SOFTWARE-MODELLIERUNG UND VERIFIKATION Priv.-Doz. T, Noll __noll@cs.rwth-aachen.de
Willems willems@cs.rwth-aachen.de
INFORMATIK 2

PRroF. J.-P. KATOEN
RWTH Aachen

3. Exercise sheet Semantics and Verification of Software 2007
Due to Wed., 2 May 2007, before the exercise course begins.

Exercise 3.1:

In our WHILE language, the evaluation of (arithmetic) expressions has no side effects—it does not change the
state. If we were to model side effects it would be natural to consider an evaluation relation of the form

(a,0) = (2,0")

where o’ ist the state that results from the evaluation of @ in the original state o. To introduce side effects in
WHILE, extend the arithmetic expressions by a construct

c resultis a

where ¢ € Cmd and a € AExp. To evaluate such an expression, c¢ is first executed and then a is evaluated in the
new state. Formalize this idea by giving it an operational semantics.

Exercise 3.2:

Show that the operational and the denotational semantics of arithmetic expressions coincide, i.e., prove the following
result.
For every a € AExp, 0 € ¥, and z € Z:

(a,0) — z iff Afa](o) = z.

Exercise 3.3:
Consider the following fragment of the factorial program (see Exercise 7):
while =(z =1)do (y :=y*x; z:=x —1).
(a) Determine the corresponding functional ® : (X —— ¥) — (X —— X).

(b) Give at least two fixpoints of ®.

Exercise 3.4:

Develop a proof for Lemma 5.6 of the course, stating that the set of partial state transformations, ¥ — — X,
together with the relation C given by graph inclusion forms a partial order.

