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Widening Operators

Definition (Widening operator)

Let (D,C) be a complete lattice. A mapping V : D x D — D is called
widening operator if
o for every di,dr € D,
dUd, C diVdy
and
o for all ascending chains dy C d; C ..., the ascending chain
dy C dY C ... eventually stabilizes where
doV = dp and dv1 = d Vdiyq for i € N

Remarks:

o (d¥)jen is clearly an ascending chain as
d¥, =d¥Vdip1 3 dY Udiyy JdY
@ In contrast to LI, V does not have to be commutative, associative,
monotonic, nor absorptive (dVd = d)
@ The requirement di U dr C dqVd guarantees soundness of widening
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Applying Widening to Interval Analysis

@ A widening operator: V : Int X Int — Int with
OVI = 1IVD =1
[x1, x2])V[y1, y2] := [21,22] where
X1 if x1 <y
—oo  otherwise
x2  ifya <x
400 otherwise

zZ1 =

Zy =

@ Widening turns infinite ascending chain
h=0Ch=[1]Ch=[1,21Ch=][L3]C...
into a finite one:
¥=l=0
I = IyVh=0V[1,1] = [1,1]
Y = 1YVh=[1,1]V[1,2] = [1, +o0]
Iy = IV = [1,400]V[1,3] = [1, +0o0]
@ In fact, the maximal chain length arising with this operator is 4:
@ c [377] - [3,—|—OO] - [—OO,—i—OO]
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Worklist Algorithm with Widening

Goal: extend Algorithm 5.2 by widening to ensure termination

Algorithm (Worklist algorithm with widening)
Input: dataflow system S = (L, E, F,(D,C),¢, )
Variables: W e (Lx L)*, {Al; e D|l€ L}
Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialize W
for | € L do % Initialize Al
if | € E then Al, := . else Al, := 1 p;
while W +# ¢ do
(1,1") :== head(W); W := tail(W);
if p;(Al}) Z Al then % Fixpoint not yet reached
Alp = Alp Vo (Al);
for (I',1") € F do
if (I,1") not in W then W := (I',1") - W;

Output: {Al; | I € L}, denoted by fix" (®s)

Remark: due to widening, only fix(®s) C fix¥ (®s) is guaranteed
(cf. Thm. 5.4)
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© Narrowing
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Another Widening Example

Transfer functions (for d(x) = /):

() = [L,1]
o) = |1
e3(l) = [2,2]
wa(0) = 0
ea([x1,x]) = [x1+1,x+1]

Application of worklist algorithm
Q without widening (omitted):
terminates with expected result for Al, ([1, 3])

@ with widening (on the board):
terminates with unexpected result for Aly ([1, +oc])

v
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Idea of Narrowing

@ Observation: widening can lead to unnecessarily imprecise results

@ Solution: improvement by iterating again from the result obtained by
widening (i.e., from fixV (®s))
= compute ®X(fix" (Ps)) for k=1,2,...
o Soundness: fix(®s) C fix¥ ($s)
= fix(Ps) = PL(fix(Ps)) T PL(fix" (Ps))
(since ®s and thus ®& monotonic)
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Narrowing Example

Example 9.2 (cf. Example 9.1)
Transfer functions (for d(x) = /):

e1(l) = [1,1]
e2(l) = 1
e3(l) = [2,2]
pa(0) = 0
ea([x1,%2]) = [Pa+1x+1]
Narrowing: | Aly Al, Alz Aly

fixV (ds) [—00,4+00] [1,+00] [1,400] [2,2]
ds(fixV(ds)) | [oo, +00]  [1,3] [1,4+o<] [2,2]
% (fixV(Ps)) | [-o0, +o0]  [1,3] [1,3] [2,2]
L (fixV(Ps)) | [-o0, +oo]  [1,3] [1,3] [2,2]
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Narrowing in Practice

@ Problem: narrowing may not terminate
(due to infinite descending chains)

@ But: possible to stop after every step without losing soundness

@ In practice: termination often ensured by using narrowing operators
(= counterpart of widening operator; definition omitted)

“er Static Program Analysis Summer Semester 2011 9.10



© Taking Conditional Branches into Account
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Taking Conditional Branches into Account |

@ So far: values of conditions have been ignored in analysis

@ Essentially: if and while statements treated as nondeterministic
choice between the two branches

Example 9.3

@ Interval analysis (with widening) yields for /:
y = 0; x € [—00, +00]
z := 0; y € [0, +o0]
while [x > 0]/ do z € [—o0, +0o0]
if y < 17 then
y =y +1 T
= 3= = o @ Too pessimistic! In fact,
x = x -1 x € [~00, +00]
y € [0,17]
z € [0, +o0]
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Taking Conditional Branches into Account Il

@ Solution: introduce transfer functions for branches
e First approach: attach (negated) conditions as labels to control flow
edges
e advantage: no language modification required
e disadvantage: entails extension of DFA framework
o will not be considered here
e Second approach: encode conditions as assertions (statements)

e advantage: DFA framework can be reused
o disadvantage: entails extension of WHILE language
o the way we will follow
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First Approach: Conditions as Edge Labels

Example 9.4 (cf. Example 9.3)

-(x > 0)

-(y < 17)

v
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Second Approach: Conditions as Assertions

Example 9.5 (cf. Example 9.3)

y := 0;
z := 0;
while x > 0 do
assert x > 0;
if y < 17 then
assert y < 17;

y :=y + 1;
Z =z + X;
X :=x - 1;

assert —(x > 0);
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Extending the Syntax of WHILE Programs

Definition 9.6 (Labeled WHILE programs with assertions)

The syntax of labeled WHILE programs with assertions is defined by the
following context-free grammar:

a.; =z | X | aitar | al—ar | ai*xas € AEXp
b=t | ai=ar | a;>ar | -b ‘ biA\b; | bi1Vby € BExp
c == [skip]' | [x := 3] | 152 |
if [b])’ then ¢; else ¢ | while [b]' do c | [assert b]' € Cmd

v

To be done:
@ Definition of transfer functions for assert blocks
(depending on analysis problem)
o ldea: assertions as filters that let only “valid” information pass
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e Constant Propagation Analysis with Assertions
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Constant Propagation Analysis with Assertions |

So far:
e Complete lattice (D, C) where
o D:={0]6:Varc -~ ZU{L, T}}
e §(x) =z € Z: x has constant value z

@ §(x) = L: x undefined
@ 0(x) = T: x overdefined (i.e., different possible values)

e T C D x D defined by pointwise extension of 1L C zC T
(for every z € Z)
e Transfer functions {¢; | | € L} defined by
if B! = skip or B! € BExp

ei(8) =10
T 6[x = vals(a)] if B = (x :=a)
where
. znopz fz,z0€Z
‘\2?%}3 o g(x) vals(ag op a2) == ¢ L ifz1=_lorz=_1
J T T otherwise

for z; := vals(a1) and z := vals(az)
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Constant Propagation Analysis with Assertions |l

Additionally for B! = (assert b), § : Var. = ZU{L, T} and x € Var,:

1L if fo € T : val,(b) = true
0i(0)(x) == {z if Vo € X5 : val,(b) =true = o(x) =z
T otherwise

where

@ the set of J-assignments is given by

Y5 = {O'Z Var. — 7Z

0 if 5(y) = L
Yy € Varc:o(y) € {{z} if 6(y) =z }
Z y)=T

(and thus X5 = 0 iff §(y) = L for some y € Var,)
@ the evaluation function val, : BExp — B is defined by
true if val,(b) =

valy(—b) := { false

valy(t) : false otherwise

val,(a1=az) :

I
—~
S
—
Q
—
(Y]
flary
~—
Il

true if val,(by) =
va a
o(22)) valy(biAby) = val,(by) = true
false otherwise
etc.
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Constant Propagation Analysis with Assertions IlI

Example 9.7
Q Varc={x,y,z},6=(L, 1, T)
x y z

= Qassert b(5) = (J_, 4, J_) for every b € BExp

Q@ Varc={x,y,z},6=(1,2 , T)

X y
— Ys={(1,2,2)|z€Z

1
= Passert x—y((s) - (J_ _L,J_)
Passert y_z((S) = (1,2,2)
Passert y<z(5) = (1,2, T)
Passert x<=z/\y>z(5) = (1,2, 1)

Remarks:
o Note that for B/ = (assert b) and 6 : Varc — ZU{L, T},
¢1(6) € 6 and hence ¥, 5y C L5 (“filter")

e If CP/(x) = L for some | € L. and x € Var, then [ is unreachable
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© Interval Analysis with Assertions
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Interval Analysis with Assertions |

So far:
@ The domain (Int, C) of intervals over Z is defined by
Int . ={[z1,2] | 21 € ZU{—0},20 € ZU {+00}},z1 < 2o} U {0}
where
o —00 <z, z< 400, and —o0 < +oo (for all z € Z)
o O C I (forall I € Int)
o yi,)2] Clz1, 2] iff 2z < yrand yo < 2
e Transfer functions {¢; | | € L} are defined by
(6) = 1) if B/ = skip or B! € BExp
PROZ6[x = valg(a)] if B! = (x := a)

where Is(ar+a0) = vals(a1) & vals(2)
L vals(ai+asz) := vals(ay) @ vals(az
tz;égg _ ?Z(XZ)] vals(a1-az) := vals(a1) © vals(a2)
ARV vals(ai*ay) := vals(a1) © vals(az)
with

Dl =100 =06l :=...:=10
[v1, y2] © [z1, 22] := [y1 + 21, y2 + 22]
[v1,y2] © [21, 22] := [y1 — 22, y2 — z1]
[}/Ia)/Z] © [Zla Z2] : [minyE[yl,yz],ZE[Zl,ZZ] Y - Z,MaXycly,yl,z€[z1,2] Y Z]
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Interval Analysis with Assertions |l

Additionally for B = (assert b), § : Var — ZU{L, T} and x € Var.:

0 if o € s : val,(b) = true

@1(0)(x) == { [HZU{foo} Z, I_IZU{+OO} Z] otherwise

where
o Z:={o(x)| o€ Xs,val,(b) = true}

@ Ys:={0:Varc > 7Z|Vy € Var.:o(y) € 4(y)}
(and thus X5 = 0 iff 5(y) = 0 for some y € Var,)

e val, : BExp — B as before
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Interval Analysis with Assertions |1l
Example 9.8

Varc = {x,y}, 6 = ([-00, 2], [0, +0])
N — N —
X y
— (Passert x>0(5) = ([172]7 [07 +OO])
Passert x=y(5) = ([07 2]7 [07 2])
Passert x>y(5) = ([17 2]7 [07 1])
Passert x<y(6) = ([_007 2]7 [07 +OO])

Remarks:

o Again for B! = (assert b)and 6 : Var. — ZU{L, T}, o(6)C 6
and hence ¥, 5y C X5 (“filter")

e Again if Alj(x) = () for some | € L. and x € Var,, then [ is
unreachable
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Interval Analysis with Assertions IV

Example 9.9 (Interval analysis for ; cf. Example 7.7)

¢1(1) = [0,0]
ea(1) =1
p3(1) = 1N [—o0,42]
ea(l) =1
es(0) =0
905([11,/2]) =[h+10+1]
we(l) = Iﬂ[43 +00]
w Aly Al Als Aly  Als Alg Al7
12,23, 34,45,52,26,67 | [—00, +00 [ 1) 0 [ 0 [
23,34,45,52, 26,67 | [—o0,+oo] [0,0] 0 0 0 0 0
34,45,52,26,67 | [-0o,+0o0] [0,0] [0,0] 0 ) 0 0
45,52,26,67 | [-oo,+c0] [0,0] [0,0] [0,0] 0 0 0
52,26,67 | [—oo,+o0] [0,0] [0,0] [0,0] [0,0] 0 0
23,26,67 | [—00, +o0] [0,4+00] [0,0] [0,0] [0,0] 0 0
34,26,67 | [—00,+00] [0, +00] [0, +0o0] [0,0] [0,0] 0 0
45,26,67 | [—00,+00] [0, +00] [0, +o0] [0,42] [0,0] 0 0
52,26,67 | [—o00, +00] [0, +o0] [0,+00] [0,42] [0,42] 0
26,67 | [—oo,+0o0] [0, +00] [0, +0c0] [0,42] [0,42] @ 0
67 | [—o0, +00] [0,+00] [0, +00] [0,42] [0,42] [0, +0o0] 0
e | [—oo, +o0] [0, +00] [0, +00] [0,42] [0,42] [0, +00] [43, +0c0]
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