
Static Program Analysis
Lecture 9: Dataflow Analysis VIII

(Narrowing & DFA with Conditional Branches)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Summer Semester 2011

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/spa11/

Outline

1 Repetition: Widening

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

5 Interval Analysis with Assertions

Static Program Analysis Summer Semester 2011 9.2

Widening Operators

Definition (Widening operator)

Let (D,v) be a complete lattice. A mapping ∇ : D × D → D is called
widening operator if

for every d1, d2 ∈ D,
d1 t d2 v d1∇d2

and

for all ascending chains d0 v d1 v . . ., the ascending chain
d∇0 v d∇1 v . . . eventually stabilizes where

d∇0 := d0 and d∇i+1 := d∇i ∇di+1 for i ∈ N

Remarks:

(d∇i)i∈N is clearly an ascending chain as
d∇i+1 = d∇i ∇di+1 w d∇i t di+1 w d∇i

In contrast to t, ∇ does not have to be commutative, associative,
monotonic, nor absorptive (d∇d = d)

The requirement d1 t d2 v d1∇d2 guarantees soundness of widening

Static Program Analysis Summer Semester 2011 9.3

Applying Widening to Interval Analysis

A widening operator: ∇ : Int × Int → Int with
∅∇I := I∇∅ := I

[x1, x2]∇[y1, y2] := [z1, z2] where

z1 :=

{
x1 if x1 ≤ y1

−∞ otherwise

z2 :=

{
x2 if y2 ≤ x2

+∞ otherwise

Widening turns infinite ascending chain
I0 = ∅ ⊆ I1 = [1, 1] ⊆ I2 = [1, 2] ⊆ I3 = [1, 3] ⊆ . . .

into a finite one:
I∇0 = I0 = ∅
I∇1 = I∇0 ∇I1 = ∅∇[1, 1] = [1, 1]
I∇2 = I∇1 ∇I2 = [1, 1]∇[1, 2] = [1,+∞]
I∇3 = I∇2 ∇I3 = [1,+∞]∇[1, 3] = [1,+∞]

In fact, the maximal chain length arising with this operator is 4:
∅ ⊆ [3, 7] ⊆ [3,+∞] ⊆ [−∞,+∞]

Static Program Analysis Summer Semester 2011 9.4

Worklist Algorithm with Widening

Goal: extend Algorithm 5.2 by widening to ensure termination

Algorithm (Worklist algorithm with widening)

Input: dataflow system S = (L,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (L× L)∗, {AIl ∈ D | l ∈ L}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W

for l ∈ L do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W); W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′∇ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ L}, denoted by fix∇(ΦS)

Remark: due to widening, only fix(ΦS) v fix∇(ΦS) is guaranteed
(cf. Thm. 5.4)

Static Program Analysis Summer Semester 2011 9.5

Outline

1 Repetition: Widening

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

5 Interval Analysis with Assertions

Static Program Analysis Summer Semester 2011 9.6

Another Widening Example

Example 9.1

[x := 1]1

while [. . .]2

[x := 2]3

[x := x + 1]4

Transfer functions (for δ(x) = I):

ϕ1(I) = [1, 1]

ϕ2(I) = I

ϕ3(I) = [2, 2]

ϕ4(∅) = ∅
ϕ4([x1, x2]) = [x1 + 1, x2 + 1]

Application of worklist algorithm

1 without widening (omitted):
terminates with expected result for AI2 ([1, 3])

2 with widening (on the board):
terminates with unexpected result for AI2 ([1,+∞])

Static Program Analysis Summer Semester 2011 9.7

Idea of Narrowing

Observation: widening can lead to unnecessarily imprecise results

Solution: improvement by iterating again from the result obtained by
widening (i.e., from fix∇(ΦS))
=⇒ compute Φk

S(fix∇(ΦS)) for k = 1, 2, . . .

Soundness: fix(ΦS) v fix∇(ΦS)
=⇒ fix(ΦS) = Φk

S(fix(ΦS)) v Φk
S(fix∇(ΦS))

(since ΦS and thus Φk
S monotonic)

Static Program Analysis Summer Semester 2011 9.8

Narrowing Example

Example 9.2 (cf. Example 9.1)

[x := 1]1

while [. . .]2

[x := 2]3

[x := x + 1]4

Transfer functions (for δ(x) = I):

ϕ1(I) = [1, 1]

ϕ2(I) = I

ϕ3(I) = [2, 2]

ϕ4(∅) = ∅
ϕ4([x1, x2]) = [x1 + 1, x2 + 1]

Narrowing: AI1 AI2 AI3 AI4
fix∇(ΦS) [−∞,+∞] [1,+∞] [1,+∞] [2, 2]

ΦS(fix∇(ΦS)) [−∞,+∞] [1, 3] [1,+∞] [2, 2]
Φ2
S(fix∇(ΦS)) [−∞,+∞] [1, 3] [1, 3] [2, 2]

Φ3
S(fix∇(ΦS)) [−∞,+∞] [1, 3] [1, 3] [2, 2]

Static Program Analysis Summer Semester 2011 9.9

Narrowing in Practice

Problem: narrowing may not terminate
(due to infinite descending chains)

But: possible to stop after every step without losing soundness

In practice: termination often ensured by using narrowing operators
(≈ counterpart of widening operator; definition omitted)

Static Program Analysis Summer Semester 2011 9.10

Outline

1 Repetition: Widening

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

5 Interval Analysis with Assertions

Static Program Analysis Summer Semester 2011 9.11

Taking Conditional Branches into Account I

So far: values of conditions have been ignored in analysis

Essentially: if and while statements treated as nondeterministic
choice between the two branches

Example 9.3

y := 0;
z := 0;

while [x > 0]l do
if y < 17 then
y := y + 1

z := z + x;
x := x - 1;

Interval analysis (with widening) yields for l :

x ∈ [−∞,+∞]
y ∈ [0,+∞]
z ∈ [−∞,+∞]

Too pessimistic! In fact,

x ∈ [−∞,+∞]
y ∈ [0, 17]
z ∈ [0,+∞]

Static Program Analysis Summer Semester 2011 9.12

Taking Conditional Branches into Account II

Solution: introduce transfer functions for branches

First approach: attach (negated) conditions as labels to control flow
edges

advantage: no language modification required
disadvantage: entails extension of DFA framework
will not be considered here

Second approach: encode conditions as assertions (statements)

advantage: DFA framework can be reused
disadvantage: entails extension of WHILE language
the way we will follow

Static Program Analysis Summer Semester 2011 9.13

First Approach: Conditions as Edge Labels

Example 9.4 (cf. Example 9.3)

[y := 0]1

[z := 0]2

while [x > 0]3 ¬(x > 0)

if [y < 17]4

[y := y + 1]5

[z := z + x]6

[x := x - 1]7

x > 0

y < 17 ¬(y < 17)

Static Program Analysis Summer Semester 2011 9.14

Second Approach: Conditions as Assertions

Example 9.5 (cf. Example 9.3)

y := 0;
z := 0;
while x > 0 do
assert x > 0;
if y < 17 then
assert y < 17;
y := y + 1;

z := z + x;
x := x - 1;

assert ¬(x > 0);

Static Program Analysis Summer Semester 2011 9.15

Extending the Syntax of WHILE Programs

Definition 9.6 (Labeled WHILE programs with assertions)

The syntax of labeled WHILE programs with assertions is defined by the
following context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= [skip]l | [x := a]l | c1;c2 |

if [b]l then c1 else c2 | while [b]l do c | [assert b]l ∈ Cmd

To be done:

Definition of transfer functions for assert blocks
(depending on analysis problem)

Idea: assertions as filters that let only “valid” information pass

Static Program Analysis Summer Semester 2011 9.16

Outline

1 Repetition: Widening

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

5 Interval Analysis with Assertions

Static Program Analysis Summer Semester 2011 9.17

Constant Propagation Analysis with Assertions I

So far:
Complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z
δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Transfer functions {ϕl | l ∈ L} defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := z

valδ(a1 op a2) :=

z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := valδ(a1) and z2 := valδ(a2)

Static Program Analysis Summer Semester 2011 9.18

Constant Propagation Analysis with Assertions II

Additionally for B l = (assert b), δ : Var c → Z ∪ {⊥,>} and x ∈ Var c :

ϕl(δ)(x) :=

{⊥ if @σ ∈ Σδ : valσ(b) = true
z if ∀σ ∈ Σδ : valσ(b) = true =⇒ σ(x) = z
> otherwise

where

the set of δ-assignments is given by

Σδ :=

{
σ : Var c → Z

∣∣∣∣∣∀y ∈ Var c : σ(y) ∈

{∅ if δ(y) = ⊥
{z} if δ(y) = z
Z if δ(y) = >

}
(and thus Σδ = ∅ iff δ(y) = ⊥ for some y ∈ Var c)

the evaluation function valσ : BExp → B is defined by

valσ(t) := t
valσ(a1=a2) := (valσ(a1) =

valσ(a2))

valσ(¬b) :=

{
true if valσ(b) =

false
false otherwise

valσ(b1∧b2) :=

{
true if valσ(b1) =

valσ(b2) = true
false otherwise

etc.
Static Program Analysis Summer Semester 2011 9.19

Constant Propagation Analysis with Assertions III

Example 9.7

1 Var c = {x, y, z}, δ = (⊥︸︷︷︸
x

, 1︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ Σδ = ∅
=⇒ ϕassert b(δ) = (⊥,⊥,⊥) for every b ∈ BExp

2 Var c = {x, y, z}, δ = (1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ Σδ = {(1, 2, z) | z ∈ Z}
=⇒ ϕassert x=y(δ) = (⊥,⊥,⊥)

ϕassert y=z(δ) = (1, 2, 2)
ϕassert y<z(δ) = (1, 2,>)

ϕassert x<=z∧y>z(δ) = (1, 2, 1)

Remarks:

Note that for B l = (assert b) and δ : Var c → Z ∪ {⊥,>},
ϕl(δ) v δ and hence Σϕl (δ) ⊆ Σδ (“filter”)
If CPl(x) = ⊥ for some l ∈ Lc and x ∈ Var c , then l is unreachable

Static Program Analysis Summer Semester 2011 9.20

Outline

1 Repetition: Widening

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

5 Interval Analysis with Assertions

Static Program Analysis Summer Semester 2011 9.21

Interval Analysis with Assertions I

So far:
The domain (Int,⊆) of intervals over Z is defined by

Int := {[z1, z2] | z1 ∈ Z ∪ {−∞}, z2 ∈ Z ∪ {+∞}}, z1 ≤ z2} ∪ {∅}
where

−∞ ≤ z , z ≤ +∞, and −∞ ≤ +∞ (for all z ∈ Z)
∅ ⊆ I (for all I ∈ Int)
[y1, y2] ⊆ [z1, z2] iff z1 ≤ y1 and y2 ≤ z2

Transfer functions {ϕl | l ∈ L} are defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := [z , z]

valδ(a1+a2) := valδ(a1)⊕ valδ(a2)
valδ(a1-a2) := valδ(a1)	 valδ(a2)
valδ(a1*a2) := valδ(a1)� valδ(a2)

with
∅ ⊕ I := I ⊕ ∅ := ∅ 	 I := . . . := ∅

[y1, y2]⊕ [z1, z2] := [y1 + z1, y2 + z2]
[y1, y2]	 [z1, z2] := [y1 − z2, y2 − z1]
[y1, y2]� [z1, z2] := [miny∈[y1,y2],z∈[z1,z2] y · z ,maxy∈[y1,y2],z∈[z1,z2] y · z]

Static Program Analysis Summer Semester 2011 9.22

Interval Analysis with Assertions II

Additionally for B l = (assert b), δ : Var c → Z ∪ {⊥,>} and x ∈ Var c :

ϕl(δ)(x) :=

{
∅ if @σ ∈ Σδ : valσ(b) = true[d

Z∪{−∞} Z ,
⊔

Z∪{+∞} Z
]

otherwise

where

Z := {σ(x) | σ ∈ Σδ, valσ(b) = true}
Σδ := {σ : Var c → Z | ∀y ∈ Var c : σ(y) ∈ δ(y)}
(and thus Σδ = ∅ iff δ(y) = ∅ for some y ∈ Var c)

valσ : BExp → B as before

Static Program Analysis Summer Semester 2011 9.23

Interval Analysis with Assertions III

Example 9.8

Var c = {x, y}, δ = ([−∞, 2]︸ ︷︷ ︸
x

, [0,+∞]︸ ︷︷ ︸
y

)

=⇒ ϕassert x>0(δ) = ([1, 2], [0,+∞])
ϕassert x=y(δ) = ([0, 2], [0, 2])
ϕassert x>y(δ) = ([1, 2], [0, 1])
ϕassert x<y(δ) = ([−∞, 2], [0,+∞])

Remarks:

Again for B l = (assert b) and δ : Var c → Z ∪ {⊥,>}, ϕl(δ) v δ
and hence Σϕl (δ) ⊆ Σδ (“filter”)

Again if AIl(x) = ∅ for some l ∈ Lc and x ∈ Var c , then l is
unreachable

Static Program Analysis Summer Semester 2011 9.24

Interval Analysis with Assertions IV

Example 9.9 (Interval analysis for i; cf. Example 7.7)

[i := 0]1

while [i <= 42]2

[assert i <= 42]3

[a[...] := ...]4

[i := i + 1]5

[assert i > 42]6

[skip]7

ϕ1(I) = [0, 0]
ϕ2(I) = I
ϕ3(I) = I ∩ [−∞, 42]
ϕ4(I) = I
ϕ5(∅) = ∅

ϕ5([i1, i2]) = [i1 + 1, i2 + 1]
ϕ6(I) = I ∩ [43,+∞]

W AI1 AI2 AI3 AI4 AI5 AI6 AI7

12, 23, 34, 45, 52, 26, 67 [−∞,+∞] ∅ ∅ ∅ ∅ ∅ ∅
23, 34, 45, 52, 26, 67 [−∞,+∞] [0, 0] ∅ ∅ ∅ ∅ ∅

34, 45, 52, 26, 67 [−∞,+∞] [0, 0] [0, 0] ∅ ∅ ∅ ∅
45, 52, 26, 67 [−∞,+∞] [0, 0] [0, 0] [0, 0] ∅ ∅ ∅

52, 26, 67 [−∞,+∞] [0, 0] [0, 0] [0, 0] [0, 0] ∅ ∅
23, 26, 67 [−∞,+∞] [0,+∞] [0, 0] [0, 0] [0, 0] ∅ ∅
34, 26, 67 [−∞,+∞] [0,+∞] [0,+∞] [0, 0] [0, 0] ∅ ∅
45, 26, 67 [−∞,+∞] [0,+∞] [0,+∞] [0, 42] [0, 0] ∅ ∅
52, 26, 67 [−∞,+∞] [0,+∞] [0,+∞] [0, 42] [0, 42] ∅ ∅

26, 67 [−∞,+∞] [0,+∞] [0,+∞] [0, 42] [0, 42] ∅ ∅
67 [−∞,+∞] [0,+∞] [0,+∞] [0, 42] [0, 42] [0,+∞] ∅
ε [−∞,+∞] [0,+∞] [0,+∞] [0, 42] [0, 42] [0,+∞] [43,+∞]

Static Program Analysis Summer Semester 2011 9.25

	Repetition: Widening
	Narrowing
	Taking Conditional Branches into Account
	Constant Propagation Analysis with Assertions
	Interval Analysis with Assertions

