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Outline

1 Denotational Semantics of Blocks and Procedures

Semantics and Verification of Software Summer semester 2007 2



Denotational Semantics I

As before: statements denote storage transformations

New: dependence on environments
CJ.K : Cmd → (VEnv × PEnv → (Sto ( Sto))

Variable environment obtained as before:
VEnv := {ρ | ρ : Var ( Loc}

New declaration functional takes role of update functions:
DvJ.K : VDec → (VEnv → VEnv)

DvJvar x;vKρ := DvJvKρ[x 7→ min{l ∈ N | ρ(l) = ⊥}]
DvJεKρ := ρ

Procedures now interpreted as storage transformations:
PDec := {π | π : PVar ( (Sto ( Sto)}

Recursive procedure calls involve fixpoints:
DpJ.K : PDec → (VEnv × PEnv → PEnv)

DpJproc P is c;pK(ρ, π) := DpJpK(ρ, π[P 7→ fix(Φ)])
DpJεK(ρ, π) := π

where
Φ : (Sto ( Sto) → (Sto ( Sto)

Φ(f) := CJcK(ρ, π[P 7→ f ])
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Denotational Semantics II

Fixpoint approach motivated by equation

f = CJcK(ρ, π[P 7→ f ])

(Sto ( Sto,⊑) is a chain–complete partial order
(cf. Lemma 5.5 for (Σ( Σ,⊑))

Φ is continuous
(cf. Lemma 6.6 for Φ(f) := cond(BJbK, f ◦ CJcK, idΣ))

=⇒ Well–definedness of DpJ.K

In particular for a non–recursive procedure P (i.e., no P–call in c):

DpJproc P is cK(ρ, π) = π[P 7→ CJcK(ρ, π)]

Semantics and Verification of Software Summer semester 2007 4



Denotational Semantics II

Fixpoint approach motivated by equation

f = CJcK(ρ, π[P 7→ f ])

(Sto ( Sto,⊑) is a chain–complete partial order
(cf. Lemma 5.5 for (Σ( Σ,⊑))

Φ is continuous
(cf. Lemma 6.6 for Φ(f) := cond(BJbK, f ◦ CJcK, idΣ))

=⇒ Well–definedness of DpJ.K

In particular for a non–recursive procedure P (i.e., no P–call in c):

DpJproc P is cK(ρ, π) = π[P 7→ CJcK(ρ, π)]

Semantics and Verification of Software Summer semester 2007 4



Denotational Semantics II

Fixpoint approach motivated by equation

f = CJcK(ρ, π[P 7→ f ])

(Sto ( Sto,⊑) is a chain–complete partial order
(cf. Lemma 5.5 for (Σ( Σ,⊑))

Φ is continuous
(cf. Lemma 6.6 for Φ(f) := cond(BJbK, f ◦ CJcK, idΣ))

=⇒ Well–definedness of DpJ.K

In particular for a non–recursive procedure P (i.e., no P–call in c):

DpJproc P is cK(ρ, π) = π[P 7→ CJcK(ρ, π)]

Semantics and Verification of Software Summer semester 2007 4



Denotational Semantics II

Fixpoint approach motivated by equation

f = CJcK(ρ, π[P 7→ f ])

(Sto ( Sto,⊑) is a chain–complete partial order
(cf. Lemma 5.5 for (Σ( Σ,⊑))

Φ is continuous
(cf. Lemma 6.6 for Φ(f) := cond(BJbK, f ◦ CJcK, idΣ))

=⇒ Well–definedness of DpJ.K

In particular for a non–recursive procedure P (i.e., no P–call in c):

DpJproc P is cK(ρ, π) = π[P 7→ CJcK(ρ, π)]

Semantics and Verification of Software Summer semester 2007 4



Denotational Semantics III

Definition 13.1 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd ×VEnv × PEnv → (Sto ( Sto),

is given by:

CJskipK(ρ, π) := idSto

CJx := aK(ρ, π)(σ) := σ[ρ(x) 7→ AJaK(σ ◦ ρ)]
CJc1;c2K(ρ, π) := CJc2K(ρ, π) ◦ CJc1K(ρ, π)

CJif b then c1 else c2K(ρ, π) := cond(BJbK ◦ ρ,CJc1K(ρ, π),CJc2K(ρ, π))
CJwhile b do cK(ρ, π) := fix(Φ)

CJcall P K(ρ, π) := π(P )
CJbegin v p c endK(ρ, π) := CJcK(DvJvKρ,DpJpK(DvJvKρ, π))

where
Φ : (Sto ( Sto) → (Sto ( Sto) : f 7→ cond(BJbK ◦ρ, f ◦CJcK(ρ, π), idSto)
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Example: Non–Recursive Case

Example 13.2

Let c be given by
begin

var x; } v
proc P is y := x; } p
x := 1; } c1

begin

var x;

x := 2;

call P

end







c2

end.

Let ρ0 := ρ∅[y 7→ 0] ∈ VEnv ,
ρ1 := ρ0[x 7→ 1] ∈ VEnv ,
π1 := π∅[P 7→ CJy := xK(ρ1, π∅)]

∈ PEnv .

Then DvJvKρ0 = ρ1

DpJpK(ρ1, π∅) = (ρ1, π1)

Thus, for every σ ∈ Sto,
π1(P )(σ) = σ[ρ1(y) 7→ σ(ρ1(x))]

= σ[0 7→ σ(1)].
Altogether, for any σ0 ∈ Sto,
CJcK(ρ0, π∅)(σ0)
= CJc1; c2K(ρ1, π1)(σ0)
= CJc2K(ρ1, π1)(CJc1K(ρ1, π1)(σ0))
= CJc2K(ρ1, π1)(σ0[1 7→ 1]

︸ ︷︷ ︸

=: σ1

)

Decomposing c2 yields
DvJvar x;Kρ1 = ρ1[x 7→ 2]

︸ ︷︷ ︸

=: ρ2

which gives the overall result
CJc2K(ρ1, π1)(σ1)
= CJcall PK(ρ2, π1)(σ1[2 7→ 2]

︸ ︷︷ ︸

=: σ2

)

= σ2[0 7→ σ2(1)]
= σ0[0 7→ 1, 1 7→ 1, 2 7→ 2]
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Example: Recursive Case I

Example 13.3

The semantics of procedure declaration p
proc Mult is

begin

if x > 0 then z := z+y; x := x-1; call Mult

else skip

}

c

end

with respect to variable environment ρ0 := ρ∅[x 7→ 0, y 7→ 1, z 7→ 2] is
given by

DpJpK(ρ0, π∅) = π∅[Mult 7→ fix(Φ)]
where, for every f : Sto ( Sto and σ ∈ Sto,

Φ(f)(σ) = CJcK(ρ0, π∅[Mult 7→ f ])(σ)

=

{
f(σ[2 7→ σ(2) + σ(1), 0 7→ σ(0) − 1]) if σ(0) > 0
σ otherwise
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Example: Recursive Case II

Example 13.3 (continued)

Computation of fix(Φ) =
⊔

n∈N Φn(f∅) by fixpoint iteration (Theorem 7.1):

f0(σ) := f∅(σ)
= ⊥

f1(σ) := Φ(f0)(σ)

=

{
⊥ if σ(0) > 0
σ if σ(0) ≤ 0

f2(σ) := Φ(f1)(σ)

=







⊥ if σ(0) > 1
σ[2 7→ σ(2) + σ(1), 0 7→ 0] if σ(0) = 1
σ if σ(0) ≤ 0

f3(σ) := Φ(f2)(σ)

=







⊥ if σ(0) > 2
σ[2 7→ σ(2) + 2 ∗ σ(1), 0 7→ 0] if σ(0) = 2
σ[2 7→ σ(2) + σ(1), 0 7→ 0] if σ(0) = 1
σ if σ(0) ≤ 0

...

fn(σ) =







⊥ if σ(0) ≥ n
σ[2 7→ σ(2) + σ(0) ∗ σ(1), 0 7→ 0] if 0 < σ(0) < n
σ if σ(0) ≤ 0

In the limit we obtain

fix(Φ)(σ) =

{
σ[2 7→ σ(2) + σ(0) ∗ σ(1), 0 7→ 0] if σ(0) > 0
σ if σ(0) ≤ 0
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σ if σ(0) ≤ 0

f3(σ) := Φ(f2)(σ)

=







⊥ if σ(0) > 2
σ[2 7→ σ(2) + 2 ∗ σ(1), 0 7→ 0] if σ(0) = 2
σ[2 7→ σ(2) + σ(1), 0 7→ 0] if σ(0) = 1
σ if σ(0) ≤ 0

...

fn(σ) =







⊥ if σ(0) ≥ n
σ[2 7→ σ(2) + σ(0) ∗ σ(1), 0 7→ 0] if 0 < σ(0) < n
σ if σ(0) ≤ 0

In the limit we obtain

fix(Φ)(σ) =

{
σ[2 7→ σ(2) + σ(0) ∗ σ(1), 0 7→ 0] if σ(0) > 0
σ if σ(0) ≤ 0
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