

Semantics and Verification of Software

Lecture 15: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw/>

Summer semester 2007

- 1 Repetition: Dataflow Analysis
- 2 Available Expressions Analysis (continued)
- 3 Live Variables Analysis
- 4 A Dataflow Analysis Framework

Labelled Programs

- Goal: **localization** of analysis information
- Dataflow information will be associated with
 - assignments
 - tests in conditionals (**if**) and loops (**while**)
 - **skip** statements

These constructs will be called **blocks**.

- Assume set of **labels** Lab with meta variable $l \in Lab$
(usually $Lab = \mathbb{N}$)

Definition (Labelled WHILE programs)

The **syntax of labelled WHILE programs** is defined by the following context-free grammar:

$$\begin{aligned} a &::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp \\ b &::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \wedge b_2 \mid b_1 \vee b_2 \in BExp \\ c &::= [\text{skip}]^l \mid [x := a]^l \mid c_1 ; c_2 \mid \\ &\quad \text{if } [b]^l \text{ then } c_1 \text{ else } c_2 \mid \text{while } [b]^l \text{ do } c \in Cmd \end{aligned}$$

Here all labels in a statement $c \in Cmd$ are assumed to be distinct.

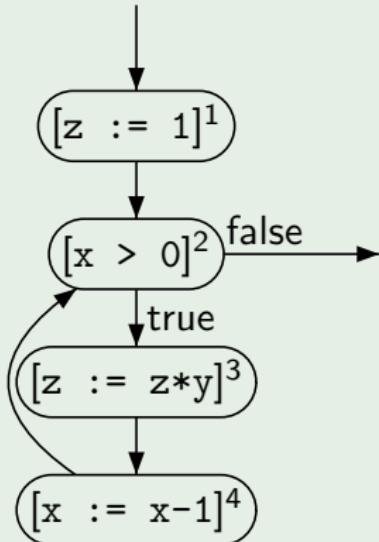
Representing Control Flow

Example

Visualization by **flow graph**:

```
c = [z := 1]1;  
  while [x > 0]2 do  
    [z := z*y]3;  
    [x := x-1]4
```

$\text{init}(c) = 1$
 $\text{final}(c) = \{2\}$
 $\text{flow}(c) = \{(1, 2), (2, 3), (3, 4), (4, 2)\}$



Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- can be used to avoid recomputations of expressions
- for simplicity: only non-trivial arithmetic expressions

Example (Available Expressions analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

- a+b available at label 3
- a+b not available at label 5
- possible optimization:
 while [y > x]³ do

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- can be used to avoid recomputations of expressions
- for simplicity: only non-trivial arithmetic expressions

Example (Available Expressions analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

- a+b available at label 3
- a+b not available at label 5
- possible optimization:
 while [y > x]³ do

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- can be used to avoid recomputations of expressions
- for simplicity: only non-trivial arithmetic expressions

Example (Available Expressions analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

- a+b available at label 3
- a+b not available at label 5
- possible optimization:
 while [y > x]³ do

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- can be used to avoid recomputations of expressions
- for simplicity: only non-trivial arithmetic expressions

Example (Available Expressions analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

- a+b available at label 3
- a+b not available at label 5
- possible optimization:
 while [y > x]³ do

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- can be used to avoid recomputations of expressions
- for simplicity: only non-trivial arithmetic expressions

Example (Available Expressions analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

- $a+b$ available at label 3
- $a+b$ not available at label 5
- possible optimization:
 $\text{while } [y > x]³ \text{ do}$

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- can be used to avoid recomputations of expressions
- for simplicity: only non-trivial arithmetic expressions

Example (Available Expressions analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

- $a+b$ available at label 3
- $a+b$ not available at label 5
- possible optimization:
 $while [y > x]³ do$

- Given $c \in Cmd$, $Lab_c/Block_c/AExp_c$ denote the sets of all labels/blocks/complex arithmetic expressions occurring in c , respectively
- An expression a is **killed** in a block B if any of the variables in a is modified in B
- Formally: $\text{kill}_{AE} : Block_c \rightarrow 2^{AExp_c}$ is defined by
 - $\text{kill}_{AE}([\text{skip}]^l) := \emptyset$
 - $\text{kill}_{AE}([x := a]^l) := \{a' \in AExp_c \mid x \in FV(a')\}$
 - $\text{kill}_{AE}([b]^l) := \emptyset$
- An expression a is **generated** in a block B if it is evaluated in and none of its variables are modified by B
- Formally: $\text{gen}_{AE} : Block_c \rightarrow 2^{AExp_c}$ is defined by
 - $\text{gen}_{AE}([\text{skip}]^l) := \emptyset$
 - $\text{gen}_{AE}([x := a]^l) := \{a \mid x \notin FV(a)\}$
 - $\text{gen}_{AE}([b]^l) := AExp_b$

Example ($\text{kill}_{\text{AE}}/\text{gen}_{\text{AE}}$ functions)

```

 $c = [x := a+b]^1;$ 
 $[y := a*b]^2;$ 
 $\text{while } [y > a+b]^3 \text{ do}$ 
 $[a := a+1]^4;$ 
 $[x := a+b]^5$ 

```

- $AExp_c = \{a+b, a*b, a+1\}$
- $\frac{}{l \in Lab_c \quad \text{kill}_{\text{AE}}(B^l) \quad \text{gen}_{\text{AE}}(B^l)}$

1	\emptyset	$\{a+b\}$
2	\emptyset	$\{a*b\}$
3	\emptyset	$\{a+b\}$
4	$\{a+b, a*b, a+1\}$	\emptyset
5	\emptyset	$\{a+b\}$

- 1 Repetition: Dataflow Analysis
- 2 Available Expressions Analysis (continued)
- 3 Live Variables Analysis
- 4 A Dataflow Analysis Framework

The Equation System I

- Analysis itself defined by setting up an **equation system**
- For each $l \in Lab_c$, $\text{AE}_l \subseteq AExp_c$ represents the **set of available expressions** at the entry of block B^l
- Formally, for $c \in Cmd$ with isolated entry:

$$\text{AE}_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(\text{AE}_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{AExp_c} \rightarrow 2^{AExp_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(A) := (A \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$$

- Characterization of analysis:
 - forward: starts in $\text{init}(c)$ and proceeds downwards
 - must: \bigcap in equation for AE_l
 - flow-sensitive: results depending on order of assignments
- Later: solution **not necessarily unique**
 - ⇒ choose greatest one

The Equation System I

- Analysis itself defined by setting up an **equation system**
- For each $l \in \text{Lab}_c$, $\text{AE}_l \subseteq AExp_c$ represents the **set of available expressions at the entry of block B^l**
- Formally, for $c \in \text{Cmd}$ with isolated entry:

$$\text{AE}_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(\text{AE}_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{AExp_c} \rightarrow 2^{AExp_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(A) := (A \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$$

- Characterization of analysis:
 - forward: starts in $\text{init}(c)$ and proceeds downwards
 - must: \bigcap in equation for AE_l
 - flow-sensitive: results depending on order of assignments
- Later: solution **not necessarily unique**
 - ⇒ choose greatest one

The Equation System I

- Analysis itself defined by setting up an **equation system**
- For each $l \in Lab_c$, $\mathbf{AE}_l \subseteq AExp_c$ represents the **set of available expressions at the entry of block B^l**
- Formally, for $c \in Cmd$ with isolated entry:

$$\mathbf{AE}_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(\mathbf{AE}_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{AExp_c} \rightarrow 2^{AExp_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(A) := (A \setminus \text{kill}_{\mathbf{AE}}(B^{l'})) \cup \text{gen}_{\mathbf{AE}}(B^{l'})$$

- Characterization of analysis:
 - forward: starts in $\text{init}(c)$ and proceeds downwards
 - must: \bigcap in equation for \mathbf{AE}_l
 - flow-sensitive: results depending on order of assignments
- Later: solution **not necessarily unique**
 - ⇒ choose greatest one

The Equation System I

- Analysis itself defined by setting up an **equation system**
- For each $l \in Lab_c$, $\mathbf{AE}_l \subseteq AExp_c$ represents the **set of available expressions at the entry of block B^l**
- Formally, for $c \in Cmd$ with isolated entry:

$$\mathbf{AE}_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(\mathbf{AE}_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{AExp_c} \rightarrow 2^{AExp_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(A) := (A \setminus \text{kill}_{\mathbf{AE}}(B^{l'})) \cup \text{gen}_{\mathbf{AE}}(B^{l'})$$

- Characterization of analysis:
 - forward: starts in $\text{init}(c)$ and proceeds downwards
 - must: \bigcap in equation for \mathbf{AE}_l
 - flow-sensitive: results depending on order of assignments
- Later: solution **not necessarily unique**
→ choose greatest one

The Equation System I

- Analysis itself defined by setting up an **equation system**
- For each $l \in Lab_c$, $\mathbf{AE}_l \subseteq AExp_c$ represents the **set of available expressions at the entry of block B^l**
- Formally, for $c \in Cmd$ with isolated entry:

$$\mathbf{AE}_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(\mathbf{AE}_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{AExp_c} \rightarrow 2^{AExp_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(A) := (A \setminus \text{kill}_{\mathbf{AE}}(B^{l'})) \cup \text{gen}_{\mathbf{AE}}(B^{l'})$$

- Characterization of analysis:
 - forward: starts in $\text{init}(c)$ and proceeds downwards
 - must: \bigcap in equation for \mathbf{AE}_l
 - flow-sensitive: results depending on order of assignments
- Later: solution **not necessarily unique**
⇒ choose **greatest one**

The Equation System II

Reminder: $\text{AE}_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(\text{AE}_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$

$$\varphi_{l'}(E) = (E \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$$

Example 15.1 (AE equation system)

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

The Equation System II

Reminder: $\text{AE}_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(\text{AE}_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$
 $\varphi_{l'}(E) = (E \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$

Example 15.1 (AE equation system)

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Equations:
 $\text{AE}_1 = \emptyset$
 $\text{AE}_2 = \varphi_1(\text{AE}_1) = \text{AE}_1 \cup \{a+b\}$
 $\text{AE}_3 = \varphi_2(\text{AE}_2) \cap \varphi_5(\text{AE}_5)$
 $= (\text{AE}_2 \cup \{a*b\}) \cap (\text{AE}_5 \cup \{a+b\})$
 $\text{AE}_4 = \varphi_3(\text{AE}_3) = \text{AE}_3 \cup \{a+b\}$
 $\text{AE}_5 = \varphi_4(\text{AE}_4) = \text{AE}_4 \setminus \{a+b, a*b, a+1\}$

$l \in \text{Lab}_c$	$\text{kill}_{\text{AE}}(B^l)$	$\text{gen}_{\text{AE}}(B^l)$
1	\emptyset	$\{a+b\}$
2	\emptyset	$\{a*b\}$
3	\emptyset	$\{a+b\}$
4	$\{a+b, a*b, a+1\}$	\emptyset
5	\emptyset	$\{a+b\}$

Solution: $\text{AE}_1 = \emptyset$
 $\text{AE}_2 = \{a+b\}$
 $\text{AE}_3 = \{a+b\}$
 $\text{AE}_4 = \{a+b\}$
 $\text{AE}_5 = \emptyset$

The Equation System II

Reminder: $\text{AE}_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(\text{AE}_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$

$$\varphi_{l'}(E) = (E \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$$

Example 15.1 (AE equation system)

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Equations:

$$\text{AE}_1 = \emptyset$$

$$\text{AE}_2 = \varphi_1(\text{AE}_1) = \text{AE}_1 \cup \{a+b\}$$

$$\text{AE}_3 = \varphi_2(\text{AE}_2) \cap \varphi_5(\text{AE}_5)$$

$$= (\text{AE}_2 \cup \{a*b\}) \cap (\text{AE}_5 \cup \{a+b\})$$

$$\text{AE}_4 = \varphi_3(\text{AE}_3) = \text{AE}_3 \cup \{a+b\}$$

$$\text{AE}_5 = \varphi_4(\text{AE}_4) = \text{AE}_4 \setminus \{a+b, a*b, a+1\}$$

$l \in \text{Lab}_c$	$\text{kill}_{\text{AE}}(B^l)$	$\text{gen}_{\text{AE}}(B^l)$
1	\emptyset	$\{a+b\}$
2	\emptyset	$\{a*b\}$
3	\emptyset	$\{a+b\}$
4	$\{a+b, a*b, a+1\}$	\emptyset
5	\emptyset	$\{a+b\}$

Solution: $\text{AE}_1 = \emptyset$

$$\text{AE}_2 = \{a+b\}$$

$$\text{AE}_3 = \{a+b\}$$

$$\text{AE}_4 = \{a+b\}$$

$$\text{AE}_5 = \emptyset$$

The Equation System II

Reminder: $\text{AE}_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(\text{AE}_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$

$$\varphi_{l'}(E) = (E \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$$

Example 15.1 (AE equation system)

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

$l \in \text{Lab}_c$	$\text{kill}_{\text{AE}}(B^l)$	$\text{gen}_{\text{AE}}(B^l)$
1	\emptyset	$\{a+b\}$
2	\emptyset	$\{a*b\}$
3	\emptyset	$\{a+b\}$
4	$\{a+b, a*b, a+1\}$	\emptyset
5	\emptyset	$\{a+b\}$

Equations:

$$\text{AE}_1 = \emptyset$$

$$\text{AE}_2 = \varphi_1(\text{AE}_1) = \text{AE}_1 \cup \{a+b\}$$

$$\begin{aligned}\text{AE}_3 &= \varphi_2(\text{AE}_2) \cap \varphi_5(\text{AE}_5) \\ &= (\text{AE}_2 \cup \{a*b\}) \cap (\text{AE}_5 \cup \{a+b\})\end{aligned}$$

$$\text{AE}_4 = \varphi_3(\text{AE}_3) = \text{AE}_3 \cup \{a+b\}$$

$$\text{AE}_5 = \varphi_4(\text{AE}_4) = \text{AE}_4 \setminus \{a+b, a*b, a+1\}$$

Solution: $\text{AE}_1 = \emptyset$

$$\text{AE}_2 = \{a+b\}$$

$$\text{AE}_3 = \{a+b\}$$

$$\text{AE}_4 = \{a+b\}$$

$$\text{AE}_5 = \emptyset$$

The Equation System II

Reminder: $\text{AE}_l = \begin{cases} \emptyset & \text{if } l = \text{init}(c) \\ \bigcap \{\varphi_{l'}(\text{AE}_{l'}) \mid (l', l) \in \text{flow}(c)\} & \text{otherwise} \end{cases}$
 $\varphi_{l'}(E) = (E \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$

Example 15.1 (AE equation system)

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

$l \in \text{Lab}_c$	$\text{kill}_{\text{AE}}(B^l)$	$\text{gen}_{\text{AE}}(B^l)$
1	\emptyset	$\{a+b\}$
2	\emptyset	$\{a*b\}$
3	\emptyset	$\{a+b\}$
4	$\{a+b, a*b, a+1\}$	\emptyset
5	\emptyset	$\{a+b\}$

Equations:
 $\text{AE}_1 = \emptyset$
 $\text{AE}_2 = \varphi_1(\text{AE}_1) = \text{AE}_1 \cup \{a+b\}$
 $\text{AE}_3 = \varphi_2(\text{AE}_2) \cap \varphi_5(\text{AE}_5)$
 $= (\text{AE}_2 \cup \{a*b\}) \cap (\text{AE}_5 \cup \{a+b\})$
 $\text{AE}_4 = \varphi_3(\text{AE}_3) = \text{AE}_3 \cup \{a+b\}$
 $\text{AE}_5 = \varphi_4(\text{AE}_4) = \text{AE}_4 \setminus \{a+b, a*b, a+1\}$

Solution: $\text{AE}_1 = \emptyset$
 $\text{AE}_2 = \{a+b\}$
 $\text{AE}_3 = \{a+b\}$
 $\text{AE}_4 = \{a+b\}$
 $\text{AE}_5 = \emptyset$

- 1 Repetition: Dataflow Analysis
- 2 Available Expressions Analysis (continued)
- 3 Live Variables Analysis
- 4 A Dataflow Analysis Framework

Live Variables Analysis

The goal of **Live Variables Analysis** is to determine, for each program point, which variables *may* be live at the exit from the point.

- A variable is called **live** at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable
- No variable considered to be live at the **end** of the program (choice depends on application, e.g., output variables live)
- Can be used for **Dead Code Elimination**: remove assignments to non-live variables

Live Variables Analysis

The goal of **Live Variables Analysis** is to determine, for each program point, which variables *may* be live at the exit from the point.

- A variable is called **live** at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable
- No variable considered to be live at the **end** of the program (choice depends on application, e.g., output variables live)
- Can be used for **Dead Code Elimination**: remove assignments to non-live variables

Live Variables Analysis

The goal of **Live Variables Analysis** is to determine, for each program point, which variables *may* be live at the exit from the point.

- A variable is called **live** at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable
- No variable considered to be live at the **end** of the program (choice depends on application, e.g., output variables live)
- Can be used for **Dead Code Elimination**: remove assignments to non-live variables

Live Variables Analysis

The goal of **Live Variables Analysis** is to determine, for each program point, which variables *may* be live at the exit from the point.

- A variable is called **live** at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable
- No variable considered to be live at the **end** of the program (choice depends on application, e.g., output variables live)
- Can be used for **Dead Code Elimination**: remove assignments to non-live variables

Example 15.2 (Live Variables Analysis)

```
[x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

- x not live at exit from label 1
- y live at exit from 2
- x live at exit from 3
- z live at exits from 5 and 6
- possible optimization: remove [x := 2]¹

Example 15.2 (Live Variables Analysis)

```
[x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

- x not live at exit from label 1
- y live at exit from 2
- x live at exit from 3
- z live at exits from 5 and 6
- possible optimization: remove [x := 2]¹

Example 15.2 (Live Variables Analysis)

```
[x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

- x not live at exit from label 1
- y live at exit from 2
- x live at exit from 3
- z live at exits from 5 and 6
- possible optimization: remove [x := 2]¹

Example 15.2 (Live Variables Analysis)

```
[x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

- x not live at exit from label 1
- y live at exit from 2
- **x live at exit from 3**
- z live at exits from 5 and 6
- possible optimization: remove [x := 2]¹

Example 15.2 (Live Variables Analysis)

```
[x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

- x not live at exit from label 1
- y live at exit from 2
- x live at exit from 3
- **z live at exits from 5 and 6**
- possible optimization: remove [x := 2]¹

Example 15.2 (Live Variables Analysis)

```
[x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

- x not live at exit from label 1
- y live at exit from 2
- x live at exit from 3
- z live at exits from 5 and 6
- possible optimization: remove [x := 2]¹

- A variable on the left-hand side of an assignment is **killed** by the assignment; tests and **skip** do not kill
- Formally: $\text{kill}_{\text{LV}} : \text{Block}_c \rightarrow 2^{\text{Var}_c}$ is defined by
 - $\text{kill}_{\text{LV}}([\text{skip}]^l) := \emptyset$
 - $\text{kill}_{\text{LV}}([x := a]^l) := \{x\}$
 - $\text{kill}_{\text{LV}}([b]^l) := \emptyset$
- Every reading access generates a live variable
- Formally: $\text{gen}_{\text{AE}} : \text{Block}_c \rightarrow 2^{\text{Var}_c}$ is defined by
 - $\text{gen}_{\text{AE}}([\text{skip}]^l) := \emptyset$
 - $\text{gen}_{\text{AE}}([x := a]^l) := \text{FV}(a)$
 - $\text{gen}_{\text{AE}}([b]^l) := \text{FV}(b)$

- A variable on the left-hand side of an assignment is **killed** by the assignment; tests and **skip** do not kill
- Formally: $\text{kill}_{\text{LV}} : \text{Block}_c \rightarrow 2^{\text{Var}_c}$ is defined by

$$\text{kill}_{\text{LV}}([\text{skip}]^l) := \emptyset$$

$$\text{kill}_{\text{LV}}([x := a]^l) := \{x\}$$

$$\text{kill}_{\text{LV}}([b]^l) := \emptyset$$

- Every reading access generates a live variable
- Formally: $\text{gen}_{\text{LV}} : \text{Block}_c \rightarrow 2^{\text{Var}_c}$ is defined by

$$\text{gen}_{\text{AE}}([\text{skip}]^l) := \emptyset$$

$$\text{gen}_{\text{AE}}([x := a]^l) := \text{FV}(a)$$

$$\text{gen}_{\text{AE}}([b]^l) := \text{FV}(b)$$

- A variable on the left-hand side of an assignment is **killed** by the assignment; tests and **skip** do not kill
- Formally: $\text{kill}_{\text{LV}} : \text{Block}_c \rightarrow 2^{\text{Var}_c}$ is defined by
 - $\text{kill}_{\text{LV}}([\text{skip}]^l) := \emptyset$
 - $\text{kill}_{\text{LV}}([x := a]^l) := \{x\}$
 - $\text{kill}_{\text{LV}}([b]^l) := \emptyset$
- Every reading access **generates** a live variable
- Formally: $\text{gen}_{\text{AE}} : \text{Block}_c \rightarrow 2^{\text{Var}_c}$ is defined by
 - $\text{gen}_{\text{AE}}([\text{skip}]^l) := \emptyset$
 - $\text{gen}_{\text{AE}}([x := a]^l) := \text{FV}(a)$
 - $\text{gen}_{\text{AE}}([b]^l) := \text{FV}(b)$

- A variable on the left-hand side of an assignment is **killed** by the assignment; tests and **skip** do not kill
- Formally: $\text{kill}_{\text{LV}} : \text{Block}_c \rightarrow 2^{\text{Var}_c}$ is defined by

$$\text{kill}_{\text{LV}}([\text{skip}]^l) := \emptyset$$

$$\text{kill}_{\text{LV}}([x := a]^l) := \{x\}$$

$$\text{kill}_{\text{LV}}([b]^l) := \emptyset$$

- Every reading access **generates** a live variable
- Formally: $\text{gen}_{\text{LV}} : \text{Block}_c \rightarrow 2^{\text{Var}_c}$ is defined by

$$\text{gen}_{\text{AE}}([\text{skip}]^l) := \emptyset$$

$$\text{gen}_{\text{AE}}([x := a]^l) := \text{FV}(a)$$

$$\text{gen}_{\text{AE}}([b]^l) := \text{FV}(b)$$

Example 15.3 ($\text{kill}_{\text{LV}}/\text{gen}_{\text{LV}}$ functions)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
         [z := x]5  
     else  
         [z := y*y]6;  
     [x := z]7
```

	\bullet	$\text{Var}_c = \{x, y, z\}$	
	\bullet	$\frac{l \in \text{Lab}_c \text{ kill}_{\text{LV}}(B^l) \text{ gen}_{\text{LV}}(B^l)}{1 \quad \{x\} \quad \emptyset}$	
		2	$\{y\}$
		3	$\{x\}$
		4	\emptyset
		5	$\{z\}$
		6	$\{z\}$
		7	$\{x\}$
			$\{y\}$
			$\{x\}$
			$\{y\}$
			$\{z\}$

Formalizing Live Variables Analysis II

Example 15.3 ($\text{kill}_{\text{LV}}/\text{gen}_{\text{LV}}$ functions)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
         [z := x]5  
     else  
         [z := y*y]6;  
     [x := z]7
```

•	$Var_c = \{x, y, z\}$	
•	$l \in Lab_c$	$\text{kill}_{\text{LV}}(B^l)$ $\text{gen}_{\text{LV}}(B^l)$
1	{x}	\emptyset
2	{y}	\emptyset
3	{x}	\emptyset
4	\emptyset	{y}
5	{z}	{x}
6	{z}	{y}
7	{x}	{z}

Example 15.3 ($\text{kill}_{\text{LV}}/\text{gen}_{\text{LV}}$ functions)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
       [z := x]5  
     else  
       [z := y*y]6;  
     [x := z]7
```

•	$Var_c = \{x, y, z\}$	
•	$l \in \text{Lab}_c \quad \frac{\text{kill}_{\text{LV}}(B^l) \text{ gen}_{\text{LV}}(B^l)}{1 \quad \{x\} \quad \emptyset}$	
	2	$\{y\}$
	3	$\{x\}$
	4	\emptyset
	5	$\{z\}$
	6	$\{z\}$
	7	$\{x\}$
		$\{y\}$
		$\{x\}$
		$\{y\}$
		$\{z\}$

The Equation System I

- For each $l \in Lab_c$, $\text{LV}_l \subseteq Var_c$ represents the set of **live variables at the exit of block B^l**
- Formally, for a program $c \in Cmd$ with isolated exits:

$$\text{LV}_l = \begin{cases} \emptyset & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(\text{LV}_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{Var_c} \rightarrow 2^{Var_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(V) := (V \setminus \text{kill}_{\text{LV}}(B^{l'})) \cup \text{gen}_{\text{LV}}(B^{l'})$$

- Characterization of analysis:
 - backward: starts in $\text{final}(c)$ and proceeds upwards
 - may: \bigcup in equation for LV_l
- flow-sensitive: results depending on order of assignments
- Later: solution **not necessarily unique**
 - \implies choose **least one**

The Equation System I

- For each $l \in Lab_c$, $\text{LV}_l \subseteq Var_c$ represents the set of **live variables at the exit of block B^l**
- Formally, for a program $c \in Cmd$ with isolated exits:

$$\text{LV}_l = \begin{cases} \emptyset & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(\text{LV}_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{Var_c} \rightarrow 2^{Var_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(V) := (V \setminus \text{kill}_{\text{LV}}(B^{l'})) \cup \text{gen}_{\text{LV}}(B^{l'})$$

- Characterization of analysis:
 - backward: starts in $\text{final}(c)$ and proceeds upwards
 - may: \bigcup in equation for LV_l
 - flow-sensitive: results depending on order of assignments
- Later: solution **not necessarily unique**
 \implies choose **least one**

The Equation System I

- For each $l \in Lab_c$, $\text{LV}_l \subseteq Var_c$ represents the set of **live variables at the exit of block B^l**
- Formally, for a program $c \in Cmd$ with isolated exits:

$$\text{LV}_l = \begin{cases} \emptyset & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(\text{LV}_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{Var_c} \rightarrow 2^{Var_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(V) := (V \setminus \text{kill}_{\text{LV}}(B^{l'})) \cup \text{gen}_{\text{LV}}(B^{l'})$$

- Characterization of analysis:
 - backward: starts in $\text{final}(c)$ and proceeds upwards
 - may: \bigcup in equation for LV_l
 - flow-sensitive: results depending on order of assignments
- Later: solution **not necessarily unique**
 - \implies choose least one

The Equation System I

- For each $l \in Lab_c$, $\text{LV}_l \subseteq Var_c$ represents the set of **live variables at the exit of block B^l**
- Formally, for a program $c \in Cmd$ with isolated exits:

$$\text{LV}_l = \begin{cases} \emptyset & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(\text{LV}_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{Var_c} \rightarrow 2^{Var_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(V) := (V \setminus \text{kill}_{\text{LV}}(B^{l'})) \cup \text{gen}_{\text{LV}}(B^{l'})$$

- Characterization of analysis:

backward: starts in $\text{final}(c)$ and proceeds upwards

may: \bigcup in equation for LV_l

flow-sensitive: results depending on order of assignments

- Later: solution **not necessarily unique**

\implies choose **least one**

The Equation System II

Reminder: $\text{LV}_l = \begin{cases} \emptyset & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(\text{LV}_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$
 $\varphi_{l'}(V) = (V \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$

Example 15.4 (LV equation system)

```
c = [x := 2]1; [y := 4]2;  
      [x := 1]3;  
      if [y > 0]4 then  
          [z := x]5  
      else  
          [z := y*y]6;  
          [x := z]7
```

The Equation System II

Reminder: $\text{LV}_l = \begin{cases} \emptyset & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(\text{LV}_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$
 $\varphi_{l'}(V) = (V \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$

Example 15.4 (LV equation system)

```
c = [x := 2]1; [y := 4]2;  
      [x := 1]3;  
      if [y > 0]4 then  
          [z := x]5  
      else  
          [z := y*y]6;  
      [x := z]7
```

$l \in \text{Lab}_c \text{ kill}_{\text{LV}}(B^l) \text{ gen}_{\text{LV}}(B^l)$

1	{x}	\emptyset
2	{y}	\emptyset
3	{x}	\emptyset
4	\emptyset	{y}
5	{z}	{x}
6	{z}	{y}
7	{x}	{z}

$$\begin{aligned}\text{LV}_1 &= \varphi_2(\text{LV}_2) = \text{LV}_2 \setminus \{y\} \\ \text{LV}_2 &= \varphi_3(\text{LV}_3) = \text{LV}_3 \setminus \{x\} \\ \text{LV}_3 &= \varphi_4(\text{LV}_4) = \text{LV}_4 \cup \{y\} \\ \text{LV}_4 &= \varphi_5(\text{LV}_5) \cup \varphi_6(\text{LV}_6) \\ &= ((\text{LV}_5 \setminus \{z\}) \cup \{x\}) \cup ((\text{LV}_6 \setminus \{z\}) \cup \{y\}) \\ \text{LV}_5 &= \varphi_7(\text{LV}_7) = (\text{LV}_7 \setminus \{x\}) \cup \{z\} \\ \text{LV}_6 &= \varphi_7(\text{LV}_7) = (\text{LV}_7 \setminus \{x\}) \cup \{z\} \\ \text{LV}_7 &= \emptyset\end{aligned}$$

Solution: $\text{LV}_1 = \emptyset$

$\text{LV}_2 = \{y\}$

$\text{LV}_3 = \{x, y\}$

$\text{LV}_4 = \{x, y\}$

$\text{LV}_5 = \{z\}$

$\text{LV}_6 = \{z\}$

$\text{LV}_7 = \emptyset$

The Equation System II

Reminder: $\text{LV}_l = \begin{cases} \emptyset & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(\text{LV}_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$
 $\varphi_{l'}(V) = (V \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$

Example 15.4 (LV equation system)

$c = [x := 2]^1; [y := 4]^2;$
 $[x := 1]^3;$
 $\text{if } [y > 0]^4 \text{ then}$
 $[z := x]^5$
 else
 $[z := y * y]^6;$
 $[x := z]^7$

$l \in \text{Lab}_c \text{ kill}_{\text{LV}}(B^l) \text{ gen}_{\text{LV}}(B^l)$

1	{x}	\emptyset
2	{y}	\emptyset
3	{x}	\emptyset
4	\emptyset	{y}
5	{z}	{x}
6	{z}	{y}
7	{x}	{z}

$$\begin{aligned}\text{LV}_1 &= \varphi_2(\text{LV}_2) = \text{LV}_2 \setminus \{y\} \\ \text{LV}_2 &= \varphi_3(\text{LV}_3) = \text{LV}_3 \setminus \{x\} \\ \text{LV}_3 &= \varphi_4(\text{LV}_4) = \text{LV}_4 \cup \{y\} \\ \text{LV}_4 &= \varphi_5(\text{LV}_5) \cup \varphi_6(\text{LV}_6) \\ &= ((\text{LV}_5 \setminus \{z\}) \cup \{x\}) \cup ((\text{LV}_6 \setminus \{z\}) \cup \{y\}) \\ \text{LV}_5 &= \varphi_7(\text{LV}_7) = (\text{LV}_7 \setminus \{x\}) \cup \{z\} \\ \text{LV}_6 &= \varphi_7(\text{LV}_7) = (\text{LV}_7 \setminus \{x\}) \cup \{z\} \\ \text{LV}_7 &= \emptyset\end{aligned}$$

Solution: $\text{LV}_1 = \emptyset$
 $\text{LV}_2 = \{y\}$
 $\text{LV}_3 = \{x, y\}$
 $\text{LV}_4 = \{x, y\}$
 $\text{LV}_5 = \{z\}$
 $\text{LV}_6 = \{z\}$
 $\text{LV}_7 = \emptyset$

The Equation System II

Reminder: $\text{LV}_l = \begin{cases} \emptyset & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(\text{LV}_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$
 $\varphi_{l'}(V) = (V \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$

Example 15.4 (LV equation system)

$c = [x := 2]^1; [y := 4]^2;$
 $[x := 1]^3;$
if $[y > 0]^4$ then
 $[z := x]^5$
else
 $[z := y * y]^6;$
 $[x := z]^7$

$l \in \text{Lab}_c \text{ kill}_{\text{LV}}(B^l) \text{ gen}_{\text{LV}}(B^l)$

1	$\{x\}$	\emptyset
2	$\{y\}$	\emptyset
3	$\{x\}$	\emptyset
4	\emptyset	$\{y\}$
5	$\{z\}$	$\{x\}$
6	$\{z\}$	$\{y\}$
7	$\{x\}$	$\{z\}$

$$\begin{aligned}\text{LV}_1 &= \varphi_2(\text{LV}_2) = \text{LV}_2 \setminus \{y\} \\ \text{LV}_2 &= \varphi_3(\text{LV}_3) = \text{LV}_3 \setminus \{x\} \\ \text{LV}_3 &= \varphi_4(\text{LV}_4) = \text{LV}_4 \cup \{y\} \\ \text{LV}_4 &= \varphi_5(\text{LV}_5) \cup \varphi_6(\text{LV}_6) \\ &= ((\text{LV}_5 \setminus \{z\}) \cup \{x\}) \cup ((\text{LV}_6 \setminus \{z\}) \cup \{y\}) \\ \text{LV}_5 &= \varphi_7(\text{LV}_7) = (\text{LV}_7 \setminus \{x\}) \cup \{z\} \\ \text{LV}_6 &= \varphi_7(\text{LV}_7) = (\text{LV}_7 \setminus \{x\}) \cup \{z\} \\ \text{LV}_7 &= \emptyset\end{aligned}$$

Solution: $\text{LV}_1 = \emptyset$
 $\text{LV}_2 = \{y\}$
 $\text{LV}_3 = \{x, y\}$
 $\text{LV}_4 = \{x, y\}$
 $\text{LV}_5 = \{z\}$
 $\text{LV}_6 = \{z\}$
 $\text{LV}_7 = \emptyset$

The Equation System II

Reminder: $\text{LV}_l = \begin{cases} \emptyset & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(\text{LV}_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$
 $\varphi_{l'}(V) = (V \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$

Example 15.4 (LV equation system)

$c = [x := 2]^1; [y := 4]^2;$
 $[x := 1]^3;$
if $[y > 0]^4$ then
 $[z := x]^5$
else
 $[z := y * y]^6;$
 $[x := z]^7$

$l \in \text{Lab}_c \text{ kill}_{\text{LV}}(B^l) \text{ gen}_{\text{LV}}(B^l)$

1	$\{x\}$	\emptyset
2	$\{y\}$	\emptyset
3	$\{x\}$	\emptyset
4	\emptyset	$\{y\}$
5	$\{z\}$	$\{x\}$
6	$\{z\}$	$\{y\}$
7	$\{x\}$	$\{z\}$

$$\begin{aligned}\text{LV}_1 &= \varphi_2(\text{LV}_2) = \text{LV}_2 \setminus \{y\} \\ \text{LV}_2 &= \varphi_3(\text{LV}_3) = \text{LV}_3 \setminus \{x\} \\ \text{LV}_3 &= \varphi_4(\text{LV}_4) = \text{LV}_4 \cup \{y\} \\ \text{LV}_4 &= \varphi_5(\text{LV}_5) \cup \varphi_6(\text{LV}_6) \\ &= ((\text{LV}_5 \setminus \{z\}) \cup \{x\}) \cup ((\text{LV}_6 \setminus \{z\}) \cup \{y\}) \\ \text{LV}_5 &= \varphi_7(\text{LV}_7) = (\text{LV}_7 \setminus \{x\}) \cup \{z\} \\ \text{LV}_6 &= \varphi_7(\text{LV}_7) = (\text{LV}_7 \setminus \{x\}) \cup \{z\} \\ \text{LV}_7 &= \emptyset\end{aligned}$$

Solution: $\text{LV}_1 = \emptyset$
 $\text{LV}_2 = \{y\}$
 $\text{LV}_3 = \{x, y\}$
 $\text{LV}_4 = \{x, y\}$
 $\text{LV}_5 = \{z\}$
 $\text{LV}_6 = \{z\}$
 $\text{LV}_7 = \emptyset$

- 1 Repetition: Dataflow Analysis
- 2 Available Expressions Analysis (continued)
- 3 Live Variables Analysis
- 4 A Dataflow Analysis Framework

Similarities between Analysis Problems

- **Observation:** the analyses presented so far have some **similarities**

⇒ Look for underlying framework

- **Advantage:** possibility for designing (efficient) generic algorithms for solving dataflow equations
- **Overall pattern:** for $c \in Cmd$ and $l \in Lab_c$, the **analysis information (AI)** is described by **equations** of the form

$$AI_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(AI_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

where

- ι specifies the initial analysis information
- E is $\{init(c)\}$ or $final(c)$
- \bigsqcup is \cap or \cup
- $\varphi_{l'}$ denotes the transfer function of block $B^{l'}$
- F is $flow(c)$ or $flow^R(c)$ ($:= \{(l', l) \mid (l, l') \in flow(c)\}$)

Similarities between Analysis Problems

- **Observation:** the analyses presented so far have some **similarities**
⇒ Look for underlying **framework**
- **Advantage:** possibility for designing (efficient) **generic algorithms** for solving dataflow equations
- **Overall pattern:** for $c \in Cmd$ and $l \in Lab_c$, the **analysis** information (Al) is described by **equations** of the form

$$Al_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(Al_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

where

- ι specifies the initial analysis information
- E is $\{init(c)\}$ or $final(c)$
- \bigsqcup is \cap or \cup
- $\varphi_{l'}$ denotes the transfer function of block $B^{l'}$
- F is $flow(c)$ or $flow^R(c)$ ($:= \{(l', l) \mid (l, l') \in flow(c)\}$)

Similarities between Analysis Problems

- **Observation:** the analyses presented so far have some **similarities**
⇒ Look for underlying **framework**
- **Advantage:** possibility for designing (efficient) **generic algorithms** for solving **dataflow equations**
- Overall pattern: for $c \in Cmd$ and $l \in Lab_c$, the **analysis** information (Al) is described by **equations** of the form

$$Al_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(Al_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

where

- ι specifies the initial analysis information
- E is $\{init(c)\}$ or $final(c)$
- \bigsqcup is \cap or \cup
- $\varphi_{l'}$ denotes the transfer function of block $B^{l'}$
- F is $flow(c)$ or $flow^R(c)$ ($:= \{(l', l) \mid (l, l') \in flow(c)\}$)

Similarities between Analysis Problems

- **Observation:** the analyses presented so far have some **similarities**
⇒ Look for underlying **framework**
- **Advantage:** possibility for designing (efficient) **generic algorithms** for solving **dataflow equations**
- **Overall pattern:** for $c \in Cmd$ and $l \in Lab_c$, the **analysis information** (AI) is described by **equations** of the form

$$AI_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(AI_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

where

- ι specifies the initial analysis information
- E is $\{\text{init}(c)\}$ or $\text{final}(c)$
- \bigsqcup is \cap or \bigcup
- $\varphi_{l'}$ denotes the transfer function of block $B^{l'}$
- F is $\text{flow}(c)$ or $\text{flow}^R(c)$ ($:= \{(l', l) \mid (l, l') \in \text{flow}(c)\}$)

Characterization of Analyses

- Direction of information flow:

- forward:

- $F = \text{flow}(c)$
 - Al_l concerns entry of B^l
 - c has isolated entry

- backward:

- $F = \text{flow}^R(c)$
 - Al_l concerns exit of B^l
 - c has isolated exits

- Quantification over paths:

- may:

- $\sqcup = \bigcup$
 - property satisfied by some path
 - interested in least solution (later)

- must:

- $\sqcup = \bigcap$
 - property satisfied by all paths
 - interested in greatest solution (later)

- Direction of information flow:

- forward:

- $F = \text{flow}(c)$
 - Al_l concerns entry of B^l
 - c has isolated entry

- backward:

- $F = \text{flow}^R(c)$
 - Al_l concerns exit of B^l
 - c has isolated exits

- Quantification over paths:

- may:

- $\sqcup = \bigcup$
 - property satisfied by some path
 - interested in least solution (later)

- must:

- $\sqcup = \bigcap$
 - property satisfied by all paths
 - interested in greatest solution (later)