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@ Repetition: Correctness of Hoare Logic
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Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c{B},

- {A}e{B} = E {A}c{B).

Theorem (Godel’s Incompleteness Theorem)

The set of all valid assertions

{A € Assn | E A}
s mot recursively enumerable, i.e., there exists no proof system for
Assn in which all valid assertions are systematically derivable.

Theorem (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness

property {A} c{B}:
E{A}c{B} = F {A}c{B}.
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© Equivalence of Axiomatic and Operational /Denotational Semantics
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Operational /Denotational Equivalence

Def. 4.3: O[.] : Cmd — (X -» X) given by

Ole)(o) =0’ < (c,0) — o’
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Operational /Denotational Equivalence

Def. 4.3: O[.] : Cmd — (X -» X) given by

Ole)(o) =0’ < (c,0) — o’

Def. 4.4: Two statements c1,co € Cmd are called operationally
equivalent (notation: ¢; ~ ¢) if

D [[Cl]] = D [[02]] .
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Operational /Denotational Equivalence

Def. 4.3: O[.] : Cmd — (X -» X) given by
Ole)(o) =0’ < (c,0) — o’
Def. 4.4: Two statements c1,co € Cmd are called operationally

equivalent (notation: ¢; ~ ¢) if

D [[Cl]] = D [[02]] .

Theorem 7.4: For every ¢ € Cmd,

Ol = ¢[¢],

ie., O[] = ¢[].
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Axiomatic Equivalence 1

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1,c, € Cmd are called axiomatically equivalent (notation:
c1 = ) if, for all assertions A, B € Assn,

F{A}a{B} < F {4} {B}.
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Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1,c, € Cmd are called axiomatically equivalent (notation:
c1 = ) if, for all assertions A, B € Assn,

F{A}a{B} < F {4} {B}.

Example 11.2
We show that ¢1;(ca;c3) = (c15¢2);¢3. Let A, B € Assn:

= A{A} ers(e2;e3) {B}
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Axiomatic Equivalence I

Definition 11.1 (Axiomatic equivalence)

Two statements c1,c, € Cmd are called axiomatically equivalent (notation:
c1 = ) if, for all assertions A, B € Assn,

F{A}a{B} < F {4} {B}.

Example 11.2
We show that ¢1;(ca;c3) = (c15¢2);¢3. Let A, B € Assn:

= {A} ers(e2;03) { B}
< F{A}ci;(c2;¢3){B} (Theorem 9.5, 10.3)
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Axiomatic Equivalence I

Definition 11.1 (Axiomatic equivalence)

Two statements c1,c, € Cmd are called axiomatically equivalent (notation:
c1 = ) if, for all assertions A, B € Assn,

F{A}a{B} < F {4} {B}.

Example 11.2
We show that ¢1;(ca;c3) = (c15¢2);¢3. Let A, B € Assn:

= {A}ers(case3) {B}
< F{A}ci;(c2;¢3){B} (Theorem 9.5, 10.3)
<= ex. (1 € Assn such that = {A}c; {C1},F {C1} c2;¢3 {B} (rule (seq))
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Axiomatic Equivalence I

Definition 11.1 (Axiomatic equivalence)

Two statements c1,c, € Cmd are called axiomatically equivalent (notation:
c1 = ) if, for all assertions A, B € Assn,

F{A}a{B} < F {4} {B}.

Example 11.2
We show that ¢1;(ca;c3) = (c15¢2);¢3. Let A, B € Assn:

= {A}ers(case3) {B}
< F{A}ci;(c2;¢3){B} (Theorem 9.5, 10.3)
<= ex. (1 € Assn such that = {A}c; {C1},F {C1} c2;¢3 {B} (rule (seq))
<= ex. (1,05 € Assn such that F {A} 1 {C1},F {C1} 2 {C2},

F{C>} ez {B} (rule (seq))
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Axiomatic Equivalence I

Definition 11.1 (Axiomatic equivalence)

Two statements c1,c, € Cmd are called axiomatically equivalent (notation:
c1 = ) if, for all assertions A, B € Assn,

F{A}a{B} < F {4} {B}.

Example 11.2
We show that ¢1;(ca;c3) = (c15¢2);¢3. Let A, B € Assn:

= {A} ers(e2;03) { B}
< F{A}ci;(c2;¢3){B} (Theorem 9.5, 10.3)
<= ex. (1 € Assn such that = {A}c; {C1},F {C1} c2;¢3 {B} (rule (seq))
<= ex. (1,05 € Assn such that F {A} 1 {C1},F {C1} 2 {C2},
F{C2} c3{B} (rule (seq))
<= ex. (h € Assn such that = {A}cr;e0 {Co},F {C2} e3 {B} (rule (seq))
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Axiomatic Equivalence I

Definition 11.1 (Axiomatic equivalence)

Two statements c1,c, € Cmd are called axiomatically equivalent (notation:
c1 = ) if, for all assertions A, B € Assn,

F{A}a{B} < F {4} {B}.

Example 11.2
We show that ¢1;(ca;c3) = (c15¢2);¢3. Let A, B € Assn:

= {A} ers(e2;03) { B}

F{A}c1;5(c2;¢3) {B} (Theorem 9.5, 10.3)

ex. C1 € Assn such that = {A} e {C1},F {C1} c2;e3 {B} (rule (seq))
ex. C1,Ch € Assn such that = {A} 1 {C1},F {C1} 2 {Ca},

F{C2} c3{B} (rule (seq))

ex. Cy € Assn such that = {A}cr;e0 {Co},F {C2} e3 {B} (rule (seq))
F{A4} (c1;¢2);e3{B} (rule (seq))

e 1
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Axiomatic Equivalence I

Definition 11.1 (Axiomatic equivalence)

Two statements c1,c, € Cmd are called axiomatically equivalent (notation:
c1 = ) if, for all assertions A, B € Assn,

F{A}a{B} < F {4} {B}.

Example 11.2
We show that ¢1;(ca;c3) = (c15¢2);¢3. Let A, B € Assn:

= {A} ers(e2;03) { B}

F{A}c1;5(c2;¢3) {B} (Theorem 9.5, 10.3)

ex. C1 € Assn such that = {A} e {C1},F {C1} co;e3 {B} (rule (seq))
ex. C1,Ch € Assn such that F {A} 1 {C1},F {C1} 2 {Ca},

F{C2} c3{B} (rule (seq))

ex. Cp € Assn such that = {A}cr;e0 {Co},F {C2} e3 {B} (rule (seq))
F{A} (c15¢2);e3{B} (rule (seq))

E {4} (c15¢2);c3{B} (Theorem 9.5, 10.3)

117
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Axiomatic Equivalence II

Aziomatic and denotational/operational equivalence coincide, i.e., for
all c1,co € Cmd,

Cl1 R C) <= C1 ~ C.
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Axiomatic Equivalence II

Aziomatic and denotational/operational equivalence coincide, i.e., for
all c1,co € Cmd,
Cl1 R C) <= C1 ~ C.

on the board O
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© Total Correctness
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Total Correctness

@ Observation: partial correctness properties only speak about
terminating computations of a given program
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Total Correctness

@ Observation: partial correctness properties only speak about
terminating computations of a given program

o Total correctness additionally requires the proof that the program
indeed stops (on the input states specified by the precondition)
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Total Correctness

@ Observation: partial correctness properties only speak about
terminating computations of a given program

o Total correctness additionally requires the proof that the program
indeed stops (on the input states specified by the precondition)

o Consider total correctness properties of the form
{A}c {4 B}

where ¢ € Cmd and A, B € Assn
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Total Correctness

@ Observation: partial correctness properties only speak about
terminating computations of a given program

o Total correctness additionally requires the proof that the program
indeed stops (on the input states specified by the precondition)

o Consider total correctness properties of the form
{A}c {4 B}

where ¢ € Cmd and A, B € Assn

o Interpretation:

Validity of property {A}c{{ B}

For all states 0 € ¥ which satisfy A:
the execution of ¢ in o terminates and yields a state which satisfies B.
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Semantics of Total Correctness Properties

Definition 11.4 (Semantics of total correctness properties)

Let A, B € Assn and ¢ € Omd.
o {A}c{| B} is called valid in 0 € ¥ and I € Int (notation:
o =1 {AYc{UB}) if 0 ! A implies that €[c]o # L and
¢lcJo = B.
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Semantics of Total Correctness Properties

Definition 11.4 (Semantics of total correctness properties)

Let A, B € Assn and ¢ € Omd.
o {A}c{| B} is called valid in 0 € ¥ and I € Int (notation:
o =1 {AYc{UB}) if 0 ! A implies that €[c]o # L and
Cc]o ! B.
o {A}c{U B} is called valid in I € Int (notation: = {A}c{ B}) if
o =L {A}c{ B} for every o € Y.
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Semantics of Total Correctness Properties

Definition 11.4 (Semantics of total correctness properties)

Let A, B € Assn and ¢ € Omd.

o {A}c{| B} is called valid in 0 € ¥ and I € Int (notation:
o =1 {AYc{UB}) if 0 ! A implies that €[c]o # L and
¢lcJo = B.

o {A}c{U B} is called valid in I € Int (notation: = {A}c{ B}) if
o = {A} c{| B} for every o € L.

o {A}c{| B} is called valid (notation: = {A}c{B}) if
=1 {A} ¢ {§ B} for every I € Int.
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Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 11.5 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

[ATsxip (U A} P Al dte = oG a} 2
e o) (e B} . (AN alUB) (An-bhe(tB)
{A} ¢15¢{I B} {A} if b then ¢; else ¢, {{ B}

{i >0AA(i+1)} {4 A(5)}
{315 >0A A(7)} while b do c{{ A(0)}
FA = A) {4}c{IB} (B = B)
{A} c{U B}

where i € LVar, = (i > 0N A(i +1) = b), and = (A(0) = —b).

A total correctness property is provable (notation: = {A} ¢ {|} B}) if it is
derivable by the Hoare rules. In case of (while), A(%) is called a (loop)
invariant.

(while)

(cons)
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Proving Total Correctness 11

o In rule
{i>0NA>+1)}c{JA@G)}
{3i.i > 0N A(i)} while b do c{{ A(0)}

(while)

the notation A(7) indicates that assertion A parametrically
depends on the value of the logical variable ¢ € LVar.
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Proving Total Correctness 11

o In rule
{i>0NA>+1)}c{JA@G)}
{3i.i > 0N A(i)} while b do c{{ A(0)}

(while)

the notation A(7) indicates that assertion A parametrically
depends on the value of the logical variable ¢ € LVar.

o Idea: ¢ represents the remaining number of loop iterations
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Proving Total Correctness 11

o In rule
{i>0NA>+1)}c{JA@G)}
{3i.i > 0N A(i)} while b do c{{ A(0)}

(while)

the notation A(7) indicates that assertion A parametrically
depends on the value of the logical variable ¢ € LVar.

o Idea: ¢ represents the remaining number of loop iterations
@ Execution terminated

= A(0) holds
— execution condition b false

Thus: = (A(0) = —b)
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Proving Total Correctness 11

o In rule
{i>0NA>+1)}c{JA@G)}
{3i.i > 0N A(i)} while b do c{{ A(0)}

(while)

the notation A(7) indicates that assertion A parametrically
depends on the value of the logical variable ¢ € LVar.

o Idea: ¢ represents the remaining number of loop iterations
@ Execution terminated

— A(0) holds

— execution condition b false

Thus: = (A(0) = —b)
@ Loop to be traversed ¢ 4+ 1 times (i > 0)

= A(¢+ 1) holds

= execution condition b true

Thus: = (i >0AA(i+1) = b), and i + 1 decreased to i after
execution of ¢
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Total Correctness of Factorial Program

Example 11.6
Proof of {A}y:=1;¢c{| B} where

A:=(x>0Ax=1)
¢ :=while —(x=1) do (y:=y*x; x:=x-1)
B :=(y=1i!)

(on the board)
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