Semantics and Verification of Software

Lecture 10: Axiomatic Semantics of WHILE

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Hoare Logic

Rm S i ification of Software Summer semester 2007



Partial Correctness Properties

Definition (Partial correctness properties)
Let A,B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given 0 € X | and [ € Int, we let

o =T {A} c{B}

if o =1 A implies €[c]o = B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B)}) if
o =1 {A} ¢{B} for every o € ¥ (or equivalently: €[c]A! C BY).
o {A}c{B} is called valid (notation: = {A}c{B}) if & {A}c{B}
for every I € Int.
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Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by

|

[A} swip (A} o) (Alr = al} z:=a {4} 8"
{A} e {C} {C}e {B} ) {AAb}er {B} {AA b} {B} (i)
{AYc1;c0{B) *V TTAYif b then ¢ else c» (B}

{ANb}c{A}
{A}while b do c{A A —b}

F(A = 4) {A}c{B'} (B = B)
{A}c{B}
A partial correctness property is provable (notation: - {A} c¢{B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(while)

(cons)

Here A[x — a] denotes the syntactic replacement of every occurrence of
x by a in A.
RWNTH
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Soundness of Hoare Logic 11

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c{B},

F{A}c{B} = |={A}c{B}.

Let - {A} ¢{B}. By induction over the structure of the corresponding
proof tree we show that, for every o € ¥ and I € Int such that o =1 A,
€[cJo =! B (on the board).

(If o = L, then €[cJo = L ! B holds trivially.) O
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© (In-)Completeness of Hoare Logic

Rm Semantics and Verification of Software Summer semester 2007



Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable v

Completeness: all valid partial correctness properties are
systematically derivable 4
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable v

Completeness: all valid partial correctness properties are
systematically derivable 4

Theorem 10.1 (Godel’s Incompleteness Theorem)

The set of all valid assertions
{A € Assn | E A}

s not recursively enumerable, i.e., there exists no proof system for
Assn in which all valid assertions are systematically derivable.
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable v

Completeness: all valid partial correctness properties are
systematically derivable 4

Theorem 10.1 (Godel’s Incompleteness Theorem)

The set of all valid assertions
{A € Assn | E A}

s not recursively enumerable, i.e., there exists no proof system for
Assn in which all valid assertions are systematically derivable.

see [Winskel 1996, p. 110 ff]
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Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.
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Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.

Given A € Assn, = A is obviously equivalent to {true} skip{A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions. ]
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Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.

Given A € Assn, = A is obviously equivalent to {true} skip{A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions. ]

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff ¢ does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.

m Semantics and Verification of Software Summer semester 2007



Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E (B = B)
{A}e{B}

since it is based on the validity of implications within Assn

(cons)
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Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E (B = B)
{A}e{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”
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Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E (B = B)
{A}e{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)
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Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E (B = B)
{A}e{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a

given assertion is valid, then all valid partial correctness properties
can be derived
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Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E (B = B)
{A}e{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a

given assertion is valid, then all valid partial correctness properties
can be derived

—> Relative completeness
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Relative Completeness of Hoare Logic I

Theorem 10.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness
property {A} c{B}:

= {A}c{B} =+ {A}c{B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.
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Relative Completeness of Hoare Logic I

Theorem 10.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness
property {A} c{B}:

= {A}c{B} =+ {A}c{B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that {A} c¢1;c2 {B} has
to be derived. This requires an intermediate assertion C' € Assn such
that {A}c1 {C} and {C} ¢, {B}. How to find it?
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Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given c € Cmd, B € Assn and I € Int, the weakest precondition of B
with respect to ¢ under [ is defined by:

wp’[e, B] := {0 € X | ¢[]o E! B}.
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Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given c € Cmd, B € Assn and I € Int, the weakest precondition of B
with respect to ¢ under [ is defined by:

wp’[e, B] := {0 € X | ¢[]o E! B}.

For every c € Cmd, A, B € Assn, and I € Int:
Q = {A}c{B} «— Al C wpl[c, B]
Q If Ay € Assn such that A} = wp![c, B] for every I € Int, then
F{A}c{B} <= E (4 = A)
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Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given ¢ € Umd, B € Assn and I € Int, the weakest precondition of B
with respect to ¢ under I is defined by:

wp’[e, B] := {0 € X | ¢[]o E! B}.

Corollary 10.5

For every c € Cmd, A, B € Assn, and I € Int:
Q = {A}c{B} «— Al C wpl[c, B]
Q If Ay € Assn such that A} = wp![c, B] for every I € Int, then
F{A}c{B} <= E (4 = A)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A}c{B} valid
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Weakest Preconditions 11

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ag € Assn such that

Al = wp![c, B]
for every I € Int.
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Weakest Preconditions 11

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ag € Assn such that

Al = wp![c, B]
for every I € Int.

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.
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Weakest Preconditions 11

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ag € Assn such that

A§ = wp[c, B]
for every I € Int.

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

Proof

(idea; see [Winskel 1996, p. 103 ff for details])
Given ¢ € Omd and B € Assn, construct A, p € Assn with
o=l Acp < €[c]o E! B (for every 0 € £ |, I € Int). For example:

Asklp B ‘= B Aw;:a B = B[CE = (L]
Acl ;¢0,B = AC1, Ac,,B
(for while: “Godelization” of sequences of 1ntermed1ate states) O
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Relative Completeness of Hoare Logic 11

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

m' Semantics and Verification of Software Summer semester 2007



Relative Completeness of Hoare Logic 11

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)
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Relative Completeness of Hoare Logic 11

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that

={A}e{B} = {A}c{B}.
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Relative Completeness of Hoare Logic 11

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
= {A}e{B} = {A}c{B}.
o Lemma 10.8 = F {A.p}c{B}
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Relative Completeness of Hoare Logic 11

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
= {A}e{B} = {A}c{B}.

o Lemma 10.8 =+ {A. g} c{B}
o Cor. 105 = (A = A.B)
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Relative Completeness of Hoare Logic 11

Lemma 10.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
= {A}e{B} = {A}c{B}.
o Lemma 10.8 = F {A.p}c{B}

o Cor. 105 = (A = A.B)
o (cons) rule = F {A}c{B}
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