Semantics and Verification of Software

Lecture 14: Dataflow Analysis

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Correction: Operational Semantics of Blocks and Procedures

Rm Semantics and Verification of Software Summer semester 2007

Correction: Operational Semantics of Proc’s 1

¢ = begin
var x; var y; v
proc F is
begin
var z;
Z = Xx;
if z=1 then skip c p
else x := x-1; F
call F; Co “
yi=zxy
end
X :=2; y:=1; call F }co
end
updy(v, p), updy(p, updy (v, p). M) (0, 0) — 0"
p, 7 (begin v p ¢ end, o) — o’

Semantics and Verification of Software

Summer semester 2007

Correction: Operational Semantics of Proc’s 11

o Problem: variable environments VEnv := {p | p: Var -» Loc}
(with Loc := N) do not provide enough information about
availability of locations (see Example 12.5)

Rm Semantics and Verification of Software Summer semester 2007

Correction: Operational Semantics of Proc’s 11

o Problem: variable environments VEnv := {p | p: Var -» Loc}
(with Loc := N) do not provide enough information about
availability of locations (see Example 12.5)

o Solution: store maintains allocation information

Sto:={o|o: Loc -~ 1}

Rm Semantics and Verification of Software Summer semester 2007

Correction: Operational Semantics of Proc’s 11

o Problem: variable environments VEnv := {p | p: Var -» Loc}
(with Loc := N) do not provide enough information about
availability of locations (see Example 12.5)

@ Solution: store maintains allocation information

Sto:={o|o: Loc -~ 1}

o Update function for variable declarations takes store into account:

upd, : VDec x VEnv x Sto — VEnv x Sto
upd,(var z;,p,0) := (p[x — 1], o[l — 0])

where I, ;= min{l e N | o(l) = L}

Rm Semantics and Verification of Software Summer semester 2007

Correction: Operational Semantics of Proc’s 11

o Problem: variable environments VEnv := {p | p: Var -» Loc}
(with Loc := N) do not provide enough information about
availability of locations (see Example 12.5)

@ Solution: store maintains allocation information

Sto:={o|o: Loc -~ 1}

o Update function for variable declarations takes store into account:

upd, : VDec x VEnv x Sto — VEnv x Sto
upd,(var z;,p,0) := (p[x — 1], o[l — 0])

where I, ;= min{l e N | o(l) = L}
@ (block) rule becomes

upd, (v, p,0) = (p';0") p',upd,(p, o', 7) F (c,0") — o (block’)

p, 7 (begin v p ¢ end, o) — o”

Rm Semantics and Verification of Software Summer semester 2007

Correction: Operational Semantics of Proc’s 111

o Alternative solution (by Martin Pliicker):
use same location for all instances of a variable and reset to old
value upon leaving the block

Rm Semantics and Verification of Software Summer semester 2007

Correction: Operational Semantics of Proc’s 111

o Alternative solution (by Martin Pliicker):
use same location for all instances of a variable and reset to old
value upon leaving the block

o New block rule:

o, upd,(p, o,) - {c,0) — o
p, 7 (begin v p c end,0) — o

— (block)

where p’ := upd, (v, p) and, for every [€ Loc,
(1) = {U”(l) ifex. z € Var: p/(x) = p(z) =1

o(l) otherwise

Rm Semantics and Verification of Software Summer semester 2007

Correction: Operational Semantics of Proc’s 111

o Alternative solution (by Martin Pliicker):
use same location for all instances of a variable and reset to old
value upon leaving the block
o New block rule:
p'supd,(p, o',) F (c,0) — "
p, 7 (begin v p c end,0) — o

— (block)

where p’ := upd, (v, p) and, for every [€ Loc,

(1) = o’(l) ifex.xz € Var:p'(z)=p(x)=1
T T 0(1) otherwise

o No modification of stores and update function required:
Sto :={o|o: Loc — 7}

upd, : VDec x VEnv — VEnv
upd,(var z;,p) := p[z — min(Loc \ p(Var))]

Rm Semantics and Verification of Software Summer semester 2007

© Preliminaries on Dataflow Analysis

Rm Semantics and Verification of Software Summer semester 2007

Dataflow Analysis: the Approach

o Traditional form of program analysis

Rm Semantics and Verification of Software Summer semester 2007

Dataflow Analysis: the Approach

o Traditional form of program analysis

@ Idea: describe how analysis information flows through program

Rm Semantics and Verification of Software Summer semester 2007

Dataflow Analysis: the Approach

o Traditional form of program analysis
@ Idea: describe how analysis information flows through program
o Distinctions:

direction of flow: forward vs. backward analyses

procedures: interprocedural vs. intraprocedural analyses

quantification over paths: may (union) vs. must (intersection)
analyses

dependence on statement order: flow—sensitive vs. flow—insensitive
analyses

distinction of procedure calls: context—sensitive vs.
context—insensitive analyses

Rm Semantics and Verification of Software Summer semester 2007

Labelled Programs

@ Goal: localization of analysis information

Rm Semantics and Verification of Software Summer semester 2007

Labelled Programs

@ Goal: localization of analysis information
o Dataflow information will be associated with
@ assignments
o tests in conditionals (if) and loops (while)
o skip statements
These constructs will be called blocks.

Rm Semantics and Verification of Software Summer semester 2007

Labelled Programs

@ Goal: localization of analysis information
o Dataflow information will be associated with
@ assignments
o tests in conditionals (if) and loops (while)
o skip statements
These constructs will be called blocks.
@ Assume set of labels Lab with meta variable [€ Lab
(usually Lab = N)

Rm Semantics and Verification of Software Summer semester 2007

Labelled Programs

@ Goal: localization of analysis information
o Dataflow information will be associated with
@ assignments
o tests in conditionals (if) and loops (while)
o skip statements
These constructs will be called blocks.
@ Assume set of labels Lab with meta variable [€ Lab

(usually Lab = N)

Definition 14.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context—free grammar:

a:=z|x|a+ay | ai-az | az*ax € AExp
bu=t|ai=ap | ar>ay | b | by Aby| by Vb € BEzp
c = [skip]' | [z :=a]' | c1;e2 |

if [b]' then c; else cp | while [b]' do ¢ € Cmd
Here all labels in a statement ¢ € Cmd are assumed to be distinct.

m Semantics and Verification of Software Summer semester 2007

A WHILE Program

Example 14.2

X := 6;
y :=7;
z := 0;

while x > 0 do
X :=x - 1;
vV =y,
while v > 0 do
v :=v - 1;
z =z + 1;

m' Semantics and Verification of Software Summer semester 2007

A WHILE Program with Labels

Example 14.2

[x := 6]';
y = 71
e - O

while [x > 0]* do
[x :=x - 1]5
[v = 1%
while [v > 0]’ do
[v :=v - 1]8;
[z :=z + 1]°

m' Semantics and Verification of Software Summer semester 2007

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels):

Definition 14.3 (Initial and final labels)

The mapping init : Cmd — Lab returns the initial label of a statement:
init([skip]') := 1
init([z :=a]') =1
init(cy; c2) = init(eq)
init(if [b]' then c; else ¢p) := 1
init(while [b]’ do ¢) := 1

m' Semantics and Verification of Software Summer semester 2007

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels):

Definition 14.3 (Initial and final labels)

The mapping init : Cmd — Lab returns the initial label of a statement:
init([skip]') := 1
init([z :=a]') =1
init(cy; c2) = init(eq)
init(if [b]' then c; else ¢p) := 1
init(while [b]’ do ¢) := 1
The mapping final : Cmd — 2% returns the set of final labels of a

statement:
final([skip]’) := {l}
final([x :=a]’) := {I}
final(cy;¢2) = final(cz)
final(if [b]' then c; else cp) := final(c1) U final(co)
final(while [b]' do ¢) := {I}

m' Semantics and Verification of Software Summer semester 2007

Representing Control Flow II

Definition 14.4 (Flow relation)

Given a statement ¢ € Cmd, the flow relation flow(c) C Lab x Lab is
defined by

flow([skip]') := 0
flow([z :=a]') =0
flow(cy;¢2) := flow(cr) U flow(cp) U

I
{(l,init(c2)) | I € final(c1)}
flow(if [b]' then ¢; else cp) := flow(c) U flow(cp) U

{(1,init(c1)), (1, init(c2))}

flow(while [b]' do c) := flow(c) U {(I,init(c))} U
{(I",1) | U € final(c)}

m' Semantics and Verification of Software Summer semester 2007

Representing Control Flow III

Example 14.5

ci—z =15
while [x > 0]2 do
2 = 2oyl
[x := x-1]*

m Semantics and Verification of Software Summer semester 2007

Representing Control Flow III

Example 14.5

c=[z := 1]};
while [x > 0]2 do

o = 2oy
[x := x—l]4
init(c) =1

final(c) = {2}
flow(c) = {(1,2),(2,3),(3,4),(4,2)}

m Semantics and Verification of Software Summer semester 2007

Representing Control Flow III

Example 14.5

Visualization by flow graph:

c=lz := 1]1;
while [x > 0]2 do
[z := z*y]3;
[x := x—l]4
init(c) =1
final(c) = {2}
flow(c) = {(1,2),(2,3),(3,4),(4,2)}

m' Semantics and Verification of Software Summer semester 2007

Representing Control Flow IV

o To simplify the presentation we will often assume that the program
¢ € Cmd under consideration has an isolated entry, meaning that

{l € Lab | (1,init(c)) € flow(c)} =0

(which is the case when ¢ does not start with a while loop)

Rm Semantics and Verification of Software Summer semester 2007

Representing Control Flow IV

o To simplify the presentation we will often assume that the program
¢ € Cmd under consideration has an isolated entry, meaning that

{l € Lab | (1,init(c)) € flow(c)} =0

(which is the case when ¢ does not start with a while loop)
o Similarly: ¢ € Cmd has isolated exits if

{l' € Lab | (1,I') € flow(c) for some [€ final(c)} = 0

Rm Semantics and Verification of Software Summer semester 2007

Representing Control Flow IV

o To simplify the presentation we will often assume that the program
¢ € Cmd under consideration has an isolated entry, meaning that

{l € Lab | (1,init(c)) € flow(c)} =0

(which is the case when ¢ does not start with a while loop)
o Similarly: ¢ € Cmd has isolated exits if

{l' € Lab | (1,I') € flow(c) for some [€ final(c)} = 0

Example 14.6

has an isolated entry but not isolated exits

Semantics and Verification of Software Summer semester 2007

© An Example: Available Expressions Analysis

Rm Semantics and Verification of Software Summer semester 2007

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

Rm Semantics and Verification of Software Summer semester 2007

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

m' Semantics and Verification of Software Summer semester 2007

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example 14.7 (Available Expressions Analysis)

[x := a+b]!;

[= asb];

while [y > a+b]3 do
[a := a+1]*;
[x := a+b]®

m Semantics and Verification of Software Summer semester 2007

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example 14.7 (Available Expressions Analysis)

- 1.
E = Z:E}z @ a+b available at label 3
while [y > a+b]® do
[a := a+1]*;
[x := a+b]5

m Semantics and Verification of Software Summer semester 2007

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example 14.7 (Available Expressions Analysis)

:= atb 1; .
{? = Z*b}z. @ atb available at label 3
while [y > a+b]3 do @ a+b not available at label 5
[a := a+1]4;
[x := a+b]®

m Semantics and Verification of Software Summer semester 2007

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example 14.7 (Available Expressions Analysis)

:= atb 1; .
E = Z*b}z. @ atb available at label 3
while [y > a+b]3 do @ a+b not available at label 5
[a := a+1]*; @ possible optimization:
[x := a+b]® while [y > x° do

m Semantics and Verification of Software Summer semester 2007

Formalizing the Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

Rm Semantics and Verification of Software Summer semester 2007

Formalizing the Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

o An expression ¢ is killed in a block B if any of the variables in a is
modified in B

Rm Semantics and Verification of Software Summer semester 2007

Formalizing the Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

o An expression ¢ is killed in a block B if any of the variables in a is
modified in B

o Formally: killag : Block. — 24Emp. i3 defined by

killag ([skip]') :
killag ([:= a]') :
ki”AE([b]l) .

0
{d’ € AEzp, |z € FV(d)}
0

Rm Semantics and Verification of Software Summer semester 2007

Formalizing the Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

o An expression ¢ is killed in a block B if any of the variables in a is
modified in B

o Formally: killag : Block. — 24Emp. i3 defined by
killag([skip]') := 0
killag([z := a]') := {d’ € AEzp, |z € FV(d')}
ki”AE([b]l) = (Z)
@ An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B

Rm Semantics and Verification of Software Summer semester 2007

Formalizing the Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

o An expression ¢ is killed in a block B if any of the variables in a is
modified in B

o Formally: killag : Block. — 24Emp. i3 defined by
killag([skip]') := 0
killag([z := a]') := {d’ € AEzp, |z € FV(d')}
ki”AE([b]l) = (Z)
@ An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B

o Formally: genag : Block. — 24 is defined by
genng([skip]') := 0
genae([z = a]') == {a |z ¢ FV(a)}
genae([]') := AEap,

m' Semantics and Verification of Software Summer semester 2007

Formalizing the Analysis 11

Example 14.8 (killag/genag functions)

c=[x :=

a+b]!;

:= axb]?;

while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

<
I

m' Semantics and Verification of Software Summer semester 2007

Formalizing the Analysis 11

Example 14.8 (killag/genag functions)

o AFEzp,. = {atb,a*b,a+1}

c=[x := at+b];
[y := axb]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

m' Semantics and Verification of Software Summer semester 2007

Formalizing the Analysis 11

Example 14.8 (killag/genag functions)

1 o AExp, = {at+b,a*b,a+1}
o E ZIEL? o Lab, killag(B') genae(B')
While [y > a+b]3 dO 1 @ {a+b}
el > o 2 0 {a*b}
[X - a+b]5, 3 @ {a+b}
R 4 {at+b,a*b,a+1} 0
5 0 {a+b}

m Semantics and Verification of Software Summer semester 2007

	Correction: Operational Semantics of Blocks and Procedures
	Preliminaries on Dataflow Analysis
	An Example: Available Expressions Analysis

