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Partial Correctness Properties

Definition (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B

(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ BI).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ BI).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int .
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Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by

{A} skip {A}
(skip)

{A[x 7→ a]}x:=a {A}
(asgn)

{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B} (seq)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B} (if)

{A ∧ b} c {A}
{A} while b do c {A ∧ ¬b} (while)

|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B} (cons)

A partial correctness property is provable (notation: ⊢ {A} c {B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of
x by a in A.
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Soundness of Hoare Logic II

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
⊢ {A} c {B} =⇒ |= {A} c {B}.

Proof.

Let ⊢ {A} c {B}. By induction over the structure of the corresponding
proof tree we show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A,
CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable
√

Completeness: all valid partial correctness properties are
systematically derivable "

Theorem 10.1 (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}

is not recursively enumerable, i.e., there exists no proof system for

Assn in which all valid assertions are systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]
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Incompleteness of Hoare Logic II

Corollary 10.2

There is no proof system in which all valid partial correctness

properties can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But
the set of all non–terminating WHILE statements is not enumerable.
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Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B} (cons)

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be derived

=⇒ Relative completeness
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Relative Completeness of Hoare Logic I

Theorem 10.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness

property {A} c {B}:

|= {A} c {B} =⇒ ⊢ {A} c {B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that {A} c1;c2 {B} has
to be derived. This requires an intermediate assertion C ∈ Assn such
that {A} c1 {C} and {C} c2 {B}. How to find it?
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Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 10.5

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpIJc,BK

2 If A0 ∈ Assn such that AI
0

= wpIJc,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A =⇒ A0)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A} c {B} valid
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Weakest Preconditions II

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists A0 ∈ Assn such that

AI
0

= wpIJc, BK
for every I ∈ Int .

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given c ∈ Cmd and B ∈ Assn, construct Ac,B ∈ Assn with
σ |=I Ac,B ⇐⇒ CJcKσ |=I B (for every σ ∈ Σ⊥, I ∈ Int). For example:

Askip,B := B Ax:=a,B := B[x 7→ a]
Ac1;c2,B := Ac1,Ac2,B

. . .

(for while: “Gödelization” of sequences of intermediate states)
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Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c ∈ Cmd and B ∈ Assn:

⊢ {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ⊢ {A} c {B}.

Lemma 10.8 =⇒ ⊢ {Ac,B} c {B}
Cor. 10.5 =⇒ |= (A =⇒ Ac,B)
(cons) rule =⇒ ⊢ {A} c {B}
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