Semantics and Verification of Software

Lecture 15: Dataflow Analysis

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

© Repetition: Dataflow Analysis

Rm Semantics and Verification of Software Summer semester 2007

Labelled Programs

@ Goal: localization of analysis information
o Dataflow information will be associated with
@ assignments
o tests in conditionals (if) and loops (while)
o skip statements
These constructs will be called blocks.
@ Assume set of labels Lab with meta variable [€ Lab

(usually Lab = N)

Definition (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context—free grammar:

a:=z|x|a+ay | ai-az | az*ax € AExp
bu=t|ai=ap | ar>ay | b | by Aby| by Vb € BEzp
c = [skip]' | [z :=a]' | c1;e2 |

if [b]' then c; else cp | while [b]' do ¢ € Cmd
Here all labels in a statement ¢ € Cmd are assumed to be distinct.

m Semantics and Verification of Software Summer semester 2007

Representing Control Flow

Visualization by flow graph:

ci—z =15
while [x > 0]2 do
[z := zxy]’;
[x := x-1]*

init(c) =1
final(c) = {2}
flow(c) = {(1,2),(2,3),(3,4),(4,2)}

m' Semantics and Verification of Software Summer semester 2007

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

Rm Semantics and Verification of Software Summer semester 2007

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

m' Semantics and Verification of Software Summer semester 2007

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example (Available Expressions analysis)

[x := a+b]!;

[= asb];

while [y > a+b]3 do
[a := a+1]*;
[x := a+b]®

m Semantics and Verification of Software Summer semester 2007

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example (Available Expressions analysis)

- 1.
E = Z:E}z @ a+b available at label 3
while [y > a+b]® do
[a := a+1]*;
[x := a+b]5

m Semantics and Verification of Software Summer semester 2007

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example (Available Expressions analysis)

= +b 1,
{? = Z*b}z @ atb available at label 3
while [y > a+b]3 do @ a+b not available at label 5
[a := a+1]4,
[x := a+b]5

m Semantics and Verification of Software Summer semester 2007

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

o for simplicity: only non—trivial arithmetic expressions

Example (Available Expressions analysis)

:= atb 1; .
E = Z*b}z. @ atb available at label 3
while [y > a+b]3 do @ a+b not available at label 5
[a := a+1]*; @ possible optimization:
[x := a+b]® while [y > x° do

m Semantics and Verification of Software Summer semester 2007

Formalizing Available Expressions Analysis I

o Given ¢ € Cmd, Lab./Block./AExp, denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

o An expression ¢ is killed in a block B if any of the variables in a is
modified in B

o Formally: killag : Block. — 24L7p. g defined by
killag([skip]') == 0
killag([z := a]') := {d’ € AEzp, |z € FV(d')}
ki”AE([b]l) = (Z)
@ An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B

o Formally: genag : Block. — 247 is defined by
genag([skip]’) == 0
gemae([z := al') == {a |z ¢ FV(a)}
genae([]') := AEap,

Rm Semantics and Verification of Software Summer semester 2007

Formalizing Available Expressions Analysis I1

Example (killag/genag functions)

1 o AEzp, = {a+b,a*b,a+1}
- E - :Iz%zf ol Lab. killae(B') genag(BY)
.) 1
while [y > a+b]® do ! =
o im art]t; 2 0 {axb}
i := +b]5, 3 U] {a+b}
X := a 4 {atb,axb,a+1} ()
5 1) {a+b}

m' Semantics and Verification of Software Summer semester 2007

© Available Expressions Analysis (continued)

Rm Semantics and Verification of Software Summer semester 2007

The Equation System I

o Analysis itself defined by setting up an equation system

Rm Semantics and Verification of Software Summer semester 2007

The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € Lab., AE; C AFEzp, represents the set of available
expressions at the entry of block B!

Rm Semantics and Verification of Software Summer semester 2007

The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € Lab., AE; C AFEzp, represents the set of available
expressions at the entry of block B!

@ Formally, for ¢ € CU'md with isolated entry:
AE, — {@ if I = init(c)
! (e (AEy) | (I',1) € flow(c)} otherwise
where @y : 248m7c — 2AB. denotes the transfer function of block
B, given by

o (A) = (A\ killag(B")) U genpg(B")

Rm Semantics and Verification of Software Summer semester 2007

The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € Lab., AE; C AFEzp, represents the set of available
expressions at the entry of block B!

@ Formally, for ¢ € CU'md with isolated entry:
AE, — {@ if I = init(c)
(e (AEy) | (I',1) € flow(c)} otherwise
where @y : 248m7c — 2AB. denotes the transfer function of block
B given by
pu(A) = (A\ killae(B")) U genag(B")
@ Characterization of analysis:
forward: starts in init(c) and proceeds downwards
must: () in equation for AE,
flow—sensitive: results depending on order of assignments

Rm Semantics and Verification of Software Summer semester 2007

The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € Lab., AE; C AFEzp, represents the set of available
expressions at the entry of block B!

@ Formally, for ¢ € CU'md with isolated entry:
AE, — {@ if I = init(c)
(e (AEy) | (I',1) € flow(c)} otherwise
where @y : 248m7c — 2AB. denotes the transfer function of block
B given by
pu(A) = (A\ killae(B")) U genag(B")
@ Characterization of analysis:
forward: starts in init(c) and proceeds downwards
must: () in equation for AE,
flow—sensitive: results depending on order of assignments

o Later: solution not necessarily unique
= choose greatest one

Rm Semantics and Verification of Software Summer semester 2007

The Equation System II

if I = init(c)

Reminder: AE; {n{gpl/(AEl/ (I',1) € flow(c)} otherwise

|
pr(E) = (B \ killag(B")) U genAe(Bl')

Rm Semantics and Verification of Software Summer semester 2007

The Equation System II

. if [= init(c
Reminder: AR, {n{w(AEl, | (I,1) € flow(c)} otherwise()
v (E) = (B \ killag(B")) U genAe(Bl')

Example 15.1 (AE equation system)

c=[x := a+b]};
[y := a*b]?;
while [y > a+b]® do
[a := at+1]*;
[x := a+b]®

m Semantics and Verification of Software Summer semester 2007

The Equation System II

_ {(2) if | = init(c)
EZ Y N{er(AER) | (I',1) € flow(c)} otherwise

Reminder: AE |
ov(E) = (E \ killag(B")) U genAE(B")

Example 15.1 (AE equation system)

c=[x := a+b]};
[y := a*b]?;
while [y > a+b]® do
[a := at+1]*;
[x := a+b]®
l € Lab. killae(B') genpe(BY)
1 1] {a+b}
2 0 {a*b}
3 0 {a+b}
4 {a+tb,axb,a+1} 0
5 0 {a+b}

m Semantics and Verification of Software Summer semester 2007

The Equation System II

{(2) if | = init(c)
M{ev (AEY) | (I,1) € flow(c)} otherwise

Reminder: AE; = |
o (E) = (E\ killag(B")) U genAE(B")

Example 15.1 (AE equation system)

— .= 1, Equations:
‘ {; = :,:E%ﬂ AE; =0
. ’ AE; = ¢1(AE;) = AE; U {a+b}
3 2 = ¥1 1 1
while [y > a+b]® do AEs — o(AE>) () 5 (AEs)
[a := at+1]*; ¥ ®
S = (AE> U {axb}) 1 (AE5 U {a+b})

AE4 (p3(AE3) = AE3 U {a+b}

AEs = (p4(AE4) = AE4 \ {a+b, axb, a+1}
l € Labe killae(B') genae(BY)

E
1 1] {a+b}
2) {axb}
3 1] {a+b}
4 {a+tb,axb,a+1} 0
5 1] {a+b}

m' Semantics and Verification of Software Summer semester 2007

The Equation System II

{(2) if | = init(c)
M{ev (AEY) | (I,1) € flow(c)} otherwise

Reminder: AE; = |
o (E) = (E\ killag(B")) U genAE(B")

Example 15.1 (AE equation system)

— Eiions
[y i= axo]’;)=
_ AE; = 1(AE;) = AE; U {a+b}
3 2 = p1(ALy 1
" Lyaiﬁf off do AE3 = 2(AE>) N 5(AEs)
-] ’ = (AE> U {axb}) N (AEs U {a+b})
[x := a+b] AE; = ¢3(AE3) = AE; U {a+b}
AEs = p4(AEs) = AE4 \ {atb, axb, a+1
l € Lab. killag(B') genpe(B) (&) M }
1 0 {a+b} Solution: AE; = 0
2 0 {axb} AE; = {a+b}
3 0 {a+b} AE; = {a+b}
4 {a+b,axb,a+l} 0 AE, = {a+b}
5 0 {a+b} AEs = ()

m' Semantics and Verification of Software Summer semester 2007

© Live Variables Analysis

Rm Semantics and Verification of Software Summer semester 2007

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

Rm Semantics and Verification of Software Summer semester 2007

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

o A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not
re—define the variable

Rm Semantics and Verification of Software Summer semester 2007

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

o A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not
re—define the variable

@ No variable considered to be live at the end of the program
(choice depends on application, e.g., output variables live)

m' Semantics and Verification of Software Summer semester 2007

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

o A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not
re—define the variable

@ No variable considered to be live at the end of the program
(choice depends on application, e.g., output variables live)

@ Can be used for Dead Code Elimination:
remove assignments to non-live variables

m' Semantics and Verification of Software Summer semester 2007

An Example

Example 15.2 (Live Variables Analysis)

m' Semantics and Verification of Software Summer semester 2007

An Example

Example 15.2 (Live Variables Analysis)

[y := 4]2§ @ x not live at exit from label 1
[x := 1]3;
if [y > 0]* then
[z := xP°
else
[z := y*y]%
e := 2

m' Semantics and Verification of Software Summer semester 2007

An Example

Example 15.2 (Live Variables Analysis)

[= =025
.= 2]2.
[y == 4]3’ @ x not live at exit from label 1
= 1|
[1Xf [y >]oi4 i e y live at exit from 2
[z := x]°
else
[z := y*y]%
[x := z]’

m' Semantics and Verification of Software Summer semester 2007

An Example

Example 15.2 (Live Variables Analysis)

[= =025
[y := 4]2; @ x not live at exit from label 1
[le [y= :]Oi4 then @ y live at exit from 2
[z := x]° @ x live at exit from 3
else
[z := y*y]°%;
[x := z]’

m' Semantics and Verification of Software Summer semester 2007

An Example

Example 15.2 (Live Variables Analysis)

.= 2.
[y := 4] @ x not live at exit from label 1
[z := 13 . .
if [y > 0]* then @ y live at exit from 2
[z := X]5 @ x live at exit from 3
else @ z live at exits from 5 and 6
[z := y*y]%;
[x := 2]

m' Semantics and Verification of Software Summer semester 2007

An Example

Example 15.2 (Live Variables Analysis)

[y := 4]2’ @ x not live at exit from label 1
[le [y= :]Oi4 then @ y live at exit from 2
[z := x]° @ x live at exit from 3
else @ z live at exits from 5 and 6
x [Z-:Z]7y “1°; @ possible optimization: remove [x := 2]

m' Semantics and Verification of Software Summer semester 2007

Formalizing Live Variables Analysis I

@ A variable on the left—-hand side of an assignment is killed by the
assignment; tests and skip do not kill

Rm Semantics and Verification of Software Summer semester 2007

Formalizing Live Variables Analysis I

@ A variable on the left—-hand side of an assignment is killed by the
assignment; tests and skip do not kill

o Formally: kill,y : Block. — 2% is defined by
ki||Lv([Skip]l) =10
kil ([z := a]') := {x}
killoy ([b]1) == 0

Rm Semantics and Verification of Software

Summer semester 2007

Formalizing Live Variables Analysis I

@ A variable on the left—-hand side of an assignment is killed by the
assignment; tests and skip do not kill
o Formally: kill\y : Block. — 2V is defined by
ki||Lv([Skip]l) =10
kil ([z := a]') := {x}
killoy ([b]1) == 0

o Every reading access generates a live variable

Rm Semantics and Verification of Software Summer semester 2007

Formalizing Live Variables Analysis I

@ A variable on the left—-hand side of an assignment is killed by the
assignment; tests and skip do not kill

o Formally: kill\y : Block. — 2V is defined by
ki||Lv([Skip]l) =10
kil ([z := a]') := {x}
killoy ([b]1) == 0
o Every reading access generates a live variable
o Formally: gen,y : Block. — 2"%"¢ is defined by
genag([skip]') := 0
genae([z := a]') := FV(a)
genae([b]') = FV(b)

Rm Semantics and Verification of Software Summer semester 2007

Formalizing Live Variables Analysis II

Example 15.3 (kill,y/gen,y functions)

m Semantics and Verification of Software Summer semester 2007

Formalizing Live Variables Analysis II

Example 15.3 (kill,y/gen,y functions)

c=[x := 2]1; o Var. = {x,y,z}
[y = 4%
[o= 1P
if [y > 0]* then
[z := xP°
else
[z := y*yl%
[x := 2]’

m Semantics and Verification of Software Summer semester 2007

Formalizing Live Variables Analysis II

Example 15.3 (kill,y/gen,y functions)

c=[x := 2J'; o Var.={x,y,z}

[y := 4]%; o I € Lab, killyy(B!) gen,y (B

[x := 1]3; 1 {x} 0

if [y > 0]* then 2 {y} 0

z := x|’ 3 {x} 0

else 4 0 {y}

[z := y*y]®; 5 {z} {x}

[x := 2] 6 {z} {y}

7 {x} {z}

m Semantics and Verification of Software Summer semester 2007

The Equation System I

o For each [€ Lab., LV; C Var, represents the set of live variables at
the exit of block B

Rm Semantics and Verification of Software Summer semester 2007

The Equation System I

o For each [€ Lab., LV; C Var, represents the set of live variables at
the exit of block B

@ Formally, for a program ¢ € C'md with isolated exits:
LV, = {(ZJ if [€ final(c)
(Her(LVy) | (1L,T) € flow(c)} otherwise
where oy : 2Vae — 2Vare denotes the transfer function of block
BY, given by

or (V) == (V \ killoy(B")) U genyy (BY)

Rm Semantics and Verification of Software Summer semester 2007

The Equation System I

o For each [€ Lab., LV; C Var, represents the set of live variables at
the exit of block B

@ Formally, for a program ¢ € C'md with isolated exits:
LV, = {(ZJ if [€ final(c)
(Her(LVy) | (1L,T) € flow(c)} otherwise
where oy : 2Vae — 2Vare denotes the transfer function of block
BY | given by
pr(V) = (V \ killy(B)) U genyy (BY)
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: J in equation for LV,
flow—sensitive: results depending on order of assignments

Rm Semantics and Verification of Software Summer semester 2007

The Equation System I

o For each [€ Lab., LV; C Var, represents the set of live variables at
the exit of block B

@ Formally, for a program ¢ € C'md with isolated exits:
LV, = {(ZJ if [€ final(c)
(Her(LVy) | (1L,T) € flow(c)} otherwise
where oy : 2Vae — 2Vare denotes the transfer function of block
BY, given by
pr(V) = (V \ killy(B)) U genyy (BY)
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: J in equation for LV,

flow—sensitive: results depending on order of assignments
o Later: solution not necessarily unique

= choose least one

Rm Semantics and Verification of Software Summer semester 2007

The Equation System II

if I € final(c)
(1,I') € flow(c)} otherwise

Reminder: LV, |
)) U genae(BY)

{U{w(LVp)
(pl/(V) = (V\kI”AE(l

’

Rm Semantics and Verification of Software Summer semester 2007

The Equation System II

‘ . [if I € final(c)
Reminder: LV, = {U{W'(LVV) (1,U) € flow(c)} otherwise

|
(V) = (V\ killag(B")) U genae(B")

Example 15.4 (LV equation system)

m' Semantics and Verification of Software Summer semester 2007

The Equation System II

. 0 if [€ final(c
Reminder: LV, = {U{W(LVZ/) | (1,1') & flow(c)} otheerwisae(:
(V) = (V \ killag(B")) U genag(B")

Example 15.4 (LV equation system)

c=[x := 2]1'[y = 4]?;
[x = 1%
if [y > O]4 then
[z := x]°
else
[z := y*yl%
[x := z]"
| € Lab, killyy(B') gen,y(B')
1 {x} 0
2 {y} 0
3
4
5
6
4 Z
m' Semantics and Verification of Software Summer semester 2007

The Equation System II

{(Z) if I € final(c)
UL (LVe) | (1,17) € flow(,c)} otherwise
o (V) = (V \ killag(B")) U genae(B")

Reminder: LV, =

Example 15.4 (LV equation system)

c=[x := 2]}y := 4% V1 = ¢a(LV2) = LV \ {y}
[x :=1]; LV, = @3(LV3) = LV3 \ {x}
if [y > 0]* then LV3 = @4(LV,) = LV, U {y}
[z := x]° LV4 = ¢s5(LVs) U @6(LVs)
SED 6 = (Vs \ {z}) U {x}) U ((LV6 \ {z}) U {¥})
[z := y*y]°; LVs = ¢7(LV7) = (LV7 \ {x}) U {z}
[x := z]7 Ve = ¢7(LV7) = (LV7 \ {x}) U {z}

LV, =0

Z
Semantics and Verification of Software Summer semester 2007

The Equation System II

Reminder:

LvV; =

{(Z)
Uler (LVe) | (0,

if I € final(c)
") € flow(c)} otherwise

|
(V) = (V\ killag(B")) U genae(B")

Example 15.4 (LV equation system)

c=[x := 2]}y := 4% LV1 = p2(LV2) = LV2 \ {y}
[x := 1]%; LV, = @3(LV3) = LV3 \ {x}
if [y > 0]* then LV3 = p4(LVs) = LV4 U {y}
[z := x]° LV4 = 5(LVs) U w6(LVs)
else] = (Vs \ {z}) U{x}) U ((LVe \ {z}) U {y})
[z := y*y]°; LVs = ¢7(LV7) = (LV7 \ {x}) U {z}
[x := z]" Ve = p7(LV7) = (LV7 \ {x}) U {z}
I € Lab,. killyy(B') geny (B') Lvz =@

Solution: LV; =0
LV, = {y}
LVs = {x,y}

=SS S

{v}
{=}
0 {v} LV = {x,y}
{z} {x} LVs = {z}
}z} {v} LVe = {z}

1
2
3
4
5
6
7 Z
m' Semantics and Verification of Software Summer semester 2007

O A Dataflow Analysis Framework

Rm Semantics and Verification of Software Summer semester 2007

Similarities between Analysis Problems

@ Observation: the analyses presented so far have some similarities

Rm Semantics and Verification of Software Summer semester 2007

Similarities between Analysis Problems

@ Observation: the analyses presented so far have some similarities

— Look for underlying framework

Rm Semantics and Verification of Software Summer semester 2007

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
— Look for underlying framework

@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Rm Semantics and Verification of Software Summer semester 2007

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
— Look for underlying framework
@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

@ Overall pattern: for c € Umd and [€ Lab., the analysis
information (Al) is described by equations of the form

Al — ifle B
L= |_|{g0l/(A|l/) | (I',]) € F} otherwise
where
o ¢ specifies the initial analysis information
o E is {init(c)} or final(c)
o | JisNorU
o ¢ denotes the transfer function of block BY
o Fis flow(c) or flow™(c) (:= {(I',1) | (I,1") € flow(c)})

Rm Semantics and Verification of Software Summer semester 2007

Characterization of Analyses

o Direction of information flow:
o forward:
@ F = flow(c)
@ Al; concerns entry of B!
9 c has isolated entry

o backward:
o F = flow"(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

Rm Semantics and Verification of Software Summer semester 2007

Characterization of Analyses

o Direction of information flow:
o forward:
@ F = flow(c)
@ Al; concerns entry of B!
9 c has isolated entry

@ backward:
o F = flow"(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

o Quantification over paths:

e may:
o LU=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
o LI=nN
@ property satisfied by all paths
@ interested in greatest solution (later)

Rm Semantics and Verification of Software Summer semester 2007

	Repetition: Dataflow Analysis
	Available Expressions Analysis (continued)
	Live Variables Analysis
	A Dataflow Analysis Framework

