
Semantics and Verification of Software

Lecture 10: Axiomatic Semantics of WHILE

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Outline

1 Repetition: Hoare Logic

2 (In-)Completeness of Hoare Logic

Semantics and Verification of Software Summer semester 2007 2

Partial Correctness Properties

Definition (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B

(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ BI).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ BI).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int .

Semantics and Verification of Software Summer semester 2007 3

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by

{A} skip {A}
(skip)

{A[x 7→ a]}x:=a {A}
(asgn)

{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B} (seq)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B} (if)

{A ∧ b} c {A}
{A} while b do c {A ∧ ¬b} (while)

|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B} (cons)

A partial correctness property is provable (notation: ⊢ {A} c {B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of
x by a in A.

Semantics and Verification of Software Summer semester 2007 4

Soundness of Hoare Logic II

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
⊢ {A} c {B} =⇒ |= {A} c {B}.

Proof.

Let ⊢ {A} c {B}. By induction over the structure of the corresponding
proof tree we show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A,
CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)

Semantics and Verification of Software Summer semester 2007 5

Outline

1 Repetition: Hoare Logic

2 (In-)Completeness of Hoare Logic

Semantics and Verification of Software Summer semester 2007 6

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable
√

Completeness: all valid partial correctness properties are
systematically derivable "

Theorem 10.1 (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}

is not recursively enumerable, i.e., there exists no proof system for

Assn in which all valid assertions are systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]

Semantics and Verification of Software Summer semester 2007 7

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable
√

Completeness: all valid partial correctness properties are
systematically derivable "

Theorem 10.1 (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}

is not recursively enumerable, i.e., there exists no proof system for

Assn in which all valid assertions are systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]

Semantics and Verification of Software Summer semester 2007 7

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable
√

Completeness: all valid partial correctness properties are
systematically derivable "

Theorem 10.1 (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}

is not recursively enumerable, i.e., there exists no proof system for

Assn in which all valid assertions are systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]

Semantics and Verification of Software Summer semester 2007 7

Incompleteness of Hoare Logic II

Corollary 10.2

There is no proof system in which all valid partial correctness

properties can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But
the set of all non–terminating WHILE statements is not enumerable.

Semantics and Verification of Software Summer semester 2007 8

Incompleteness of Hoare Logic II

Corollary 10.2

There is no proof system in which all valid partial correctness

properties can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But
the set of all non–terminating WHILE statements is not enumerable.

Semantics and Verification of Software Summer semester 2007 8

Incompleteness of Hoare Logic II

Corollary 10.2

There is no proof system in which all valid partial correctness

properties can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But
the set of all non–terminating WHILE statements is not enumerable.

Semantics and Verification of Software Summer semester 2007 8

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B} (cons)

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be derived

=⇒ Relative completeness

Semantics and Verification of Software Summer semester 2007 9

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B} (cons)

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be derived

=⇒ Relative completeness

Semantics and Verification of Software Summer semester 2007 9

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B} (cons)

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be derived

=⇒ Relative completeness

Semantics and Verification of Software Summer semester 2007 9

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B} (cons)

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be derived

=⇒ Relative completeness

Semantics and Verification of Software Summer semester 2007 9

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B} (cons)

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be derived

=⇒ Relative completeness

Semantics and Verification of Software Summer semester 2007 9

Relative Completeness of Hoare Logic I

Theorem 10.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness

property {A} c {B}:

|= {A} c {B} =⇒ ⊢ {A} c {B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that {A} c1;c2 {B} has
to be derived. This requires an intermediate assertion C ∈ Assn such
that {A} c1 {C} and {C} c2 {B}. How to find it?

Semantics and Verification of Software Summer semester 2007 10

Relative Completeness of Hoare Logic I

Theorem 10.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness

property {A} c {B}:

|= {A} c {B} =⇒ ⊢ {A} c {B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that {A} c1;c2 {B} has
to be derived. This requires an intermediate assertion C ∈ Assn such
that {A} c1 {C} and {C} c2 {B}. How to find it?

Semantics and Verification of Software Summer semester 2007 10

Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 10.5

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpIJc,BK

2 If A0 ∈ Assn such that AI
0

= wpIJc,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A =⇒ A0)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A} c {B} valid

Semantics and Verification of Software Summer semester 2007 11

Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 10.5

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpIJc,BK

2 If A0 ∈ Assn such that AI
0

= wpIJc,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A =⇒ A0)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A} c {B} valid

Semantics and Verification of Software Summer semester 2007 11

Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 10.5

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpIJc,BK

2 If A0 ∈ Assn such that AI
0

= wpIJc,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A =⇒ A0)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A} c {B} valid

Semantics and Verification of Software Summer semester 2007 11

Weakest Preconditions II

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists A0 ∈ Assn such that

AI
0

= wpIJc, BK
for every I ∈ Int .

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given c ∈ Cmd and B ∈ Assn, construct Ac,B ∈ Assn with
σ |=I Ac,B ⇐⇒ CJcKσ |=I B (for every σ ∈ Σ⊥, I ∈ Int). For example:

Askip,B := B Ax:=a,B := B[x 7→ a]
Ac1;c2,B := Ac1,Ac2,B

. . .

(for while: “Gödelization” of sequences of intermediate states)

Semantics and Verification of Software Summer semester 2007 12

Weakest Preconditions II

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists A0 ∈ Assn such that

AI
0

= wpIJc, BK
for every I ∈ Int .

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given c ∈ Cmd and B ∈ Assn, construct Ac,B ∈ Assn with
σ |=I Ac,B ⇐⇒ CJcKσ |=I B (for every σ ∈ Σ⊥, I ∈ Int). For example:

Askip,B := B Ax:=a,B := B[x 7→ a]
Ac1;c2,B := Ac1,Ac2,B

. . .

(for while: “Gödelization” of sequences of intermediate states)

Semantics and Verification of Software Summer semester 2007 12

Weakest Preconditions II

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists A0 ∈ Assn such that

AI
0

= wpIJc, BK
for every I ∈ Int .

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given c ∈ Cmd and B ∈ Assn, construct Ac,B ∈ Assn with
σ |=I Ac,B ⇐⇒ CJcKσ |=I B (for every σ ∈ Σ⊥, I ∈ Int). For example:

Askip,B := B Ax:=a,B := B[x 7→ a]
Ac1;c2,B := Ac1,Ac2,B

. . .

(for while: “Gödelization” of sequences of intermediate states)

Semantics and Verification of Software Summer semester 2007 12

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c ∈ Cmd and B ∈ Assn:

⊢ {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ⊢ {A} c {B}.

Lemma 10.8 =⇒ ⊢ {Ac,B} c {B}
Cor. 10.5 =⇒ |= (A =⇒ Ac,B)
(cons) rule =⇒ ⊢ {A} c {B}

Semantics and Verification of Software Summer semester 2007 13

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c ∈ Cmd and B ∈ Assn:

⊢ {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ⊢ {A} c {B}.

Lemma 10.8 =⇒ ⊢ {Ac,B} c {B}
Cor. 10.5 =⇒ |= (A =⇒ Ac,B)
(cons) rule =⇒ ⊢ {A} c {B}

Semantics and Verification of Software Summer semester 2007 13

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c ∈ Cmd and B ∈ Assn:

⊢ {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ⊢ {A} c {B}.

Lemma 10.8 =⇒ ⊢ {Ac,B} c {B}
Cor. 10.5 =⇒ |= (A =⇒ Ac,B)
(cons) rule =⇒ ⊢ {A} c {B}

Semantics and Verification of Software Summer semester 2007 13

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c ∈ Cmd and B ∈ Assn:

⊢ {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ⊢ {A} c {B}.

Lemma 10.8 =⇒ ⊢ {Ac,B} c {B}
Cor. 10.5 =⇒ |= (A =⇒ Ac,B)
(cons) rule =⇒ ⊢ {A} c {B}

Semantics and Verification of Software Summer semester 2007 13

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c ∈ Cmd and B ∈ Assn:

⊢ {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ⊢ {A} c {B}.

Lemma 10.8 =⇒ ⊢ {Ac,B} c {B}
Cor. 10.5 =⇒ |= (A =⇒ Ac,B)
(cons) rule =⇒ ⊢ {A} c {B}

Semantics and Verification of Software Summer semester 2007 13

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c ∈ Cmd and B ∈ Assn:

⊢ {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ⊢ {A} c {B}.

Lemma 10.8 =⇒ ⊢ {Ac,B} c {B}
Cor. 10.5 =⇒ |= (A =⇒ Ac,B)
(cons) rule =⇒ ⊢ {A} c {B}

Semantics and Verification of Software Summer semester 2007 13

	Repetition: Hoare Logic
	(In-)Completeness of Hoare Logic

