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@ Repetition: Total Correctness
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Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

[ATsxip (U A} P Al dte = oG a} 2
e o) (e B} . (AN alUB) (An-bhe(tB)
{A} ¢15¢{I B} {A} if b then ¢; else ¢, {{ B}

{i >0AA(i+1)} {4 A(5)}
{315 >0A A(7)} while b do c{{ A(0)}
FA = A) {4}c{IB} (B = B)
{A} c{U B}

where i € LVar, = (i > 0N A(i +1) = b), and = (A(0) = —b).

A total correctness property is provable (notation: = {A} ¢ {|} B}) if it is
derivable by the Hoare rules. In case of (while), A(%) is called a (loop)
invariant.

(while)

(cons)
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© Soundness and Completeness
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Soundness

In analogy to Theorem 9.5 we can show that the Hoare Logic for total
correctness properties is also sound:

For every total correctness property {A} c¢{| B},

F{A}c{UB} = = {A}c{{B}.
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Soundness

In analogy to Theorem 9.5 we can show that the Hoare Logic for total
correctness properties is also sound:

For every total correctness property {A} c¢{| B},

F{A}c{UB} = = {A}c{{B}.

again by structural induction over the derivation tree of - {A} ¢ {{ B}
(only (while) case; on the board) O

m Semantics and Verification of Software Summer semester 2007



Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 10.3 applies:

Theorem 12.2 (Completeness)

The Hoare Logic for total correctness properties is relatively complete,
i.e., for every {A} c{| B}:

F{A}c{ B} = {4}c{UB}.

omitted
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© Summary: Axiomatic Semantics
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Summary: Axiomatic Semantics

e Formalized by partial/total correctness properties
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Summary: Axiomatic Semantics

e Formalized by partial/total correctness properties

@ Inductively defined by Hoare Logic proof rules
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Summary: Axiomatic Semantics

e Formalized by partial/total correctness properties
@ Inductively defined by Hoare Logic proof rules

@ Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs
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Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

©

Inductively defined by Hoare Logic proof rules

©

Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

©

Equivalence of axiomatic and operational /denotational semantics

Rm Semantics and Verification of Software Summer semester 2007



Summary: Axiomatic Semantics

e Formalized by partial/total correctness properties
@ Inductively defined by Hoare Logic proof rules

@ Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

e Equivalence of axiomatic and operational /denotational semantics

@ Software engineering aspect: integrated development of program
and proof (cf. assertions in Java)
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@ Semantics of Blocks and Procedures
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Blocks and Procedures

o Extension of WHILE by blocks with (local) variables and
(recursive) procedures
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Blocks and Procedures

o Extension of WHILE by blocks with (local) variables and
(recursive) procedures
o Involves new semantic concepts:

e variable und procedure environments
o locations (memory addresses) and stores (memory states)
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Blocks and Procedures

o Extension of WHILE by blocks with (local) variables and
(recursive) procedures

o Involves new semantic concepts:

e variable und procedure environments
o locations (memory addresses) and stores (memory states)

o Important: scope of variable and procedure identifiers

static scoping: scope of identifier = declaration environment (here)
dynamic scoping: scope of identifier = calling environment
(old Algol/Lisp dialects)
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Static and Dynamic Scoping

Example 12.3

begin
var x;
proc P is y := x;
x :=1;
begin
var Xx;
X = 2;
call P
end
end
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Static and Dynamic Scoping

Example 12.3

begin
var x;
proc P is y := x;
x :=1;
begin
var Xx;
X = 2;
call P
end
end

static scoping =— y =1
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Static and Dynamic Scoping

Example 12.3

begin
var x;
proc P is y := x;
x :=1;
begin
var Xx;
X = 2;
call P
end
end

dynamic scoping = y = 2
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Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={pP,Q,...} P
Procedure declarations PDec P
Variable declarations VDec v
Commands (statements) Cmd c
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Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={pP,Q,...} P
Procedure declarations PDec P
Variable declarations VDec v
Commands (statements) Cmd c

Context—free grammar:
p = proc P is ¢;p | e € PDec
v=var z;v|e € VDec
¢ =skip|x :=a|c1;¢2 | if b then ¢; else ¢ | while b do ¢ |
call P | begin v p ¢ end € Cmd
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@ Operational Semantics
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Operational Semantics

Caveat: see Lecture 14 for corrections!
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Operational Semantics

Caveat: see Lecture 14 for corrections!
@ So far: states X ={o | o : Var — 7}
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Operational Semantics

Caveat: see Lecture 14 for corrections!
@ So far: states X = {0 | o : Var — Z}
@ Now: explicit control over all (nested) instances of a variable:

o variable environments VEnv := {p | p: Var -» Loc}
o (memory) locations Loc := N
o stores Sto:={o | o : Loc — Z}
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Operational Semantics

Caveat: see Lecture 14 for corrections!
@ So far: states X ={o | o : Var — 7}
@ Now: explicit control over all (nested) instances of a variable:
o variable environments VEnv := {p | p: Var -» Loc}
o (memory) locations Loc := N
o stores Sto:={o | o : Loc — Z}
—> Two-level access to a variable x € Var:
@ determine current memory location of z: [ := p(z)
@ reading/writing access to o at position [
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Operational Semantics

Caveat: see Lecture 14 for corrections!
@ So far: states X = {0 | o : Var — Z}
@ Now: explicit control over all (nested) instances of a variable:

o variable environments VEnv := {p | p: Var -» Loc}
o (memory) locations Loc := N
o stores Sto:={o | o : Loc — Z}

—> Two-level access to a variable x € Var:

@ determine current memory location of z: [ := p(z)
@ reading/writing access to o at position [
@ Effect of procedure call determined by its body statement and

variable and procedure environment of its declaration:
PEnv :={xn |7 : PVar -» Cmd x VEnv x PEnv}

Rm Semantics and Verification of Software Summer semester 2007



Operational Semantics

Caveat: see Lecture 14 for corrections!
@ So far: states X ={o | o : Var — 7}
@ Now: explicit control over all (nested) instances of a variable:
o variable environments VEnv := {p | p: Var -» Loc}
o (memory) locations Loc := N
o stores Sto:={o | o : Loc — Z}
—> Two-level access to a variable x € Var:
@ determine current memory location of z: [ := p(z)
@ reading/writing access to o at position [
@ Effect of procedure call determined by its body statement and

variable and procedure environment of its declaration:
PEnv :={xn |7 : PVar -» Cmd x VEnv x PEnv}

@ Effect of declaration: update of environment
upd, : VDec x VEnv — VEnv
upd,(var x;v, p) := upd, (v, p[z — min(Ladb \ p(Var))])
upd, (g, p) i= p
upd,, : PDec X VEnv x PEnv — PEnv
upd,,(proc P is ¢;p, p,m) := upd,(p, p, 7[P — (c, p, 7)])
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Execution Relation I

Definition 12.4 (Execution relation)

For ¢ € Cmd, 0,0’ € Sto, p € VEnv, and © € PEnv, the execution relation
p, Tk {c,0) — o' is defined by the following rules:

. (a,00p) — z
k

p, T (skip,0) — o (skip) p, T {x :=a,0) — o[p(x) — Z] (asgn)

o, E{c1,0) = o' p,mF (c2,0") — " (seq)

p, T {c1;e0,0) — o 4

(b,o0p) — true p,mk {(c1,0) — o’ (if-t)

p, T (if b then ¢; else ¢p,0) — o’

(b,o0p) — false p, 7t (c2,0) — 0’ (iE-1)

p, 7 (if b then ¢; else ¢p,0) — o’

(b,0 0 p) — false (wh-f)
p, T (while bdo ¢,0) — o

(b,0 0 p) — true p,m F (¢c,0) — o' p,mF (while b do ¢,0’) — o

h—t
p, 7 (while b do ¢,0) — o” (wh-t)
PP (e i F (o) — o . >
11 f m(P) =
p, 7t {call P,og) — o’ (call) if 7(P) = (c,p',7')
upd, (v, p),upd,(p, upd, (v, p),7) = {(c,0) — o
g > (block)
p, 7 (beginv p cend, o) — o
RWNTH
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Execution Relation 11

Remarks about rule (call):
@ The procedure environment associated with procedure P is
extended by a P—entry to handle recursive calls of P:
'[P (c,p',7")]
@ Static scoping is modelled by using the environments p’ and 7’
from the declaration site of procedure P (and not p and 7 from
the calling site)
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Execution Relation III
Example 12.5

¢ = begin
var x; var y; }v
proc F is )
begin )
var z;
Z = X;
if z=1 then skip P
else x := x-1; cr
call F; Co €1
yi=z*y
end )
X :=2;y :=1; call F }co
end
Let py(z) = L = my(P) for all x € Var and P € PVar, and let o € Sto.
Notation: o;j1 < 0(0) =4,0(1) = j,0(2) = k,0(3) =1
Derivation tree for py, - (c,0) — 01221: on the board
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