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Widening Operators

Definition (Widening operator)

Let (D,v) be a complete lattice. A mapping ∇ : D × D → D is called
widening operator if

for every d1, d2 ∈ D,
d1 t d2 v d1∇d2

and

for all ascending chains d0 v d1 v . . ., the ascending chain
d∇0 v d∇1 v . . . eventually stabilizes where

d∇0 := d0 and d∇i+1 := d∇i ∇di+1 for i ∈ N

Remarks:

(d∇i )i∈N is clearly an ascending chain as
d∇i+1 = d∇i ∇di+1 w d∇i t di+1 w d∇i

In contrast to t, ∇ does not have to be commutative, associative,
monotonic, nor absorptive (d∇d = d)

The requirement d1 t d2 v d1∇d2 guarantees soundness of widening
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Applying Widening to Interval Analysis

A widening operator: ∇ : Int × Int → Int with
∅∇I := I∇∅ := I

[x1, x2]∇[y1, y2] := [z1, z2] where

z1 :=

{
x1 if x1 ≤ y1

−∞ otherwise

z2 :=

{
x2 if y2 ≤ x2

+∞ otherwise

Widening turns infinite ascending chain
I0 = ∅ ⊆ I1 = [1, 1] ⊆ I2 = [1, 2] ⊆ I3 = [1, 3] ⊆ . . .

into a finite one:
I∇0 = I0 = ∅
I∇1 = I∇0 ∇I1 = ∅∇[1, 1] = [1, 1]
I∇2 = I∇1 ∇I2 = [1, 1]∇[1, 2] = [1,+∞]
I∇3 = I∇2 ∇I3 = [1,+∞]∇[1, 3] = [1,+∞]

In fact, the maximal chain length arising with this operator is 4:
∅ ⊆ [3, 7] ⊆ [3,+∞] ⊆ [−∞,+∞]
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Worklist Algorithm with Widening

Goal: extend Algorithm 5.2 by widening to ensure termination

Algorithm (Worklist algorithm with widening)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W

for l ∈ L do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W ); W := tail(W );
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′∇ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}, denoted by fix∇(ΦS)

Remark: due to widening, only fix(ΦS) v fix∇(ΦS) is guaranteed
(cf. Thm. 5.4)
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Another Widening Example

Example 9.1

[x := 1]1

while [. . .]2

[x := 2]3

[x := x + 1]4

Transfer functions (for δ(x) = I ):

ϕ1(I ) = [1, 1]

ϕ2(I ) = I

ϕ3(I ) = [2, 2]

ϕ4(∅) = ∅
ϕ4([x1, x2]) = [x1 + 1, x2 + 1]

Application of worklist algorithm

1 without widening (omitted):
terminates with expected result for AI2 ([1, 3])

2 with widening (on the board):
terminates with unexpected result for AI2 ([1,+∞])
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Idea of Narrowing

Observation: widening can lead to unnecessarily imprecise results

Solution: improvement by iterating again from the result obtained by
widening (i.e., from fix∇(ΦS))
=⇒ compute Φk

S(fix∇(ΦS)) for k = 1, 2, . . .

Soundness: fix(ΦS) v fix∇(ΦS)
=⇒ fix(ΦS) = Φk

S(fix(ΦS)) v Φk
S(fix∇(ΦS))

(since ΦS and thus Φk
S monotonic)
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Narrowing Example

Example 9.2 (cf. Example 9.1)

[x := 1]1

while [. . .]2

[x := 2]3

[x := x + 1]4

Transfer functions (for δ(x) = I ):

ϕ1(I ) = [1, 1]

ϕ2(I ) = I

ϕ3(I ) = [2, 2]

ϕ4(∅) = ∅
ϕ4([x1, x2]) = [x1 + 1, x2 + 1]

Narrowing: AI1 AI2 AI3 AI4
fix∇(ΦS) [−∞,+∞] [1,+∞] [1,+∞] [2, 2]

ΦS(fix∇(ΦS)) [−∞,+∞] [1, 3] [1,+∞] [2, 2]
Φ2
S(fix∇(ΦS)) [−∞,+∞] [1, 3] [1, 3] [2, 2]

Φ3
S(fix∇(ΦS)) [−∞,+∞] [1, 3] [1, 3] [2, 2]

Static Program Analysis Summer Semester 2011 9.9



Narrowing in Practice

Problem: narrowing may not terminate
(due to infinite descending chains)

But: possible to stop after every step without losing soundness

In practice: termination often ensured by using narrowing operators
(≈ counterpart of widening operator; definition omitted)
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Taking Conditional Branches into Account I

So far: values of conditions have been ignored in analysis

Essentially: if and while statements treated as nondeterministic
choice between the two branches

Example 9.3

y := 0;
z := 0;

while [x > 0]l do
if y < 17 then
y := y + 1

z := z + x;
x := x - 1;

Interval analysis (with widening) yields for l :

x ∈ [−∞,+∞]
y ∈ [0,+∞]
z ∈ [−∞,+∞]

Too pessimistic! In fact,

x ∈ [−∞,+∞]
y ∈ [0, 17]
z ∈ [0,+∞]
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Taking Conditional Branches into Account II

Solution: introduce transfer functions for branches

First approach: attach (negated) conditions as labels to control flow
edges

advantage: no language modification required
disadvantage: entails extension of DFA framework
will not be considered here

Second approach: encode conditions as assertions (statements)

advantage: DFA framework can be reused
disadvantage: entails extension of WHILE language
the way we will follow
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First Approach: Conditions as Edge Labels

Example 9.4 (cf. Example 9.3)

[y := 0]1

[z := 0]2

while [x > 0]3 ¬(x > 0)

if [y < 17]4

[y := y + 1]5

[z := z + x]6

[x := x - 1]7

x > 0

y < 17 ¬(y < 17)
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Second Approach: Conditions as Assertions

Example 9.5 (cf. Example 9.3)

y := 0;
z := 0;
while x > 0 do
assert x > 0;
if y < 17 then
assert y < 17;
y := y + 1;

z := z + x;
x := x - 1;

assert ¬(x > 0);
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Extending the Syntax of WHILE Programs

Definition 9.6 (Labeled WHILE programs with assertions)

The syntax of labeled WHILE programs with assertions is defined by the
following context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= [skip]l | [x := a]l | c1;c2 |

if [b]l then c1 else c2 | while [b]l do c | [assert b]l ∈ Cmd

To be done:

Definition of transfer functions for assert blocks
(depending on analysis problem)

Idea: assertions as filters that let only “valid” information pass

Static Program Analysis Summer Semester 2011 9.16



Outline

1 Repetition: Widening

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

5 Interval Analysis with Assertions

Static Program Analysis Summer Semester 2011 9.17



Constant Propagation Analysis with Assertions I

So far:
Complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z
δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Transfer functions {ϕl | l ∈ L} defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := z

valδ(a1 op a2) :=

z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := valδ(a1) and z2 := valδ(a2)
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Constant Propagation Analysis with Assertions II

Additionally for B l = (assert b), δ : Var c → Z ∪ {⊥,>} and x ∈ Var c :

ϕl(δ)(x) :=

{⊥ if @σ ∈ Σδ : valσ(b) = true
z if ∀σ ∈ Σδ : valσ(b) = true =⇒ σ(x) = z
> otherwise

where

the set of δ-assignments is given by

Σδ :=

{
σ : Var c → Z

∣∣∣∣∣∀y ∈ Var c : σ(y) ∈

{∅ if δ(y) = ⊥
{z} if δ(y) = z
Z if δ(y) = >

}
(and thus Σδ = ∅ iff δ(y) = ⊥ for some y ∈ Var c)

the evaluation function valσ : BExp → B is defined by

valσ(t) := t
valσ(a1=a2) := (valσ(a1) =

valσ(a2))

valσ(¬b) :=

{
true if valσ(b) =

false
false otherwise

valσ(b1∧b2) :=

{
true if valσ(b1) =

valσ(b2) = true
false otherwise

etc.
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Constant Propagation Analysis with Assertions III

Example 9.7

1 Var c = {x, y, z}, δ = ( ⊥︸︷︷︸
x

, 1︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ Σδ = ∅
=⇒ ϕassert b(δ) = (⊥,⊥,⊥) for every b ∈ BExp

2 Var c = {x, y, z}, δ = ( 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ Σδ = {(1, 2, z) | z ∈ Z}
=⇒ ϕassert x=y(δ) = (⊥,⊥,⊥)

ϕassert y=z(δ) = (1, 2, 2)
ϕassert y<z(δ) = (1, 2,>)

ϕassert x<=z∧y>z(δ) = (1, 2, 1)

Remarks:

Note that for B l = (assert b) and δ : Var c → Z ∪ {⊥,>},
ϕl(δ) v δ and hence Σϕl (δ) ⊆ Σδ (“filter”)
If CPl(x) = ⊥ for some l ∈ Lc and x ∈ Var c , then l is unreachable
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Interval Analysis with Assertions I

So far:
The domain (Int,⊆) of intervals over Z is defined by

Int := {[z1, z2] | z1 ∈ Z ∪ {−∞}, z2 ∈ Z ∪ {+∞}}, z1 ≤ z2} ∪ {∅}
where

−∞ ≤ z , z ≤ +∞, and −∞ ≤ +∞ (for all z ∈ Z)
∅ ⊆ I (for all I ∈ Int)
[y1, y2] ⊆ [z1, z2] iff z1 ≤ y1 and y2 ≤ z2

Transfer functions {ϕl | l ∈ L} are defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := [z , z ]

valδ(a1+a2) := valδ(a1)⊕ valδ(a2)
valδ(a1-a2) := valδ(a1)	 valδ(a2)
valδ(a1*a2) := valδ(a1)� valδ(a2)

with
∅ ⊕ I := I ⊕ ∅ := ∅ 	 I := . . . := ∅

[y1, y2]⊕ [z1, z2] := [y1 + z1, y2 + z2]
[y1, y2]	 [z1, z2] := [y1 − z2, y2 − z1]
[y1, y2]� [z1, z2] := [miny∈[y1,y2],z∈[z1,z2] y · z ,maxy∈[y1,y2],z∈[z1,z2] y · z ]
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Interval Analysis with Assertions II

Additionally for B l = (assert b), δ : Var c → Z ∪ {⊥,>} and x ∈ Var c :

ϕl(δ)(x) :=

{
∅ if @σ ∈ Σδ : valσ(b) = true[d

Z∪{−∞} Z ,
⊔

Z∪{+∞} Z
]

otherwise

where

Z := {σ(x) | σ ∈ Σδ, valσ(b) = true}
Σδ := {σ : Var c → Z | ∀y ∈ Var c : σ(y) ∈ δ(y)}
(and thus Σδ = ∅ iff δ(y) = ∅ for some y ∈ Var c)

valσ : BExp → B as before
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Interval Analysis with Assertions III

Example 9.8

Var c = {x, y}, δ = ([−∞, 2]︸ ︷︷ ︸
x

, [0,+∞]︸ ︷︷ ︸
y

)

=⇒ ϕassert x>0(δ) = ([1, 2], [0,+∞])
ϕassert x=y(δ) = ([0, 2], [0, 2])
ϕassert x>y(δ) = ([1, 2], [0, 1])
ϕassert x<y(δ) = ([−∞, 2], [0,+∞])

Remarks:

Again for B l = (assert b) and δ : Var c → Z ∪ {⊥,>}, ϕl(δ) v δ
and hence Σϕl (δ) ⊆ Σδ (“filter”)

Again if AIl(x) = ∅ for some l ∈ Lc and x ∈ Var c , then l is
unreachable

Static Program Analysis Summer Semester 2011 9.24



Interval Analysis with Assertions IV

Example 9.9 (Interval analysis for i; cf. Example 7.7)

[i := 0]1

while [i <= 42]2

[assert i <= 42]3

[a[...] := ...]4

[i := i + 1]5

[assert i > 42]6

[skip]7

ϕ1(I ) = [0, 0]
ϕ2(I ) = I
ϕ3(I ) = I ∩ [−∞, 42]
ϕ4(I ) = I
ϕ5(∅) = ∅

ϕ5([i1, i2]) = [i1 + 1, i2 + 1]
ϕ6(I ) = I ∩ [43,+∞]

W AI1 AI2 AI3 AI4 AI5 AI6 AI7

12, 23, 34, 45, 52, 26, 67 [−∞,+∞] ∅ ∅ ∅ ∅ ∅ ∅
23, 34, 45, 52, 26, 67 [−∞,+∞] [0, 0] ∅ ∅ ∅ ∅ ∅

34, 45, 52, 26, 67 [−∞,+∞] [0, 0] [0, 0] ∅ ∅ ∅ ∅
45, 52, 26, 67 [−∞,+∞] [0, 0] [0, 0] [0, 0] ∅ ∅ ∅

52, 26, 67 [−∞,+∞] [0, 0] [0, 0] [0, 0] [0, 0] ∅ ∅
23, 26, 67 [−∞,+∞] [0,+∞] [0, 0] [0, 0] [0, 0] ∅ ∅
34, 26, 67 [−∞,+∞] [0,+∞] [0,+∞] [0, 0] [0, 0] ∅ ∅
45, 26, 67 [−∞,+∞] [0,+∞] [0,+∞] [0, 42] [0, 0] ∅ ∅
52, 26, 67 [−∞,+∞] [0,+∞] [0,+∞] [0, 42] [0, 42] ∅ ∅

26, 67 [−∞,+∞] [0,+∞] [0,+∞] [0, 42] [0, 42] ∅ ∅
67 [−∞,+∞] [0,+∞] [0,+∞] [0, 42] [0, 42] [0,+∞] ∅
ε [−∞,+∞] [0,+∞] [0,+∞] [0, 42] [0, 42] [0,+∞] [43,+∞]
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