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@ Correction: Operational Semantics of Blocks and Procedures
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Correction: Operational Semantics of Proc’s 1

¢ = begin
var x; var y; v
proc F is
begin
var z;
Z = Xx;
if z=1 then skip c p
else x := x-1; F
call F; Co “
yi=zxy
end
X :=2; y:=1; call F }co
end
updy(v, p), updy(p, updy (v, p). M) (0, 0) — 0"
p, 7 (begin v p ¢ end, o) — o’
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Correction: Operational Semantics of Proc’s 11

o Problem: variable environments VEnv := {p | p: Var -» Loc}
(with Loc := N) do not provide enough information about
availability of locations (see Example 12.5)

Rm Semantics and Verification of Software Summer semester 2007



Correction: Operational Semantics of Proc’s 11

o Problem: variable environments VEnv := {p | p: Var -» Loc}
(with Loc := N) do not provide enough information about
availability of locations (see Example 12.5)

o Solution: store maintains allocation information

Sto:={o|o: Loc -~ 1}
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Correction: Operational Semantics of Proc’s 11

o Problem: variable environments VEnv := {p | p: Var -» Loc}
(with Loc := N) do not provide enough information about
availability of locations (see Example 12.5)

@ Solution: store maintains allocation information

Sto:={o|o: Loc -~ 1}

o Update function for variable declarations takes store into account:

upd, : VDec x VEnv x Sto — VEnv x Sto
upd,(var z;,p,0) := (p[x — 1], o[l — 0])

where I, ;= min{l e N | o(l) = L}
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Correction: Operational Semantics of Proc’s 11

o Problem: variable environments VEnv := {p | p: Var -» Loc}
(with Loc := N) do not provide enough information about
availability of locations (see Example 12.5)

@ Solution: store maintains allocation information

Sto:={o|o: Loc -~ 1}

o Update function for variable declarations takes store into account:

upd, : VDec x VEnv x Sto — VEnv x Sto
upd,(var z;,p,0) := (p[x — 1], o[l — 0])

where I, ;= min{l e N | o(l) = L}
@ (block) rule becomes

upd, (v, p,0) = (p';0")  p',upd,(p, o', 7) F (c,0") — o (block’)

p, 7 (begin v p ¢ end, o) — o”

Rm Semantics and Verification of Software Summer semester 2007



Correction: Operational Semantics of Proc’s 111

o Alternative solution (by Martin Pliicker):
use same location for all instances of a variable and reset to old
value upon leaving the block
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Correction: Operational Semantics of Proc’s 111

o Alternative solution (by Martin Pliicker):
use same location for all instances of a variable and reset to old
value upon leaving the block

o New block rule:

o, upd,(p, o, ) - {c,0) — o
p, 7 (begin v p c end,0) — o

— (block)

where p’ := upd, (v, p) and, for every [ € Loc,
(1) = {U”(l) ifex. z € Var: p/(x) = p(z) =1

o(l)  otherwise
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Correction: Operational Semantics of Proc’s 111

o Alternative solution (by Martin Pliicker):
use same location for all instances of a variable and reset to old
value upon leaving the block
o New block rule:
p'supd,(p, o', ) F (c,0) — "
p, 7 (begin v p c end,0) — o

— (block)

where p’ := upd, (v, p) and, for every [ € Loc,

(1) = o’(l) ifex.xz € Var:p'(z)=p(x)=1
T T 0(1)  otherwise

o No modification of stores and update function required:
Sto :={o|o: Loc — 7}

upd, : VDec x VEnv — VEnv
upd,(var z;,p) := p[z — min(Loc \ p(Var))]
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© Preliminaries on Dataflow Analysis
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Dataflow Analysis: the Approach

o Traditional form of program analysis
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Dataflow Analysis: the Approach

o Traditional form of program analysis

@ Idea: describe how analysis information flows through program
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Dataflow Analysis: the Approach

o Traditional form of program analysis
@ Idea: describe how analysis information flows through program
o Distinctions:

direction of flow: forward vs. backward analyses

procedures: interprocedural vs. intraprocedural analyses

quantification over paths: may (union) vs. must (intersection)
analyses

dependence on statement order: flow—sensitive vs. flow—insensitive
analyses

distinction of procedure calls: context—sensitive vs.
context—insensitive analyses
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Labelled Programs

@ Goal: localization of analysis information
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Labelled Programs

@ Goal: localization of analysis information
o Dataflow information will be associated with
@ assignments
o tests in conditionals (if) and loops (while)
o skip statements
These constructs will be called blocks.
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Labelled Programs

@ Goal: localization of analysis information
o Dataflow information will be associated with
@ assignments
o tests in conditionals (if) and loops (while)
o skip statements
These constructs will be called blocks.
@ Assume set of labels Lab with meta variable [ € Lab
(usually Lab = N)
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Labelled Programs

@ Goal: localization of analysis information
o Dataflow information will be associated with
@ assignments
o tests in conditionals (if) and loops (while)
o skip statements
These constructs will be called blocks.
@ Assume set of labels Lab with meta variable [ € Lab

(usually Lab = N)

Definition 14.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context—free grammar:

a:=z|x|a+ay | ai-az | az*ax € AExp
bu=t|ai=ap | ar>ay | b | by Aby| by Vb € BEzp
c = [skip]' | [z :=a]' | c1;e2 |

if [b]' then c; else cp | while [b]' do ¢ € Cmd
Here all labels in a statement ¢ € Cmd are assumed to be distinct.
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A WHILE Program

Example 14.2

X := 6;
y :=7;
z := 0;

while x > 0 do
X :=x - 1;
vV =y,
while v > 0 do
v :=v - 1;
z =z + 1;
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A WHILE Program with Labels

Example 14.2

[x := 6]';
y = 71
e - O

while [x > 0]* do
[x :=x - 1]5
[v = 1%
while [v > 0]’ do
[v :=v - 1]8;
[z :=z + 1]°
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Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels):

Definition 14.3 (Initial and final labels)

The mapping init : Cmd — Lab returns the initial label of a statement:
init([skip]') := 1
init([z :=a]') =1
init(cy; c2) = init(eq)
init(if [b]' then c; else ¢p) := 1
init(while [b]’ do ¢) := 1
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Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels):

Definition 14.3 (Initial and final labels)

The mapping init : Cmd — Lab returns the initial label of a statement:
init([skip]') := 1
init([z :=a]') =1
init(cy; c2) = init(eq)
init(if [b]' then c; else ¢p) := 1
init(while [b]’ do ¢) := 1
The mapping final : Cmd — 2% returns the set of final labels of a

statement:
final([skip]’) := {l}
final([x :=a]’) := {I}
final(cy;¢2) = final(cz)
final(if [b]' then c; else cp) := final(c1) U final(co)
final(while [b]' do ¢) := {I}
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Representing Control Flow II

Definition 14.4 (Flow relation)

Given a statement ¢ € Cmd, the flow relation flow(c) C Lab x Lab is
defined by

flow([skip]') := 0
flow([z :=a]') =0
flow(cy;¢2) := flow(cr) U flow(cp) U

I
{(l,init(c2)) | I € final(c1)}
flow(if [b]' then ¢; else cp) := flow(c) U flow(cp) U

{(1,init(c1)), (1, init(c2))}

flow(while [b]' do c) := flow(c) U {(I,init(c))} U
{(I",1) | U € final(c)}
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Representing Control Flow III

Example 14.5

ci—z =15
while [x > 0]2 do
2 = 2oyl
[x := x-1]*
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Representing Control Flow III

Example 14.5

c=[z := 1]};
while [x > 0]2 do

o = 2oy
[x := x—l]4
init(c) =1

final(c) = {2}
flow(c) = {(1,2),(2,3),(3,4),(4,2)}
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Representing Control Flow III

Example 14.5

Visualization by flow graph:

c=lz := 1]1;
while [x > 0]2 do
[z := z*y]3;
[x := x—l]4
init(c) =1
final(c) = {2}
flow(c) = {(1,2),(2,3),(3,4),(4,2)}
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Representing Control Flow IV

o To simplify the presentation we will often assume that the program
¢ € Cmd under consideration has an isolated entry, meaning that

{l € Lab | (1,init(c)) € flow(c)} =0

(which is the case when ¢ does not start with a while loop)
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Representing Control Flow IV

o To simplify the presentation we will often assume that the program
¢ € Cmd under consideration has an isolated entry, meaning that

{l € Lab | (1,init(c)) € flow(c)} =0

(which is the case when ¢ does not start with a while loop)
o Similarly: ¢ € Cmd has isolated exits if

{l' € Lab | (1,I') € flow(c) for some [ € final(c)} = 0
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Representing Control Flow IV

o To simplify the presentation we will often assume that the program
¢ € Cmd under consideration has an isolated entry, meaning that

{l € Lab | (1,init(c)) € flow(c)} =0

(which is the case when ¢ does not start with a while loop)
o Similarly: ¢ € Cmd has isolated exits if

{l' € Lab | (1,I') € flow(c) for some [ € final(c)} = 0

Example 14.6

has an isolated entry but not isolated exits
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© An Example: Available Expressions Analysis
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example 14.7 (Available Expressions Analysis)

[x := a+b]!;

[ = asb];

while [y > a+b]3 do
[a := a+1]*;
[x := a+b]®
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example 14.7 (Available Expressions Analysis)

- 1.
E = Z:E}z @ a+b available at label 3
while [y > a+b]® do
[a := a+1]*;
[x := a+b]5
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example 14.7 (Available Expressions Analysis)

:= atb 1; .
{? = Z*b}z. @ atb available at label 3
while [y > a+b]3 do @ a+b not available at label 5
[a := a+1]4;
[x := a+b]®
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example 14.7 (Available Expressions Analysis)

:= atb 1; .
E = Z*b}z. @ atb available at label 3
while [y > a+b]3 do @ a+b not available at label 5
[a := a+1]*; @ possible optimization:
[x := a+b]® while [y > x° do
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Formalizing the Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively
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Formalizing the Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

o An expression ¢ is killed in a block B if any of the variables in a is
modified in B

Rm Semantics and Verification of Software Summer semester 2007



Formalizing the Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

o An expression ¢ is killed in a block B if any of the variables in a is
modified in B

o Formally: killag : Block. — 24Emp. i3 defined by

killag ([skip]') :
killag ([ := a]') :
ki”AE([b]l) .

0
{d’ € AEzp, |z € FV(d)}
0
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Formalizing the Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

o An expression ¢ is killed in a block B if any of the variables in a is
modified in B

o Formally: killag : Block. — 24Emp. i3 defined by
killag([skip]') := 0
killag([z := a]') := {d’ € AEzp, |z € FV(d')}
ki”AE([b]l) = (Z)
@ An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B
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Formalizing the Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

o An expression ¢ is killed in a block B if any of the variables in a is
modified in B

o Formally: killag : Block. — 24Emp. i3 defined by
killag([skip]') := 0
killag([z := a]') := {d’ € AEzp, |z € FV(d')}
ki”AE([b]l) = (Z)
@ An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B

o Formally: genag : Block. — 24 is defined by
genng([skip]') := 0
genae([z = a]') == {a |z ¢ FV(a)}
genae([]') := AEap,
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Formalizing the Analysis 11

Example 14.8 (killag/genag functions)

c=[x :=

a+b]!;

:= axb]?;

while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

<
I
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Formalizing the Analysis 11

Example 14.8 (killag/genag functions)

o AFEzp,. = {atb,a*b,a+1}

c=[x := at+b];
[y := axb]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®
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Formalizing the Analysis 11

Example 14.8 (killag/genag functions)

1 o AExp, = {at+b,a*b,a+1}
o E ZIEL? o Lab, killag(B') genae(B')
While [y > a+b]3 dO 1 @ {a+b}
el > o 2 0 {a*b}
[X - a+b]5, 3 @ {a+b}
R 4 {at+b,a*b,a+1} 0
5 0 {a+b}

m Semantics and Verification of Software Summer semester 2007



	Correction: Operational Semantics of Blocks and Procedures
	Preliminaries on Dataflow Analysis
	An Example: Available Expressions Analysis

