
Semantics and Verification of Software
Lecture 11: Axiomatic Semantics of WHILE

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Outline

1 Repetition: Correctness of Hoare Logic

2 Equivalence of Axiomatic and Operational/Denotational Semantics

3 Total Correctness

Semantics and Verification of Software Summer semester 2007 2

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
⊢ {A} c {B} =⇒ |= {A} c {B}.

Theorem (Gödel’s Incompleteness Theorem)

The set of all valid assertions
{A ∈ Assn | |= A}

is not recursively enumerable, i.e., there exists no proof system for
Assn in which all valid assertions are systematically derivable.

Theorem (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness
property {A} c {B}:

|= {A} c {B} =⇒ ⊢ {A} c {B}.

Semantics and Verification of Software Summer semester 2007 3

Outline

1 Repetition: Correctness of Hoare Logic

2 Equivalence of Axiomatic and Operational/Denotational Semantics

3 Total Correctness

Semantics and Verification of Software Summer semester 2007 4

Operational/Denotational Equivalence

Def. 4.3: OJ.K : Cmd → (Σ(Σ) given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Def. 4.4: Two statements c1, c2 ∈ Cmd are called operationally
equivalent (notation: c1 ∼ c2) if

OJc1K = OJc2K.

Theorem 7.4: For every c ∈ Cmd ,

OJcK = CJcK,

i.e., OJ.K = CJ.K.

Semantics and Verification of Software Summer semester 2007 5

Operational/Denotational Equivalence

Def. 4.3: OJ.K : Cmd → (Σ(Σ) given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Def. 4.4: Two statements c1, c2 ∈ Cmd are called operationally
equivalent (notation: c1 ∼ c2) if

OJc1K = OJc2K.

Theorem 7.4: For every c ∈ Cmd ,

OJcK = CJcK,

i.e., OJ.K = CJ.K.

Semantics and Verification of Software Summer semester 2007 5

Operational/Denotational Equivalence

Def. 4.3: OJ.K : Cmd → (Σ(Σ) given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Def. 4.4: Two statements c1, c2 ∈ Cmd are called operationally
equivalent (notation: c1 ∼ c2) if

OJc1K = OJc2K.

Theorem 7.4: For every c ∈ Cmd ,

OJcK = CJcK,

i.e., OJ.K = CJ.K.

Semantics and Verification of Software Summer semester 2007 5

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation:
c1 ≈ c2) if, for all assertions A, B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Example 11.2

We show that c1;(c2;c3) ≈ (c1;c2);c3. Let A, B ∈ Assn:
|= {A} c1;(c2;c3) {B}

⇐⇒ ⊢ {A} c1;(c2;c3) {B} (Theorem 9.5, 10.3)
⇐⇒ ex. C1 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2;c3 {B} (rule (seq))
⇐⇒ ex. C1, C2 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2 {C2},

⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ex. C2 ∈ Assn such that ⊢ {A} c1;c2 {C2},⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ⊢ {A} (c1;c2);c3 {B} (rule (seq))
⇐⇒ |= {A} (c1;c2);c3 {B} (Theorem 9.5, 10.3)

Semantics and Verification of Software Summer semester 2007 6

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation:
c1 ≈ c2) if, for all assertions A, B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Example 11.2

We show that c1;(c2;c3) ≈ (c1;c2);c3. Let A, B ∈ Assn:
|= {A} c1;(c2;c3) {B}

⇐⇒ ⊢ {A} c1;(c2;c3) {B} (Theorem 9.5, 10.3)
⇐⇒ ex. C1 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2;c3 {B} (rule (seq))
⇐⇒ ex. C1, C2 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2 {C2},

⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ex. C2 ∈ Assn such that ⊢ {A} c1;c2 {C2},⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ⊢ {A} (c1;c2);c3 {B} (rule (seq))
⇐⇒ |= {A} (c1;c2);c3 {B} (Theorem 9.5, 10.3)

Semantics and Verification of Software Summer semester 2007 6

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation:
c1 ≈ c2) if, for all assertions A, B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Example 11.2

We show that c1;(c2;c3) ≈ (c1;c2);c3. Let A, B ∈ Assn:
|= {A} c1;(c2;c3) {B}

⇐⇒ ⊢ {A} c1;(c2;c3) {B} (Theorem 9.5, 10.3)
⇐⇒ ex. C1 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2;c3 {B} (rule (seq))
⇐⇒ ex. C1, C2 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2 {C2},

⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ex. C2 ∈ Assn such that ⊢ {A} c1;c2 {C2},⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ⊢ {A} (c1;c2);c3 {B} (rule (seq))
⇐⇒ |= {A} (c1;c2);c3 {B} (Theorem 9.5, 10.3)

Semantics and Verification of Software Summer semester 2007 6

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation:
c1 ≈ c2) if, for all assertions A, B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Example 11.2

We show that c1;(c2;c3) ≈ (c1;c2);c3. Let A, B ∈ Assn:
|= {A} c1;(c2;c3) {B}

⇐⇒ ⊢ {A} c1;(c2;c3) {B} (Theorem 9.5, 10.3)
⇐⇒ ex. C1 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2;c3 {B} (rule (seq))
⇐⇒ ex. C1, C2 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2 {C2},

⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ex. C2 ∈ Assn such that ⊢ {A} c1;c2 {C2},⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ⊢ {A} (c1;c2);c3 {B} (rule (seq))
⇐⇒ |= {A} (c1;c2);c3 {B} (Theorem 9.5, 10.3)

Semantics and Verification of Software Summer semester 2007 6

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation:
c1 ≈ c2) if, for all assertions A, B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Example 11.2

We show that c1;(c2;c3) ≈ (c1;c2);c3. Let A, B ∈ Assn:
|= {A} c1;(c2;c3) {B}

⇐⇒ ⊢ {A} c1;(c2;c3) {B} (Theorem 9.5, 10.3)
⇐⇒ ex. C1 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2;c3 {B} (rule (seq))
⇐⇒ ex. C1, C2 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2 {C2},

⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ex. C2 ∈ Assn such that ⊢ {A} c1;c2 {C2},⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ⊢ {A} (c1;c2);c3 {B} (rule (seq))
⇐⇒ |= {A} (c1;c2);c3 {B} (Theorem 9.5, 10.3)

Semantics and Verification of Software Summer semester 2007 6

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation:
c1 ≈ c2) if, for all assertions A, B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Example 11.2

We show that c1;(c2;c3) ≈ (c1;c2);c3. Let A, B ∈ Assn:
|= {A} c1;(c2;c3) {B}

⇐⇒ ⊢ {A} c1;(c2;c3) {B} (Theorem 9.5, 10.3)
⇐⇒ ex. C1 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2;c3 {B} (rule (seq))
⇐⇒ ex. C1, C2 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2 {C2},

⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ex. C2 ∈ Assn such that ⊢ {A} c1;c2 {C2},⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ⊢ {A} (c1;c2);c3 {B} (rule (seq))
⇐⇒ |= {A} (c1;c2);c3 {B} (Theorem 9.5, 10.3)

Semantics and Verification of Software Summer semester 2007 6

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation:
c1 ≈ c2) if, for all assertions A, B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Example 11.2

We show that c1;(c2;c3) ≈ (c1;c2);c3. Let A, B ∈ Assn:
|= {A} c1;(c2;c3) {B}

⇐⇒ ⊢ {A} c1;(c2;c3) {B} (Theorem 9.5, 10.3)
⇐⇒ ex. C1 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2;c3 {B} (rule (seq))
⇐⇒ ex. C1, C2 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2 {C2},

⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ex. C2 ∈ Assn such that ⊢ {A} c1;c2 {C2},⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ⊢ {A} (c1;c2);c3 {B} (rule (seq))
⇐⇒ |= {A} (c1;c2);c3 {B} (Theorem 9.5, 10.3)

Semantics and Verification of Software Summer semester 2007 6

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation:
c1 ≈ c2) if, for all assertions A, B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Example 11.2

We show that c1;(c2;c3) ≈ (c1;c2);c3. Let A, B ∈ Assn:
|= {A} c1;(c2;c3) {B}

⇐⇒ ⊢ {A} c1;(c2;c3) {B} (Theorem 9.5, 10.3)
⇐⇒ ex. C1 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2;c3 {B} (rule (seq))
⇐⇒ ex. C1, C2 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2 {C2},

⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ex. C2 ∈ Assn such that ⊢ {A} c1;c2 {C2},⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ⊢ {A} (c1;c2);c3 {B} (rule (seq))
⇐⇒ |= {A} (c1;c2);c3 {B} (Theorem 9.5, 10.3)

Semantics and Verification of Software Summer semester 2007 6

Axiomatic Equivalence II

Theorem 11.3

Axiomatic and denotational/operational equivalence coincide, i.e., for
all c1, c2 ∈ Cmd,

c1 ≈ c2 ⇐⇒ c1 ∼ c2.

Proof.

on the board

Semantics and Verification of Software Summer semester 2007 7

Axiomatic Equivalence II

Theorem 11.3

Axiomatic and denotational/operational equivalence coincide, i.e., for
all c1, c2 ∈ Cmd,

c1 ≈ c2 ⇐⇒ c1 ∼ c2.

Proof.

on the board

Semantics and Verification of Software Summer semester 2007 7

Outline

1 Repetition: Correctness of Hoare Logic

2 Equivalence of Axiomatic and Operational/Denotational Semantics

3 Total Correctness

Semantics and Verification of Software Summer semester 2007 8

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states specified by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

Interpretation:

Validity of property {A} c {⇓B}

For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

Semantics and Verification of Software Summer semester 2007 9

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states specified by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

Interpretation:

Validity of property {A} c {⇓B}

For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

Semantics and Verification of Software Summer semester 2007 9

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states specified by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

Interpretation:

Validity of property {A} c {⇓B}

For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

Semantics and Verification of Software Summer semester 2007 9

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states specified by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

Interpretation:

Validity of property {A} c {⇓B}

For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

Semantics and Verification of Software Summer semester 2007 9

Semantics of Total Correctness Properties

Definition 11.4 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

{A} c {⇓B} is called valid (notation: |= {A} c {B}) if
|=I {A} c {⇓B} for every I ∈ Int .

Semantics and Verification of Software Summer semester 2007 10

Semantics of Total Correctness Properties

Definition 11.4 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

{A} c {⇓B} is called valid (notation: |= {A} c {B}) if
|=I {A} c {⇓B} for every I ∈ Int .

Semantics and Verification of Software Summer semester 2007 10

Semantics of Total Correctness Properties

Definition 11.4 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

{A} c {⇓B} is called valid (notation: |= {A} c {B}) if
|=I {A} c {⇓B} for every I ∈ Int .

Semantics and Verification of Software Summer semester 2007 10

Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 11.5 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

{A} skip{⇓A}
(skip)

{A[x 7→ a]} x := a {⇓A}
(asgn)

{A} c1 {⇓C} {C} c2 {⇓B}

{A} c1;c2 {⇓B}
(seq)

{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}

{A} if b then c1 else c2 {⇓B}
(if)

{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}
(while)

|= (A =⇒ A′) {A′} c {⇓B′} |= (B′ =⇒ B)

{A} c {⇓B}
(cons)

where i ∈ LVar , |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and |= (A(0) =⇒ ¬b).
A total correctness property is provable (notation: ⊢ {A} c {⇓B}) if it is
derivable by the Hoare rules. In case of (while), A(i) is called a (loop)
invariant.

Semantics and Verification of Software Summer semester 2007 11

Proving Total Correctness II

In rule

{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}
(while)

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Execution terminated
=⇒ A(0) holds
=⇒ execution condition b false

Thus: |= (A(0) =⇒ ¬b)

Loop to be traversed i + 1 times (i ≥ 0)
=⇒ A(i + 1) holds
=⇒ execution condition b true

Thus: |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and i + 1 decreased to i after
execution of c

Semantics and Verification of Software Summer semester 2007 12

Proving Total Correctness II

In rule

{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}
(while)

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Execution terminated
=⇒ A(0) holds
=⇒ execution condition b false

Thus: |= (A(0) =⇒ ¬b)

Loop to be traversed i + 1 times (i ≥ 0)
=⇒ A(i + 1) holds
=⇒ execution condition b true

Thus: |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and i + 1 decreased to i after
execution of c

Semantics and Verification of Software Summer semester 2007 12

Proving Total Correctness II

In rule

{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}
(while)

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Execution terminated
=⇒ A(0) holds
=⇒ execution condition b false

Thus: |= (A(0) =⇒ ¬b)

Loop to be traversed i + 1 times (i ≥ 0)
=⇒ A(i + 1) holds
=⇒ execution condition b true

Thus: |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and i + 1 decreased to i after
execution of c

Semantics and Verification of Software Summer semester 2007 12

Proving Total Correctness II

In rule

{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}
(while)

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Execution terminated
=⇒ A(0) holds
=⇒ execution condition b false

Thus: |= (A(0) =⇒ ¬b)

Loop to be traversed i + 1 times (i ≥ 0)
=⇒ A(i + 1) holds
=⇒ execution condition b true

Thus: |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and i + 1 decreased to i after
execution of c

Semantics and Verification of Software Summer semester 2007 12

Total Correctness of Factorial Program

Example 11.6

Proof of {A} y:=1;c {⇓B} where

A := (x > 0 ∧ x = i)
c := while ¬(x=1) do (y:=y*x; x:=x-1)

B := (y = i!)

(on the board)

Semantics and Verification of Software Summer semester 2007 13

	Repetition: Correctness of Hoare Logic
	Equivalence of Axiomatic and Operational/Denotational Semantics
	Total Correctness

