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Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

{A} skip{⇓A}
(skip)

{A[x 7→ a]} x := a {⇓A}
(asgn)

{A} c1 {⇓C} {C} c2 {⇓B}

{A} c1;c2 {⇓B}
(seq)

{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}

{A} if b then c1 else c2 {⇓B}
(if)

{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}
(while)

|= (A =⇒ A′) {A′} c {⇓B′} |= (B′ =⇒ B)

{A} c {⇓B}
(cons)

where i ∈ LVar , |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and |= (A(0) =⇒ ¬b).
A total correctness property is provable (notation: ⊢ {A} c {⇓B}) if it is
derivable by the Hoare rules. In case of (while), A(i) is called a (loop)
invariant.
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Soundness

In analogy to Theorem 9.5 we can show that the Hoare Logic for total
correctness properties is also sound:

Theorem 12.1 (Soundness)

For every total correctness property {A} c {⇓B},

⊢ {A} c {⇓B} =⇒ |= {A} c {⇓B}.

Proof.

again by structural induction over the derivation tree of ⊢ {A} c {⇓B}
(only (while) case; on the board)
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Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 10.3 applies:

Theorem 12.2 (Completeness)

The Hoare Logic for total correctness properties is relatively complete,

i.e., for every {A} c {⇓B}:

|= {A} c {⇓B} =⇒ ⊢ {A} c {⇓B}.

Proof.

omitted
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Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
=⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Software engineering aspect: integrated development of program
and proof (cf. assertions in Java)
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Blocks and Procedures

Extension of WHILE by blocks with (local) variables and
(recursive) procedures

Involves new semantic concepts:

variable und procedure environments
locations (memory addresses) and stores (memory states)

Important: scope of variable and procedure identifiers

static scoping: scope of identifier = declaration environment (here)
dynamic scoping: scope of identifier = calling environment

(old Algol/Lisp dialects)
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Static and Dynamic Scoping

Example 12.3

begin

var x;

proc P is y := x;

x := 1;

begin

var x;

x := 2;

call P

end

end
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Static and Dynamic Scoping

Example 12.3

begin

var x;

proc P is y := x;

x := 1;

begin

var x;

x := 2;

call P

end

end
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Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P

Procedure declarations PDec p

Variable declarations VDec v

Commands (statements) Cmd c

Context–free grammar:

p ::= proc P is c;p | ε ∈ PDec

v ::= var x;v | ε ∈ VDec

c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c |
call P | begin v p c end ∈ Cmd
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Operational Semantics

Caveat: see Lecture 14 for corrections!

So far: states Σ = {σ | σ : Var → Z}
Now: explicit control over all (nested) instances of a variable:

variable environments VEnv := {ρ | ρ : Var ( Loc}
(memory) locations Loc := N
stores Sto := {σ | σ : Loc → Z}

=⇒ Two–level access to a variable x ∈ Var :

1 determine current memory location of x: l := ρ(x)
2 reading/writing access to σ at position l

Effect of procedure call determined by its body statement and
variable and procedure environment of its declaration:

PEnv := {π | π : PVar ( Cmd × VEnv × PEnv}

Effect of declaration: update of environment
upd

v
: VDec × VEnv → VEnv

upd
v
(var x;v, ρ) := upd

v
(v, ρ[x 7→ min(Lab \ ρ(Var))])

upd
v
(ε, ρ) := ρ

upd
p

: PDec × VEnv × PEnv → PEnv

upd
p
(proc P is c;p, ρ, π) := upd

p
(p, ρ, π[P 7→ (c, ρ, π)])

upd
p
(ε, ρ, π) := π
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Execution Relation I

Definition 12.4 (Execution relation)

For c ∈ Cmd , σ, σ′ ∈ Sto, ρ ∈ VEnv , and π ∈ PEnv , the execution relation
ρ, π ⊢ 〈c, σ〉 → σ′ is defined by the following rules:

ρ, π ⊢ 〈skip, σ〉 → σ
(skip)

〈a, σ ◦ ρ〉 → z

ρ, π ⊢ 〈x := a, σ〉 → σ[ρ(x) 7→ z]
(asgn)

ρ, π ⊢ 〈c1, σ〉 → σ′ ρ, π ⊢ 〈c2, σ
′〉 → σ′′

ρ, π ⊢ 〈c1;c2, σ〉 → σ′′
(seq)

〈b, σ ◦ ρ〉 → true ρ, π ⊢ 〈c1, σ〉 → σ′

ρ, π ⊢ 〈if b then c1 else c2, σ〉 → σ′
(if–t)

〈b, σ ◦ ρ〉 → false ρ, π ⊢ 〈c2, σ〉 → σ′

ρ, π ⊢ 〈if b then c1 else c2, σ〉 → σ′
(if–f)

〈b, σ ◦ ρ〉 → false

ρ, π ⊢ 〈while b do c, σ〉 → σ
(wh–f)

〈b, σ ◦ ρ〉 → true ρ, π ⊢ 〈c, σ〉 → σ′ ρ, π ⊢ 〈while b do c, σ′〉 → σ′′

ρ, π ⊢ 〈while b do c, σ〉 → σ′′
(wh–t)

ρ′, π′[P 7→ (c, ρ′, π′)] ⊢ 〈c, σ〉 → σ′

ρ, π ⊢ 〈call P, σ〉 → σ′
(call) if π(P ) = (c, ρ′, π′)

upd
v
(v, ρ), upd

p
(p, upd

v
(v, ρ), π) ⊢ 〈c, σ〉 → σ′

ρ, π ⊢ 〈begin v p c end, σ〉 → σ′
(block)
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Execution Relation II

Remarks about rule (call):

The procedure environment associated with procedure P is
extended by a P–entry to handle recursive calls of P :
π′[P 7→ (c, ρ′, π′)]

Static scoping is modelled by using the environments ρ′ and π′

from the declaration site of procedure P (and not ρ and π from
the calling site)
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Execution Relation III

Example 12.5

c = begin

var x; var y; } v

proc F is

begin

var z;

z := x;

if z=1 then skip

else x := x-1;

call F;

y := z * y







c2















c1

end















































cF























































p

x := 2; y := 1; call F
}

c0

end

Let ρ∅(x) = ⊥ = π∅(P ) for all x ∈ Var and P ∈ PVar , and let σ ∈ Sto.
Notation: σijkl ⇔ σ(0) = i, σ(1) = j, σ(2) = k, σ(3) = l

Derivation tree for ρ∅, ∅ ⊢ 〈c, σ〉 → σ1221: on the board
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