

4. Exercise sheet *Semantics and Verification of Software 2007*

Due to Wed., 9 May 2007, *before* the exercise course begins.

Exercise 4.1:

- (a) Show that the least upper bound of a chain (Definition 5.7) is unique (if it exists).
- (b) Give a subset of $\Sigma \rightarrow \Sigma$ which does not have an upper bound.

Exercise 4.2:

Which of the following functionals of type $(\Sigma \rightarrow \Sigma) \rightarrow (\Sigma \rightarrow \Sigma)$ are monotonic with respect to the partial order \sqsubseteq given by graph inclusion?

- (a) $\Phi_1(f) = f$
- (b) $\Phi_2(f) = \begin{cases} g_1 & \text{if } f = g_2 \\ g_2 & \text{otherwise} \end{cases}$ (where $g_1, g_2 : \Sigma \rightarrow \Sigma$ with $g_1 \neq g_2$)
- (c) $\Phi_3(f)(\sigma) = \begin{cases} f(\sigma) & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{otherwise} \end{cases}$

Exercise 4.3:

Investigate

$\mathfrak{C}[\![z := 0; \mathbf{while } y \leq x \mathbf{do } (z := z + 1; x := x - y)]\!]$

in analogy to the factorial example 7.3.

Exercise 4.4:

- (a) Define the denotational semantics of the **repeat** c **until** b construct.
- (b) Using this semantics, show that the following semantic equivalence holds:

repeat c **until** $b \sim c; \mathbf{while } \neg b \mathbf{do } c$.

Hint: The proof can be given by complete induction over the fixpoint iteration index n .)