Semantics and Verification of Software

Lecture 13: Denotational Semantics of Procedures

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Denotational Semantics of Blocks and Procedures

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 1

@ As before: statements denote storage transformations

@ New: dependence on environments
C[.] : Cmd — (VEnv x PEnv — (Sto -+ Sto))
@ Variable environment obtained as before:
VEnv :={p| p: Var -» Loc}
® New declaration functional takes role of update functions:
Du[.] : VDec — (VEnv — VEnw)
Dy [var z;v]p = Dy [v]p[z — min{l € N| p(I) = L}]
Dulelp = p
@ Procedures now interpreted as storage transformations:
PDec :={m | 7 : PVar -» (Sto -» Sto)}
® Recursive procedure calls involve fixpoints:
D,[.] : PDec — (VEnv x PEnv — PEnv)

D, Iproc P is cspl(p.7) = D, [pl(p. 7[P — fix(®)])
O, [el(p.m) i=

where

o : (Sto -» Sto) — (Sto -» Sto)
o(f) := €lel(p, 7[P — f])

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 11

o Fixpoint approach motivated by equation

f=¢e[](p,n[P — [])
@ (Sto -» Sto,C) is a chain—complete partial order
(cf. Lemma 5.5 for (X -» X, C))

o & is continuous

(cf. Lemma 6.6 for ®(f) := cond(B[b], f o €[c],idx))
—> Well-definedness of D,][.]

@ In particular for a non-recursive procedure P (i.e., no P—call in ¢):

D,[proc P is c](p,m) = [P — €[c](p, 7)]

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics 111

Definition 13.1 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

C[.] : Cmd x VEnv x PEnv — (Sto -» Sto),

is given by:
€[skip](p,) = idsio
€z := a](p, 7)(0) := olp(z) — Ala](o o p)]
Cler;e0](p,) := 2] (p,) 0 €[ea](p,)

(
C[if b then ¢; else c2](p,
C[while b do c](p, 7) = fix(P)
(p,m) = 7(P)
(p,) := €[](Do]v]p, DpPI (Do [v] o, 7))

Clcall P]
C[begin v p ¢ end]

) :
; c

; = cond(B[0] o p, €[c1](p, 7), €leal(p, 7))
) :

)

™
™
™
™

where
o : (Sto -» Sto) — (Sto -- Sto) : f — cond(B[b] o p, f o &€[c](p, 7),idst0)

m Semantics and Verification of Software Summer semester 2007

Example: Non—Recursive Case
Example 13.2

Let ¢ be given by Thus, for every o € Sto,
begin m(P)(o) = olpa(y) — o(p1(x))]
var x; o = o]0 — o(1)].
proc P is y :=x; } p Altogether, for any og € Sto,
x = 1; } e €[c](po, mp)(o0)
begin = [ex; c2](p1, m1)(00)
var x; = [e2](p1, m1)(€[ea](p1, m1)(00))
X = 2; 8¢ = €[e2](p1, m1)(o0[L — 1])
call P = o1
end Decomposing c; yields
end. Dyf[var x;]p1 = p1[x — 2]
Let pg := pgly — 0] € VEnw, —
= 1] € VEnv i o ol
p1 = polx —) which gives the overall result
m =[P — €y := x]|(p1,70)] ¢lea] (p1, m1) (o)
S S, = €[call P[(p2,m)(01[2 — 2])
Then Dy[v]po = p1 —
_ = 02
Dplpl(p1,m9) = (p1,m1) = 020 — 02(1)]
=090~ 1,1— 1,2+ 2]

m Semantics and Verification of Software Summer semester 2007

Example: Recursive Case 1
Example 13.3

The semantics of procedure declaration p
proc Mult is
begin
if x > 0 then z := z+y; x := x-1; call Mult} c
else skip
end
with respect to variable environment pg := py[x — 0,y — 1,z — 2] is
given by
D, 7] (o,) = mo[Mult fix(®)]
where, for every f : Sto -» Sto and o € Sto,
®(f)(o) = €[c](po, mp[Mult — f])()
f(e[2— o(2) +o(1),0 — o(0) —1]) if o(0) >0
o otherwise

Semantics and Verification of Software Summer semester 2007

Example: Recursive Case 11

Example 13.3 (continued)

Computation of fix(®) = | |, ., ®"(fg) by fixpoint iteration (Theorem 7.1):
f2(0) = @(f1)()
1 if o(0) > 1
fo(o) == fy(o) =< o2—0(2)+0(1),0—~0] ifco(0)=1
=" o if 0(0) <0
fi(o) = &(fo)() f3(0) = &(f2)(0)
L ifo(0)>0 i if 0(0) > 2
= {a if 0(0) < 0 o2 o(2) +2%0(1),0— 0] if o(0) =2
{0[2 — d(2) +0(1),0 — 0] if 0(0) =1
o if 0(0) <0
i if 0(0) > n
fu(o) = o[2— 0(2) + 0(0) x0(1),0 — 0] if 0<o(0) <n
o if 0(0) <0
In the limit we obtain . £ o(0)> 0
fix(®)(o) = {2[2 ~al eSOl i Zgog Zo

m' Semantics and Verification of Software Summer semester 2007

	Denotational Semantics of Blocks and Procedures

