Semantics and Verification of Software

Lecture 13: Denotational Semantics of Procedures

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Denotational Semantics of Blocks and Procedures

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 1

@ As before: statements denote storage transformations

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 1

@ As before: statements denote storage transformations

@ New: dependence on environments
C[.] : Cmd — (VEnv x PEnv — (Sto -+ Sto))

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 1

@ As before: statements denote storage transformations

@ New: dependence on environments
C[.] : Cmd — (VEnv x PEnv — (Sto -+ Sto))

@ Variable environment obtained as before:
VEnv :={p| p: Var -» Loc}

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 1

@ As before: statements denote storage transformations
@ New: dependence on environments
C[.] : Cmd — (VEnv x PEnv — (Sto -+ Sto))
@ Variable environment obtained as before:
VEnv :={p| p: Var -» Loc}
® New declaration functional takes role of update functions:
Du[.] : VDec — (VEnv — VEnw)
Dyf[var z;v]p := Dyv]plr — min{l e N | p(I) = L}]
Dulelp=p

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 1

As before: statements denote storage transformations

¢ ©

New: dependence on environments
C[.] : Cmd — (VEnv x PEnv — (Sto -+ Sto))

Variable environment obtained as before:

VEnv :={p| p: Var -» Loc}
New declaration functional takes role of update functions:

Du[.] : VDec — (VEnv — VEnw)
Dy [var z;v]p = Dy [v]p[z — min{l € N| p(I) = L}]

Dulelp=p
@ Procedures now interpreted as storage transformations:
PDec :={m | 7 : PVar -» (Sto -» Sto)}

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 1

@ As before: statements denote storage transformations

@ New: dependence on environments
C[.] : Cmd — (VEnv x PEnv — (Sto -+ Sto))
@ Variable environment obtained as before:
VEnv :={p| p: Var -» Loc}
® New declaration functional takes role of update functions:
Du[.] : VDec — (VEnv — VEnw)
Dy [var z;v]p = Dy [v]p[z — min{l € N| p(I) = L}]
Dulelp = p
@ Procedures now interpreted as storage transformations:
PDec :={m | 7 : PVar -» (Sto -» Sto)}
® Recursive procedure calls involve fixpoints:
D,[.] : PDec — (VEnv x PEnv — PEnv)

D, Iproc P is cspl(p.7) = D, [pl(p. 7[P — fix(®)])
O, [el(p.m) i=

where

o : (Sto -» Sto) — (Sto -» Sto)
o(f) := €lel(p, 7[P — f])

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 11

o Fixpoint approach motivated by equation

f=e](p, [P — f1)

@ (Sto -» Sto,C) is a chain—complete partial order
(cf. Lemma 5.5 for (X -» X, C))

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 11

o Fixpoint approach motivated by equation

f=¢e[](p,n[P — [])
@ (Sto -» Sto,C) is a chain—complete partial order
(cf. Lemma 5.5 for (X -» X, C))

o & is continuous

(cf. Lemma 6.6 for ®(f) := cond(B[b], f o €[c],idx))

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 11

o Fixpoint approach motivated by equation

f=¢e[](p,n[P — [])
@ (Sto -» Sto,C) is a chain—complete partial order
(cf. Lemma 5.5 for (X -» X, C))

o & is continuous

(cf. Lemma 6.6 for ®(f) := cond(B[b], f o €[c],idx))
—> Well-definedness of D,][.]

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 11

o Fixpoint approach motivated by equation

f=¢e[](p,n[P — [])
@ (Sto -» Sto,C) is a chain—complete partial order
(cf. Lemma 5.5 for (X -» X, C))

o & is continuous

(cf. Lemma 6.6 for ®(f) := cond(B[b], f o €[c],idx))
—> Well-definedness of D,][.]

@ In particular for a non-recursive procedure P (i.e., no P—call in ¢):

D,[proc P is c](p,m) = [P — €[c](p, 7)]

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 111

Definition 13.1 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

C[.] : Cmd x VEnv x PEnv — (Sto -» Sto),

is given by:
€[skip](p,) = idsio
€z := a](p, 7)(0) := olp(z) — Ala](o o p)]
Cler;e0](p,) := 2] (p,) 0 €[ea](p,)

(
C[if b then ¢; else c2](p,
C[while b do c](p, 7) = fix(P)
(p,m) = 7(P)
(p,) := €[](Do]v]p, DpPI (Do [v] o, 7))

Clcall P]
C[begin v p ¢ end]

) :
; c

; = cond(B[0] o p, €[c1](p, 7), €leal(p, 7))
) :

)

™
™
™
™

where
o : (Sto -» Sto) — (Sto -- Sto) : f — cond(B[b] o p, f o &€[c](p, 7),idst0)

m Semantics and Verification of Software Summer semester 2007

Example: Non—Recursive Case
Example 13.2

Let ¢ be given by
begin
var x; o
proc P is y :=x; } p
x :=1; } e
begin
var x;
X = 25 r0
call P
end
end.

m' Semantics and Verification of Software Summer semester 2007

Example: Non—Recursive Case
Example 13.2

Let ¢ be given by

begin
var x; o
proc P is y :=x; } p
x :=1; } e
begin
var x;
X = 25 r0
call P
end
end.

Let po := pply — 0] € VEnwv,
p1 = po[x — 1] € VEnw,
m = mp[P — €[y := x[(p1, mp)]
€ PEnv.
Then Dy[v]po = p1
D,[p](p1,) = (p1,m1)

m' Semantics and Verification of Software Summer semester 2007

Example: Non—Recursive Case
Example 13.2

Let ¢ be given by Thus, for every o € Sto,
begin m1(P)(0) = ap1(y) — o(p1(x))]
var X; }v :O'[OI—MT(I)].
proc P is y :=x; } p
x :=1; } e
begin
var x;
X = 25 r0
call P
end
end.

Let po := pply — 0] € VEnwv,
p1 = po[x — 1] € VEnw,
m = mp[P — €[y := x[(p1, mp)]
€ PEnv.
Then Dy[v]po = p1
D,[p](p1,) = (p1,m1)

m' Semantics and Verification of Software Summer semester 2007

Example: Non—Recursive Case
Example 13.2

Let ¢ be given by Thus, for every o € Sto,
begin m(P)(o) = alp1(y) = o(p1(x))]
var x; v = o0 — o(1)].
proc P is y = X; } p Altogether, for any og € StO,
x = 1; }a €[c](po, mg)(o0)
begin = [ex; c2](p1, m1)(00)
var x; = [e2](p1, m1)(€[ea](p1, m1)(00))
X 1= 2; v e = C[e2](p1, m1)(o0[1 — 1])
call P T
end
end.

Let po := pply — 0] € VEnwv,
p1 = po[x — 1] € VEnw,
m = mp[P — €[y := x[(p1, mp)]
€ PEnv.
Then Dy[v]po = p1
D,[p](p1,) = (p1,m1)

m' Semantics and Verification of Software Summer semester 2007

Example: Non—Recursive Case
Example 13.2

Let ¢ be given by

begin
var x; o
proc P is y :=x; } p
x :=1; } e
begin
var x;
X = 25 r0
call P
end
end.

Let po := pply — 0] € VEnwv,
p1 = po[x — 1] € VEnw,
m = mp[P — €[y := x[(p1, mp)]
€ PEnv.
Then Dy[v]po = p1
D,[p](p1,) = (p1,m1)

Semantics and Verification of Software

Thus, for every o € Sto,
m1(P)(0) = alp1(y) — o(p1(x))]
= o]0 — o(1)].
Altogether, for any gg € Sto,
€[] (po, mp)(o0)
= €fe1; e2](p1, m1)(00)
= €[cz](p1, m1)(€[ex](p1, 71)(00))
= €[e2](p1, m1) (001 — 1])
T
Decomposing c» yiefds
Dyvar x;]p1 = p1[x — 2]
——

=i p2

Summer semester 2007

Example: Non—Recursive Case
Example 13.2

Let ¢ be given by Thus, for every o € Sto,
begin m(P)(o) = olpa(y) — o(p1(x))]
var x; o = o]0 — o(1)].
proc P is y :=x; } p Altogether, for any og € Sto,
x = 1; } e €[c](po, mp)(o0)
begin = [ex; c2](p1, m1)(00)
var x; = [e2](p1, m1)(€[ea](p1, m1)(00))
X = 2; 8¢ = €[e2](p1, m1)(o0[L — 1])
call P = o1
end Decomposing c; yields
end. Dyf[var x;]p1 = p1[x — 2]
Let pg := pgly — 0] € VEnw, —
= 1] € VEnv i o ol
p1 = polx —) which gives the overall result
m =[P — €y := x]|(p1,70)] ¢lea] (p1, m1) (o)
S S, = €[call P[(p2,m)(01[2 — 2])
Then Dy[v]po = p1 —
_ = 02
Dplpl(p1,m9) = (p1,m1) = 020 — 02(1)]
=090~ 1,1— 1,2+ 2]

m Semantics and Verification of Software Summer semester 2007

Example: Recursive Case 1
Example 13.3

The semantics of procedure declaration p
proc Mult is
begin
if x > 0 then z := z+y; x := x-1; call Mult}(:
else skip

end
with respect to variable environment pg := py[x — 0,y — 1,z — 2] is
given by

Semantics and Verification of Software Summer semester 2007

Example: Recursive Case 1
Example 13.3

The semantics of procedure declaration p
proc Mult is
begin
if x > 0 then z := z+y; x := x-1; call Mult} c
else skip
end
with respect to variable environment pg := py[x — 0,y — 1,z — 2] is
given by
D, 7] (o,) = mo[Mult fix(®)]
where, for every f : Sto -» Sto and o € Sto,
®(f)(o) = €[c](po, mp[Mult — f])()
f(e[2— o(2) +o(1),0 — o(0) —1]) if o(0) >0
o otherwise

Semantics and Verification of Software Summer semester 2007

Example: Recursive Case 11

Example 13.3 (continued)
L,en ©™(fo) by fixpoint iteration (Theorem 7.1):

Computation of fix(®)

fo(o) == fo(o)

Summer semester 2007

Semantics and Verification of Software

Example: Recursive Case 11

Example 13.3 (continued)

Computation of fix(®) = | |, ®"(fg) by fixpoint iteration (Theorem 7.1):

fo(o) := fo(o)
=1

fi(o) :== @(fo)(o)
(L ifo(0)>0
= {a if 0(0) < 0

m' Semantics and Verification of Software Summer semester 2007

Example: Recursive Case 11

Example 13.3 (continued)

Computation of fix($) = LlnEN “(

) by fixpoint iteration (Theorem 7.1):

=

fa(o) = ®(f1)(0)
if 0(0) > 1
fo(o) := fo(o) = {0[2H0(2)+0(1),0i—>0] if 0(0) =1
= o if 0(0) <0
filo) =

Summer semester 2007

Semantics and Verification of Software

Example: Recursive Case 11

Example 13.3 (continued)

Computation of fix($) = LlnEN (fo) by ﬁxpomt iteration (Theorem 7.1):
fa(o) = ‘D
if 0(0) > 1
fo(o) == fo(o) 0[2'—>0 0(1),0—0] ifo(0)=1
=1 if #(0) < 0
fi(o) = &(fo)() f3(0) := ¢
_ [L ifo(0)>0 if o(0) > 2
_{a if 0(0) <0 a[2»—>a +2*0’()0l—>0] if 0(0) =2
a[2b—>a (1),0 — 0] if 0(0) =1
if 7(0) <0

Semantics and Verification of Software Summer semester 2007

Example: Recursive Case 11

Example 13.3 (continued)

Computation of fix(®) = | |, ®"(fg) by fixpoint iteration (Theorem 7.1):
fa(o) = ®(f1)(0)
1 if o(0) > 1
fo(o) == fo(o) = {02~ 0(2)+0(1),0—0] ifo(0)=1
=1 o if #(0) < 0
fi(o) = &(fo)() f3(0) = o(f2)(0)
L ifo(0)>0 i if 0(0) > 2
= {a if 0(0) < 0 B {0[2H0(2)+2*a(1),0H0] if 0(0) = 2
o[2 — 0(2) + 0(1),0 — 0] if 0(0) =1
o if 0(0) <0
{J_ if 0(0) > n
fu(o) = o[2— 0(2) + 0(0) x0(1),0 — 0] if 0<o(0) <n
o if 7(0) <0

m' Semantics and Verification of Software Summer semester 2007

Example: Recursive Case 11

Example 13.3 (continued)

Computation of fix(®) = | |, ., ®"(fg) by fixpoint iteration (Theorem 7.1):
f2(0) = @(f1)()
1 if o(0) > 1
fo(o) == fy(o) =< o2—0(2)+0(1),0—~0] ifco(0)=1
=" o if 0(0) <0
fi(o) = &(fo)() f3(0) = &(f2)(0)
L ifo(0)>0 i if 0(0) > 2
= {a if 0(0) < 0 o2 o(2) +2%0(1),0— 0] if o(0) =2
{0[2 — d(2) +0(1),0 — 0] if 0(0) =1
o if 0(0) <0
i if 0(0) > n
fu(o) = o[2— 0(2) + 0(0) x0(1),0 — 0] if 0<o(0) <n
o if 0(0) <0
In the limit we obtain . £ o(0)> 0
fix(®)(o) = {2[2 ~al eSOl i Zgog Zo

m' Semantics and Verification of Software Summer semester 2007

	Denotational Semantics of Blocks and Procedures

