[1]Ch=[1,21Ch=][L3]C...
into a finite one:
¥=l=0
I = IyVh=0V[1,1] = [1,1]
Y = 1YVh=[1,1]V[1,2] = [1, +o0]
Iy = IV = [1,400]V[1,3] = [1, +0o0]
@ In fact, the maximal chain length arising with this operator is 4:
@ c [377] - [3,—|—OO] - [—OO,—i—OO]

“er Static Program Analysis Summer Semester 2011 9.4

Worklist Algorithm with Widening

Goal: extend Algorithm 5.2 by widening to ensure termination

Algorithm (Worklist algorithm with widening)
Input: dataflow system S = (L, E, F,(D,C),¢,)
Variables: W e (Lx L)*, {Al; e D|l€ L}
Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialize W
for | € L do % Initialize Al
if | € E then Al, := . else Al, := 1 p;
while W +# ¢ do
(1,1") :== head(W); W := tail(W);
if p;(Al}) Z Al then % Fixpoint not yet reached
Alp = Alp Vo (Al);
for (I',1") € F do
if (I,1") not in W then W := (I',1") - W;

Output: {Al; | I € L}, denoted by fix" (®s)

Remark: due to widening, only fix(®s) C fix¥ (®s) is guaranteed
(cf. Thm. 5.4)

Rer Static Program Analysis Summer Semester 2011

9.5

© Narrowing

“er Static Program Analysis Summer Semester 2011 9.6

Another Widening Example

Transfer functions (for d(x) = /):

() = [L,1]
o) = |1
e3(l) = [2,2]
wa(0) = 0
ea([x1,x]) = [x1+1,x+1]

Application of worklist algorithm
Q without widening (omitted):
terminates with expected result for Al, ([1, 3])

@ with widening (on the board):
terminates with unexpected result for Aly ([1, +oc])

v

“w.rH Static Program Analysis Summer Semester 2011 9.7

Idea of Narrowing

@ Observation: widening can lead to unnecessarily imprecise results

@ Solution: improvement by iterating again from the result obtained by
widening (i.e., from fixV (®s))
= compute ®X(fix" (Ps)) for k=1,2,...
o Soundness: fix(®s) C fix¥ ($s)
= fix(Ps) = PL(fix(Ps)) T PL(fix" (Ps))
(since ®s and thus ®& monotonic)

“er Static Program Analysis Summer Semester 2011 9.8

Narrowing Example

Example 9.2 (cf. Example 9.1)
Transfer functions (for d(x) = /):

e1(l) = [1,1]
e2(l) = 1
e3(l) = [2,2]
pa(0) = 0
ea([x1,%2]) = [Pa+1x+1]
Narrowing: | Aly Al, Alz Aly

fixV (ds) [—00,4+00] [1,+00] [1,400] [2,2]
ds(fixV(ds)) | [oo, +00] [1,3] [1,4+o<] [2,2]
% (fixV(Ps)) | [-o0, +o0] [1,3] [1,3] [2,2]
L (fixV(Ps)) | [-o0, +oo] [1,3] [1,3] [2,2]

Rer Static Program Analysis

Narrowing in Practice

@ Problem: narrowing may not terminate
(due to infinite descending chains)

@ But: possible to stop after every step without losing soundness

@ In practice: termination often ensured by using narrowing operators
(= counterpart of widening operator; definition omitted)

“er Static Program Analysis Summer Semester 2011 9.10

© Taking Conditional Branches into Account

“er Static Program Analysis Summer Semester 2011 9.11

Taking Conditional Branches into Account |

@ So far: values of conditions have been ignored in analysis

@ Essentially: if and while statements treated as nondeterministic
choice between the two branches

Example 9.3

@ Interval analysis (with widening) yields for /:
y = 0; x € [—00, +00]
z := 0; y € [0, +o0]
while [x > 0]/ do z € [—o0, +0o0]
if y < 17 then
y =y +1 T
= 3= = o @ Too pessimistic! In fact,
x = x -1 x € [~00, +00]
y € [0,17]
z € [0, +o0]
RWTH Static Program Analysis Summer Semester 2011 9.12

Taking Conditional Branches into Account Il

@ Solution: introduce transfer functions for branches
e First approach: attach (negated) conditions as labels to control flow
edges
e advantage: no language modification required
e disadvantage: entails extension of DFA framework
o will not be considered here
e Second approach: encode conditions as assertions (statements)

e advantage: DFA framework can be reused
o disadvantage: entails extension of WHILE language
o the way we will follow

“er Static Program Analysis Summer Semester 2011 9.13

First Approach: Conditions as Edge Labels

Example 9.4 (cf. Example 9.3)

-(x > 0)

-(y < 17)

v

RWTH Static Program Analysis Summer Semester 2011 9.14

Second Approach: Conditions as Assertions

Example 9.5 (cf. Example 9.3)

y := 0;
z := 0;
while x > 0 do
assert x > 0;
if y < 17 then
assert y < 17;

y :=y + 1;
Z =z + X;
X :=x - 1;

assert —(x > 0);

“er Static Program Analysis

Summer Semester 2011

9.15

Extending the Syntax of WHILE Programs

Definition 9.6 (Labeled WHILE programs with assertions)

The syntax of labeled WHILE programs with assertions is defined by the
following context-free grammar:

a.; =z | X | aitar | al—ar | ai*xas € AEXp
b=t | ai=ar | a;>ar | -b ‘ biA\b; | bi1Vby € BExp
c == [skip]' | [x := 3] | 152 |
if [b])’ then ¢; else ¢ | while [b]' do c | [assert b]' € Cmd

v

To be done:
@ Definition of transfer functions for assert blocks
(depending on analysis problem)
o ldea: assertions as filters that let only “valid” information pass

RWTH Static Program Analysis Summer Semester 2011 9.16

e Constant Propagation Analysis with Assertions

“er Static Program Analysis Summer Semester 2011 9.17

Constant Propagation Analysis with Assertions |

So far:
e Complete lattice (D, C) where
o D:={0]6:Varc -~ ZU{L, T}}
e §(x) =z € Z: x has constant value z

@ §(x) = L: x undefined
@ 0(x) = T: x overdefined (i.e., different possible values)

e T C D x D defined by pointwise extension of 1L C zC T
(for every z € Z)
e Transfer functions {¢; | | € L} defined by
if B! = skip or B! € BExp

ei(8) =10
T 6[x = vals(a)] if B = (x :=a)
where
. znopz fz,z0€Z
‘\2?%}3 o g(x) vals(ag op a2) == ¢ L ifz1=_lorz=_1
J T T otherwise

for z; := vals(a1) and z := vals(az)

“er Static Program Analysis

Summer Semester 2011 9.18

Constant Propagation Analysis with Assertions |l

Additionally for B! = (assert b), § : Var. = ZU{L, T} and x € Var,:

1L if fo € T : val,(b) = true
0i(0)(x) == {z if Vo € X5 : val,(b) =true = o(x) =z
T otherwise

where

@ the set of J-assignments is given by

Y5 = {O'Z Var. — 7Z

0 if 5(y) = L
Yy € Varc:o(y) € {{z} if 6(y) =z }
Z y)=T

(and thus X5 = 0 iff §(y) = L for some y € Var,)
@ the evaluation function val, : BExp — B is defined by
true if val,(b) =

valy(—b) := { false

valy(t) : false otherwise

val,(a1=az) :

I
—~
S
—
Q
—
(Y]
flary
~—
Il

true if val,(by) =
va a
o(22)) valy(biAby) = val,(by) = true
false otherwise
etc.
“er Static Program Analysis Summer Semester 2011 9.19

Constant Propagation Analysis with Assertions IlI

Example 9.7
Q Varc={x,y,z},6=(L, 1, T)
x y z

= Qassert b(5) = (J_, 4, J_) for every b € BExp

Q@ Varc={x,y,z},6=(1,2 , T)

X y
— Ys={(1,2,2)|z€Z

1
= Passert x—y((s) - (J_ _L,J_)
Passert y_z((S) = (1,2,2)
Passert y<z(5) = (1,2, T)
Passert x<=z/\y>z(5) = (1,2, 1)

Remarks:
o Note that for B/ = (assert b) and 6 : Varc — ZU{L, T},
¢1(6) € 6 and hence ¥, 5y C L5 (“filter")

e If CP/(x) = L for some | € L. and x € Var, then [is unreachable
RWTH Static Program Analysis Summer Semester 2011 9.20

© Interval Analysis with Assertions

“er Static Program Analysis Summer Semester 2011 9.21

Interval Analysis with Assertions |

So far:
@ The domain (Int, C) of intervals over Z is defined by
Int . ={[z1,2] | 21 € ZU{—0},20 € ZU {+00}},z1 < 2o} U {0}
where
o —00 <z, z< 400, and —o0 < +oo (for all z € Z)
o O C I (forall I € Int)
o yi,)2] Clz1, 2] iff 2z < yrand yo < 2
e Transfer functions {¢; | | € L} are defined by
(6) = 1) if B/ = skip or B! € BExp
PROZ6[x = valg(a)] if B! = (x := a)

where Is(ar+a0) = vals(a1) & vals(2)
L vals(ai+asz) := vals(ay) @ vals(az
tz;égg _ ?Z(XZ)] vals(a1-az) := vals(a1) © vals(a2)
ARV vals(ai*ay) := vals(a1) © vals(az)
with

Dl =100 =06l :=...:=10
[v1, y2] © [z1, 22] := [y1 + 21, y2 + 22]
[v1,y2] © [21, 22] := [y1 — 22, y2 — z1]
[}/Ia)/Z] © [Zla Z2] : [minyE[yl,yz],ZE[Zl,ZZ] Y - Z,MaXycly,yl,z€[z1,2] Y Z]

RWTH Static Program Analysis Summer Semester 2011 (]

Interval Analysis with Assertions |l

Additionally for B = (assert b), § : Var — ZU{L, T} and x € Var.:

0 if o € s : val,(b) = true

@1(0)(x) == { [HZU{foo} Z, I_IZU{+OO} Z] otherwise

where
o Z:={o(x)| o€ Xs,val,(b) = true}

@ Ys:={0:Varc > 7Z|Vy € Var.:o(y) € 4(y)}
(and thus X5 = 0 iff 5(y) = 0 for some y € Var,)

e val, : BExp — B as before

“er Static Program Analysis Summer Semester 2011 9.23

Interval Analysis with Assertions |1l
Example 9.8

Varc = {x,y}, 6 = ([-00, 2], [0, +0])
N — N —
X y
— (Passert x>0(5) = ([172]7 [07 +OO])
Passert x=y(5) = ([07 2]7 [07 2])
Passert x>y(5) = ([17 2]7 [07 1])
Passert x<y(6) = ([_007 2]7 [07 +OO])

Remarks:

o Again for B! = (assert b)and 6 : Var. — ZU{L, T}, o(6)C 6
and hence ¥, 5y C X5 (“filter")

e Again if Alj(x) = () for some | € L. and x € Var,, then [is
unreachable

RWTH Static Program Analysis Summer Semester 2011 9.24

Interval Analysis with Assertions IV

Example 9.9 (Interval analysis for ; cf. Example 7.7)

¢1(1) = [0,0]
ea(1) =1
p3(1) = 1N [—o0,42]
ea(l) =1
es(0) =0
905([11,/2]) =[h+10+1]
we(l) = Iﬂ[43 +00]
w Aly Al Als Aly Als Alg Al7
12,23, 34,45,52,26,67 | [—00, +00 [1) 0 [0 [
23,34,45,52, 26,67 | [—o0,+oo] [0,0] 0 0 0 0 0
34,45,52,26,67 | [-0o,+0o0] [0,0] [0,0] 0) 0 0
45,52,26,67 | [-oo,+c0] [0,0] [0,0] [0,0] 0 0 0
52,26,67 | [—oo,+o0] [0,0] [0,0] [0,0] [0,0] 0 0
23,26,67 | [—00, +o0] [0,4+00] [0,0] [0,0] [0,0] 0 0
34,26,67 | [—00,+00] [0, +00] [0, +0o0] [0,0] [0,0] 0 0
45,26,67 | [—00,+00] [0, +00] [0, +o0] [0,42] [0,0] 0 0
52,26,67 | [—o00, +00] [0, +o0] [0,+00] [0,42] [0,42] 0
26,67 | [—oo,+0o0] [0, +00] [0, +0c0] [0,42] [0,42] @ 0
67 | [—o0, +00] [0,+00] [0, +00] [0,42] [0,42] [0, +0o0] 0
e | [—oo, +o0] [0, +00] [0, +00] [0,42] [0,42] [0, +00] [43, +0c0]

Rer Static Program Analysis Summer Semester 2011 9.25

	Repetition: Widening
	Narrowing
	Taking Conditional Branches into Account
	Constant Propagation Analysis with Assertions
	Interval Analysis with Assertions

