

5. Exercise sheet *Semantics and Verification of Software 2007*

Due to Wed., 16 May 2007, *before* the exercise course begins.

Exercise 5.1:

Dijkstra's *guarded commands* are essentially of the form

```
do b1 → c1
    b2 → c2
od
```

(where $b_1, b_2 \in \mathbf{BExp}$ and $c_1, c_2 \in \mathbf{Cmd}$). They form a natural generalisation of the **while** loop:

While at least one of the tests is true, the corresponding statement is executed. Here the satisfaction of both tests results in a non-deterministic choice of the command. The computation terminates as soon as neither of the tests is true.

- (a) Which function on the natural numbers is computed by the following statement? Transform it to a *WHILE* statement.

```
do x > y → x := x - y
    y > x → y := y - x
od
```

- (b) Let $b_1, b_2 \in \mathbf{BExp}$ be two mutually excluding tests (i.e., in no state both b_1 and b_2 are true) and $c_1, c_2 \in \mathbf{Cmd}$. How can the semantics of

```
do b1 → c1
    b2 → c2
od
```

be defined as the least fixpoint of a mapping

$$\Phi : (\Sigma \rightarrow \Sigma) \rightarrow (\Sigma \rightarrow \Sigma)?$$

Exercise 5.2:

Define a three-valued denotational semantics for the *WHILE* language as follows:

- (a) Assume that at the beginning of a programm evaluation, all variables have unknown values. To model this, extend the variable domain by \perp , and let σ_\perp with $\sigma(x) = \perp$ for all $x \in \mathbf{Var}$ be the initial *state* of all programs. Define $\mathfrak{A}[\cdot]$ in analogy to Definition 4.6 and evaluate $3 + x$ and $0 * x$ for σ_\perp .
- (b) In addition to **true** and **false**, a third truth-value **?** is needed to express uncertainty about the result of a boolean expression, i.e. $x > 0$ may hold or not, depending on how x is initialized, and thus it should evaluate to **?**. Define $\mathfrak{B}[\cdot]$ in analogy to Definition 4.7 and evaluate $\neg(x = y) \wedge \text{false}$ for σ_\perp .
- (c) Define **cond** such that common evaluation results are preserved in case of an indefinite evaluation of the boolean expression. Evaluate $\mathbf{cond}(\text{?}, \mathfrak{C}[\![x := 2; y := 3; z := x + y]\!], \mathfrak{C}[\![x := 3; y := 2; z := x + y]\!])$ for σ_\perp .

Exercise 5.3:

- (a) Give an assertion $A \in \mathbf{Assn}$ with a logical variable $i \in \mathbf{LVar}$ which expresses that i is a prime number. More concretely, for every $\sigma \in \Sigma$ and every $I \in \mathbf{Int}$,

$$\sigma \models^I A$$

should be valid iff i is a prime number.

- (b) Give an assertion $A \in \mathbf{Assn}$ with logical variables $i, j, k \in \mathbf{LVar}$ which expresses that k is the least common multiple of i and j .