Semantics and Verification of Software

Lecture 10: Axiomatic Semantics of WHILE

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Hoare Logic

Rm S i ification of Software Summer semester 2007

Partial Correctness Properties

Definition (Partial correctness properties)
Let A,B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given 0 € X | and [€ Int, we let

o =T {A} c{B}

if o =1 A implies €[c]o = B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B)}) if
o =1 {A} ¢{B} for every o € ¥ (or equivalently: €[c]A! C BY).
o {A}c{B} is called valid (notation: = {A}c{B}) if & {A}c{B}
for every I € Int.

m' Semantics and Verification of Software Summer semester 2007

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by

|

[A} swip (A} o) (Alr = al} z:=a {4} 8"
{A} e {C} {C}e {B}) {AAb}er {B} {AA b} {B} (i)
{AYc1;c0{B) *V TTAYif b then ¢ else c» (B}

{ANb}c{A}
{A}while b do c{A A —b}

F(A = 4) {A}c{B'} (B = B)
{A}c{B}
A partial correctness property is provable (notation: - {A} c¢{B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(while)

(cons)

Here A[x — a] denotes the syntactic replacement of every occurrence of
x by a in A.
RWNTH

Semantics and Verification of Software Summer semester 2007

Soundness of Hoare Logic 11

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c{B},

F{A}c{B} = |={A}c{B}.

Let - {A} ¢{B}. By induction over the structure of the corresponding
proof tree we show that, for every o € ¥ and I € Int such that o =1 A,
€[cJo =! B (on the board).

(If o = L, then €[cJo = L ! B holds trivially.) O

m Semantics and Verification of Software Summer semester 2007

© (In-)Completeness of Hoare Logic

Rm Semantics and Verification of Software Summer semester 2007

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable v

Completeness: all valid partial correctness properties are
systematically derivable 4

Rm Semantics and Verification of Software Summer semester 2007

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable v

Completeness: all valid partial correctness properties are
systematically derivable 4

Theorem 10.1 (Godel’s Incompleteness Theorem)

The set of all valid assertions
{A € Assn | E A}

s not recursively enumerable, i.e., there exists no proof system for
Assn in which all valid assertions are systematically derivable.

m Semantics and Verification of Software Summer semester 2007

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable v

Completeness: all valid partial correctness properties are
systematically derivable 4

Theorem 10.1 (Godel’s Incompleteness Theorem)

The set of all valid assertions
{A € Assn | E A}

s not recursively enumerable, i.e., there exists no proof system for
Assn in which all valid assertions are systematically derivable.

see [Winskel 1996, p. 110 ff]

m Semantics and Verification of Software Summer semester 2007

Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.

Rm Semantics and Verification of Software Summer semester 2007

Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.

Given A € Assn, = A is obviously equivalent to {true} skip{A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.]

m Semantics and Verification of Software Summer semester 2007

Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.

Given A € Assn, = A is obviously equivalent to {true} skip{A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.]

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff ¢ does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.

m Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E (B = B)
{A}e{B}

since it is based on the validity of implications within Assn

(cons)

Rm Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E (B = B)
{A}e{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

Rm Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E (B = B)
{A}e{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

Rm Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E (B = B)
{A}e{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a

given assertion is valid, then all valid partial correctness properties
can be derived

Rm Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E (B = B)
{A}e{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a

given assertion is valid, then all valid partial correctness properties
can be derived

—> Relative completeness

Rm Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic I

Theorem 10.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness
property {A} c{B}:

= {A}c{B} =+ {A}c{B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

m' Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic I

Theorem 10.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness
property {A} c{B}:

= {A}c{B} =+ {A}c{B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that {A} c¢1;c2 {B} has
to be derived. This requires an intermediate assertion C' € Assn such
that {A}c1 {C} and {C} ¢, {B}. How to find it?

m Semantics and Verification of Software Summer semester 2007

Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given c € Cmd, B € Assn and I € Int, the weakest precondition of B
with respect to ¢ under [is defined by:

wp’[e, B] := {0 € X | ¢[]o E! B}.

m' Semantics and Verification of Software Summer semester 2007

Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given c € Cmd, B € Assn and I € Int, the weakest precondition of B
with respect to ¢ under [is defined by:

wp’[e, B] := {0 € X | ¢[]o E! B}.

For every c € Cmd, A, B € Assn, and I € Int:
Q = {A}c{B} «— Al C wpl[c, B]
Q If Ay € Assn such that A} = wp![c, B] for every I € Int, then
F{A}c{B} <= E (4 = A)

m Semantics and Verification of Software Summer semester 2007

Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given ¢ € Umd, B € Assn and I € Int, the weakest precondition of B
with respect to ¢ under I is defined by:

wp’[e, B] := {0 € X | ¢[]o E! B}.

Corollary 10.5

For every c € Cmd, A, B € Assn, and I € Int:
Q = {A}c{B} «— Al C wpl[c, B]
Q If Ay € Assn such that A} = wp![c, B] for every I € Int, then
F{A}c{B} <= E (4 = A)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A}c{B} valid

m' Semantics and Verification of Software Summer semester 2007

Weakest Preconditions 11

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ag € Assn such that

Al = wp![c, B]
for every I € Int.

m' Semantics and Verification of Software Summer semester 2007

Weakest Preconditions 11

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ag € Assn such that

Al = wp![c, B]
for every I € Int.

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

m' Semantics and Verification of Software Summer semester 2007

Weakest Preconditions 11

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ag € Assn such that

A§ = wp[c, B]
for every I € Int.

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

Proof

(idea; see [Winskel 1996, p. 103 ff for details])
Given ¢ € Omd and B € Assn, construct A, p € Assn with
o=l Acp < €[c]o E! B (for every 0 € £ |, I € Int). For example:

Asklp B ‘= B Aw;:a B = B[CE = (L]
Acl ;¢0,B = AC1, Ac,,B
(for while: “Godelization” of sequences of 1ntermed1ate states) O

m' Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic 11

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

m' Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic 11

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

m' Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic 11

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that

={A}e{B} = {A}c{B}.

m' Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic 11

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
= {A}e{B} = {A}c{B}.
o Lemma 10.8 = F {A.p}c{B}

m' Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic 11

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
= {A}e{B} = {A}c{B}.

o Lemma 10.8 =+ {A. g} c{B}
o Cor. 105 = (A = A.B)

m' Semantics and Verification of Software Summer semester 2007

Relative Completeness of Hoare Logic 11

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
= {A}e{B} = {A}c{B}.
o Lemma 10.8 = F {A.p}c{B}

o Cor. 105 = (A = A.B)
o (cons) rule = F {A}c{B}

m' Semantics and Verification of Software Summer semester 2007

	Repetition: Hoare Logic
	(In-)Completeness of Hoare Logic

