Semantics and Verification of Software

Lecture 12: Operational Semantics of Blocks and Procedures

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Total Correctness

Rm Semantics and Verification of Software Summer semester 2007

Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

[ATsxip (U A} P Al dte = oG a} 2
e o) (e B} . (AN alUB) (An-bhe(tB)
{A} ¢15¢{I B} {A} if b then ¢; else ¢, {{ B}

{i >0AA(i+1)} {4 A(5)}
{315 >0A A(7)} while b do c{{ A(0)}
FA = A) {4}c{IB} (B = B)
{A} c{U B}

where i € LVar, = (i > 0N A(i +1) = b), and = (A(0) = —b).

A total correctness property is provable (notation: = {A} ¢ {|} B}) if it is
derivable by the Hoare rules. In case of (while), A(%) is called a (loop)
invariant.

(while)

(cons)

m' Semantics and Verification of Software Summer semester 2007

© Soundness and Completeness

Rm Semantics and Verification of Software Summer semester 2007

Soundness

In analogy to Theorem 9.5 we can show that the Hoare Logic for total
correctness properties is also sound:

For every total correctness property {A} c¢{| B},

F{A}c{UB} = = {A}c{{B}.

m' Semantics and Verification of Software Summer semester 2007

Soundness

In analogy to Theorem 9.5 we can show that the Hoare Logic for total
correctness properties is also sound:

For every total correctness property {A} c¢{| B},

F{A}c{UB} = = {A}c{{B}.

again by structural induction over the derivation tree of - {A} ¢ {{ B}
(only (while) case; on the board) O

m Semantics and Verification of Software Summer semester 2007

Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 10.3 applies:

Theorem 12.2 (Completeness)

The Hoare Logic for total correctness properties is relatively complete,
i.e., for every {A} c{| B}:

F{A}c{ B} = {4}c{UB}.

omitted

m Semantics and Verification of Software Summer semester 2007

© Summary: Axiomatic Semantics

Rm S i ification of Software Summer semester 2007

Summary: Axiomatic Semantics

e Formalized by partial/total correctness properties

Rm Semantics and Verification of Software Summer semester 2007

Summary: Axiomatic Semantics

e Formalized by partial/total correctness properties

@ Inductively defined by Hoare Logic proof rules

Rm Semantics and Verification of Software Summer semester 2007

Summary: Axiomatic Semantics

e Formalized by partial/total correctness properties
@ Inductively defined by Hoare Logic proof rules

@ Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

Rm Semantics and Verification of Software Summer semester 2007

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

©

Inductively defined by Hoare Logic proof rules

©

Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

©

Equivalence of axiomatic and operational /denotational semantics

Rm Semantics and Verification of Software Summer semester 2007

Summary: Axiomatic Semantics

e Formalized by partial/total correctness properties
@ Inductively defined by Hoare Logic proof rules

@ Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

e Equivalence of axiomatic and operational /denotational semantics

@ Software engineering aspect: integrated development of program
and proof (cf. assertions in Java)

Rm Semantics and Verification of Software Summer semester 2007

@ Semantics of Blocks and Procedures

Rm Semantics and Verification of Software Summer semester 2007

Blocks and Procedures

o Extension of WHILE by blocks with (local) variables and
(recursive) procedures

Rm Semantics and Verification of Software Summer semester 2007

Blocks and Procedures

o Extension of WHILE by blocks with (local) variables and
(recursive) procedures
o Involves new semantic concepts:

e variable und procedure environments
o locations (memory addresses) and stores (memory states)

Rm Semantics and V tion of Software Summer semester 2007

Blocks and Procedures

o Extension of WHILE by blocks with (local) variables and
(recursive) procedures

o Involves new semantic concepts:

e variable und procedure environments
o locations (memory addresses) and stores (memory states)

o Important: scope of variable and procedure identifiers

static scoping: scope of identifier = declaration environment (here)
dynamic scoping: scope of identifier = calling environment
(old Algol/Lisp dialects)

Rm Semantics and Verification of Software Summer semester 2007

Static and Dynamic Scoping

Example 12.3

begin
var x;
proc P is y := x;
x :=1;
begin
var Xx;
X = 2;
call P
end
end

Semantics and Verification of Software Summer semester 2007

Static and Dynamic Scoping

Example 12.3

begin
var x;
proc P is y := x;
x :=1;
begin
var Xx;
X = 2;
call P
end
end

static scoping =— y =1

Semantics and Verification of Software Summer semester 2007

Static and Dynamic Scoping

Example 12.3

begin
var x;
proc P is y := x;
x :=1;
begin
var Xx;
X = 2;
call P
end
end

dynamic scoping = y = 2

Semantics and Verification of Software Summer semester 2007

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={pP,Q,...} P
Procedure declarations PDec P
Variable declarations VDec v
Commands (statements) Cmd c

Rm Semantics and Verification of Software Summer semester 2007

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={pP,Q,...} P
Procedure declarations PDec P
Variable declarations VDec v
Commands (statements) Cmd c

Context—free grammar:
p = proc P is ¢;p | e € PDec
v=var z;v|e € VDec
¢ =skip|x :=a|c1;¢2 | if b then ¢; else ¢ | while b do ¢ |
call P | begin v p ¢ end € Cmd

Rm Semantics and Verification of Software Summer semester 2007

@ Operational Semantics

Rm S i ification of Software Summer semester 2007

Operational Semantics

Caveat: see Lecture 14 for corrections!

Rm Semantics and rifi ion of Software Summer semester 2007

Operational Semantics

Caveat: see Lecture 14 for corrections!
@ So far: states X ={o | o : Var — 7}

Rm Semantics and Verification of Software Summer semester 2007

Operational Semantics

Caveat: see Lecture 14 for corrections!
@ So far: states X = {0 | o : Var — Z}
@ Now: explicit control over all (nested) instances of a variable:

o variable environments VEnv := {p | p: Var -» Loc}
o (memory) locations Loc := N
o stores Sto:={o | o : Loc — Z}

Rm Semantics and Verification of Software Summer semester 2007

Operational Semantics

Caveat: see Lecture 14 for corrections!
@ So far: states X ={o | o : Var — 7}
@ Now: explicit control over all (nested) instances of a variable:
o variable environments VEnv := {p | p: Var -» Loc}
o (memory) locations Loc := N
o stores Sto:={o | o : Loc — Z}
—> Two-level access to a variable x € Var:
@ determine current memory location of z: [:= p(z)
@ reading/writing access to o at position [

Rm Semantics and Verification of Software Summer semester 2007

Operational Semantics

Caveat: see Lecture 14 for corrections!
@ So far: states X = {0 | o : Var — Z}
@ Now: explicit control over all (nested) instances of a variable:

o variable environments VEnv := {p | p: Var -» Loc}
o (memory) locations Loc := N
o stores Sto:={o | o : Loc — Z}

—> Two-level access to a variable x € Var:

@ determine current memory location of z: [:= p(z)
@ reading/writing access to o at position [
@ Effect of procedure call determined by its body statement and

variable and procedure environment of its declaration:
PEnv :={xn |7 : PVar -» Cmd x VEnv x PEnv}

Rm Semantics and Verification of Software Summer semester 2007

Operational Semantics

Caveat: see Lecture 14 for corrections!
@ So far: states X ={o | o : Var — 7}
@ Now: explicit control over all (nested) instances of a variable:
o variable environments VEnv := {p | p: Var -» Loc}
o (memory) locations Loc := N
o stores Sto:={o | o : Loc — Z}
—> Two-level access to a variable x € Var:
@ determine current memory location of z: [:= p(z)
@ reading/writing access to o at position [
@ Effect of procedure call determined by its body statement and

variable and procedure environment of its declaration:
PEnv :={xn |7 : PVar -» Cmd x VEnv x PEnv}

@ Effect of declaration: update of environment
upd, : VDec x VEnv — VEnv
upd,(var x;v, p) := upd, (v, p[z — min(Ladb \ p(Var))])
upd, (g, p) i= p
upd,, : PDec X VEnv x PEnv — PEnv
upd,,(proc P is ¢;p, p,m) := upd,(p, p, 7[P — (c, p, 7)])

Rm Semantics and \euﬁcatlun of Software Summer semester 2007

Execution Relation I

Definition 12.4 (Execution relation)

For ¢ € Cmd, 0,0’ € Sto, p € VEnv, and © € PEnv, the execution relation
p, Tk {c,0) — o' is defined by the following rules:

. (a,00p) — z
k

p, T (skip,0) — o (skip) p, T {x :=a,0) — o[p(x) — Z] (asgn)

o, E{c1,0) = o' p,mF (c2,0") — " (seq)

p, T {c1;e0,0) — o 4

(b,o0p) — true p,mk {(c1,0) — o’ (if-t)

p, T (if b then ¢; else ¢p,0) — o’

(b,o0p) — false p, 7t (c2,0) — 0’ (iE-1)

p, 7 (if b then ¢; else ¢p,0) — o’

(b,0 0 p) — false (wh-f)
p, T (while bdo ¢,0) — o

(b,0 0 p) — true p,m F (¢c,0) — o' p,mF (while b do ¢,0’) — o

h—t
p, 7 (while b do ¢,0) — o” (wh-t)
PP (e i F (o) — o . >
11 f m(P) =
p, 7t {call P,og) — o’ (call) if 7(P) = (c,p',7')
upd, (v, p),upd,(p, upd, (v, p),7) = {(c,0) — o
g > (block)
p, 7 (beginv p cend, o) — o
RWNTH

Semantics and Verification of Software

Summer semester 2007

Execution Relation 11

Remarks about rule (call):
@ The procedure environment associated with procedure P is
extended by a P—entry to handle recursive calls of P:
'[P (c,p',7")]
@ Static scoping is modelled by using the environments p’ and 7’
from the declaration site of procedure P (and not p and 7 from
the calling site)

Rm Semantics and Verification of Software Summer semester 2007

Execution Relation III
Example 12.5

¢ = begin
var x; var y; }v
proc F is)
begin)
var z;
Z = X;
if z=1 then skip P
else x := x-1; cr
call F; Co €1
yi=z*y
end)
X :=2;y :=1; call F }co
end
Let py(z) = L = my(P) for all x € Var and P € PVar, and let o € Sto.
Notation: o;j1 < 0(0) =4,0(1) = j,0(2) = k,0(3) =1
Derivation tree for py, - (c,0) — 01221: on the board

Semantics and Verification of Software

Summer semester 2007

	Repetition: Total Correctness
	Soundness and Completeness
	Summary: Axiomatic Semantics
	Semantics of Blocks and Procedures
	Operational Semantics

