
Semantics and Verification of Software

Lecture 15: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Outline

1 Repetition: Dataflow Analysis

2 Available Expressions Analysis (continued)

3 Live Variables Analysis

4 A Dataflow Analysis Framework

Semantics and Verification of Software Summer semester 2007 2

Labelled Programs

Goal: localization of analysis information
Dataflow information will be associated with

assignments
tests in conditionals (if) and loops (while)
skip statements

These constructs will be called blocks.

Assume set of labels Lab with meta variable l ∈ Lab

(usually Lab = N)

Definition (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context–free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

c ::= [skip]l | [x := a]l | c1;c2 |
if [b]l then c1 else c2 | while [b]l do c ∈ Cmd

Here all labels in a statement c ∈ Cmd are assumed to be distinct.

Semantics and Verification of Software Summer semester 2007 3

Representing Control Flow

Example

c = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

true

false

Semantics and Verification of Software Summer semester 2007 4

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

for simplicity: only non–trivial arithmetic expressions

Example (Available Expressions analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Semantics and Verification of Software Summer semester 2007 5

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

for simplicity: only non–trivial arithmetic expressions

Example (Available Expressions analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Semantics and Verification of Software Summer semester 2007 5

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

for simplicity: only non–trivial arithmetic expressions

Example (Available Expressions analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Semantics and Verification of Software Summer semester 2007 5

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

for simplicity: only non–trivial arithmetic expressions

Example (Available Expressions analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Semantics and Verification of Software Summer semester 2007 5

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

for simplicity: only non–trivial arithmetic expressions

Example (Available Expressions analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Semantics and Verification of Software Summer semester 2007 5

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

for simplicity: only non–trivial arithmetic expressions

Example (Available Expressions analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Semantics and Verification of Software Summer semester 2007 5

Formalizing Available Expressions Analysis I

Given c ∈ Cmd , Labc/Block c/AExpc denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

An expression a is killed in a block B if any of the variables in a is
modified in B

Formally: killAE : Block c → 2AExpc is defined by
killAE([skip]l) := ∅

killAE([x := a]l) := {a′ ∈ AExpc | x ∈ FV (a′)}
killAE([b]l) := ∅

An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B

Formally: genAE : Block c → 2AExpc is defined by
genAE([skip]l) := ∅

genAE([x := a]l) := {a | x /∈ FV (a)}
genAE([b]l) := AExpb

Semantics and Verification of Software Summer semester 2007 6

Formalizing Available Expressions Analysis II

Example (killAE/gen
AE

functions)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

AExpc = {a+b, a*b, a+1}

l ∈ Labc killAE(Bl) genAE(Bl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Semantics and Verification of Software Summer semester 2007 7

Outline

1 Repetition: Dataflow Analysis

2 Available Expressions Analysis (continued)

3 Live Variables Analysis

4 A Dataflow Analysis Framework

Semantics and Verification of Software Summer semester 2007 8

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc, AEl ⊆ AExpc represents the set of available
expressions at the entry of block Bl

Formally, for c ∈ Cmd with isolated entry:

AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

where ϕl′ : 2AExpc → 2AExpc denotes the transfer function of block
Bl′ , given by

ϕl′(A) := (A \ killAE(Bl′)) ∪ genAE(Bl′)

Characterization of analysis:

forward: starts in init(c) and proceeds downwards
must:

⋂

in equation for AEl

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose greatest one

Semantics and Verification of Software Summer semester 2007 9

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc, AEl ⊆ AExpc represents the set of available
expressions at the entry of block Bl

Formally, for c ∈ Cmd with isolated entry:

AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

where ϕl′ : 2AExpc → 2AExpc denotes the transfer function of block
Bl′ , given by

ϕl′(A) := (A \ killAE(Bl′)) ∪ genAE(Bl′)

Characterization of analysis:

forward: starts in init(c) and proceeds downwards
must:

⋂

in equation for AEl

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose greatest one

Semantics and Verification of Software Summer semester 2007 9

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc, AEl ⊆ AExpc represents the set of available
expressions at the entry of block Bl

Formally, for c ∈ Cmd with isolated entry:

AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

where ϕl′ : 2AExpc → 2AExpc denotes the transfer function of block
Bl′ , given by

ϕl′(A) := (A \ killAE(Bl′)) ∪ genAE(Bl′)

Characterization of analysis:

forward: starts in init(c) and proceeds downwards
must:

⋂

in equation for AEl

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose greatest one

Semantics and Verification of Software Summer semester 2007 9

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc, AEl ⊆ AExpc represents the set of available
expressions at the entry of block Bl

Formally, for c ∈ Cmd with isolated entry:

AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

where ϕl′ : 2AExpc → 2AExpc denotes the transfer function of block
Bl′ , given by

ϕl′(A) := (A \ killAE(Bl′)) ∪ genAE(Bl′)

Characterization of analysis:

forward: starts in init(c) and proceeds downwards
must:

⋂

in equation for AEl

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose greatest one

Semantics and Verification of Software Summer semester 2007 9

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc, AEl ⊆ AExpc represents the set of available
expressions at the entry of block Bl

Formally, for c ∈ Cmd with isolated entry:

AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

where ϕl′ : 2AExpc → 2AExpc denotes the transfer function of block
Bl′ , given by

ϕl′(A) := (A \ killAE(Bl′)) ∪ genAE(Bl′)

Characterization of analysis:

forward: starts in init(c) and proceeds downwards
must:

⋂

in equation for AEl

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose greatest one

Semantics and Verification of Software Summer semester 2007 9

The Equation System II

Reminder: AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

ϕl′ (E) = (E \ killAE(Bl
′

)) ∪ gen
AE

(Bl
′

)

Example 15.1 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(Bl) gen
AE

(Bl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Semantics and Verification of Software Summer semester 2007 10

The Equation System II

Reminder: AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

ϕl′ (E) = (E \ killAE(Bl
′

)) ∪ gen
AE

(Bl
′

)

Example 15.1 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(Bl) gen
AE

(Bl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Semantics and Verification of Software Summer semester 2007 10

The Equation System II

Reminder: AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

ϕl′ (E) = (E \ killAE(Bl
′

)) ∪ gen
AE

(Bl
′

)

Example 15.1 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(Bl) gen
AE

(Bl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Semantics and Verification of Software Summer semester 2007 10

The Equation System II

Reminder: AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

ϕl′ (E) = (E \ killAE(Bl
′

)) ∪ gen
AE

(Bl
′

)

Example 15.1 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(Bl) gen
AE

(Bl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Semantics and Verification of Software Summer semester 2007 10

The Equation System II

Reminder: AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

ϕl′ (E) = (E \ killAE(Bl
′

)) ∪ gen
AE

(Bl
′

)

Example 15.1 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(Bl) gen
AE

(Bl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Semantics and Verification of Software Summer semester 2007 10

Outline

1 Repetition: Dataflow Analysis

2 Available Expressions Analysis (continued)

3 Live Variables Analysis

4 A Dataflow Analysis Framework

Semantics and Verification of Software Summer semester 2007 11

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not
re–define the variable

No variable considered to be live at the end of the program
(choice depends on application, e.g., output variables live)

Can be used for Dead Code Elimination:
remove assignments to non–live variables

Semantics and Verification of Software Summer semester 2007 12

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not
re–define the variable

No variable considered to be live at the end of the program
(choice depends on application, e.g., output variables live)

Can be used for Dead Code Elimination:
remove assignments to non–live variables

Semantics and Verification of Software Summer semester 2007 12

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not
re–define the variable

No variable considered to be live at the end of the program
(choice depends on application, e.g., output variables live)

Can be used for Dead Code Elimination:
remove assignments to non–live variables

Semantics and Verification of Software Summer semester 2007 12

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not
re–define the variable

No variable considered to be live at the end of the program
(choice depends on application, e.g., output variables live)

Can be used for Dead Code Elimination:
remove assignments to non–live variables

Semantics and Verification of Software Summer semester 2007 12

An Example

Example 15.2 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Semantics and Verification of Software Summer semester 2007 13

An Example

Example 15.2 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Semantics and Verification of Software Summer semester 2007 13

An Example

Example 15.2 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Semantics and Verification of Software Summer semester 2007 13

An Example

Example 15.2 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Semantics and Verification of Software Summer semester 2007 13

An Example

Example 15.2 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Semantics and Verification of Software Summer semester 2007 13

An Example

Example 15.2 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Semantics and Verification of Software Summer semester 2007 13

Formalizing Live Variables Analysis I

A variable on the left–hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killLV : Block c → 2Varc is defined by
killLV([skip]l) := ∅

killLV([x := a]l) := {x}
killLV([b]l) := ∅

Every reading access generates a live variable

Formally: genLV : Block c → 2Varc is defined by
genAE([skip]l) := ∅

genAE([x := a]l) := FV (a)
genAE([b]l) := FV (b)

Semantics and Verification of Software Summer semester 2007 14

Formalizing Live Variables Analysis I

A variable on the left–hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killLV : Block c → 2Varc is defined by
killLV([skip]l) := ∅

killLV([x := a]l) := {x}
killLV([b]l) := ∅

Every reading access generates a live variable

Formally: genLV : Block c → 2Varc is defined by
genAE([skip]l) := ∅

genAE([x := a]l) := FV (a)
genAE([b]l) := FV (b)

Semantics and Verification of Software Summer semester 2007 14

Formalizing Live Variables Analysis I

A variable on the left–hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killLV : Block c → 2Varc is defined by
killLV([skip]l) := ∅

killLV([x := a]l) := {x}
killLV([b]l) := ∅

Every reading access generates a live variable

Formally: genLV : Block c → 2Varc is defined by
genAE([skip]l) := ∅

genAE([x := a]l) := FV (a)
genAE([b]l) := FV (b)

Semantics and Verification of Software Summer semester 2007 14

Formalizing Live Variables Analysis I

A variable on the left–hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killLV : Block c → 2Varc is defined by
killLV([skip]l) := ∅

killLV([x := a]l) := {x}
killLV([b]l) := ∅

Every reading access generates a live variable

Formally: genLV : Block c → 2Varc is defined by
genAE([skip]l) := ∅

genAE([x := a]l) := FV (a)
genAE([b]l) := FV (b)

Semantics and Verification of Software Summer semester 2007 14

Formalizing Live Variables Analysis II

Example 15.3 (killLV/gen
LV

functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}

l ∈ Labc killLV(Bl) genLV(Bl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

Semantics and Verification of Software Summer semester 2007 15

Formalizing Live Variables Analysis II

Example 15.3 (killLV/gen
LV

functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}

l ∈ Labc killLV(Bl) genLV(Bl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

Semantics and Verification of Software Summer semester 2007 15

Formalizing Live Variables Analysis II

Example 15.3 (killLV/gen
LV

functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}

l ∈ Labc killLV(Bl) genLV(Bl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

Semantics and Verification of Software Summer semester 2007 15

The Equation System I

For each l ∈ Labc, LVl ⊆ Var c represents the set of live variables at
the exit of block Bl

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{

∅ if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

where ϕl′ : 2Varc → 2Varc denotes the transfer function of block
Bl

′

, given by
ϕl′(V) := (V \ killLV(Bl

′

)) ∪ genLV(Bl
′

)

Characterization of analysis:

backward: starts in final(c) and proceeds upwards
may:

⋃

in equation for LVl

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose least one

Semantics and Verification of Software Summer semester 2007 16

The Equation System I

For each l ∈ Labc, LVl ⊆ Var c represents the set of live variables at
the exit of block Bl

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{

∅ if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

where ϕl′ : 2Varc → 2Varc denotes the transfer function of block
Bl

′

, given by
ϕl′(V) := (V \ killLV(Bl

′

)) ∪ genLV(Bl
′

)

Characterization of analysis:

backward: starts in final(c) and proceeds upwards
may:

⋃

in equation for LVl

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose least one

Semantics and Verification of Software Summer semester 2007 16

The Equation System I

For each l ∈ Labc, LVl ⊆ Var c represents the set of live variables at
the exit of block Bl

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{

∅ if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

where ϕl′ : 2Varc → 2Varc denotes the transfer function of block
Bl

′

, given by
ϕl′(V) := (V \ killLV(Bl

′

)) ∪ genLV(Bl
′

)

Characterization of analysis:

backward: starts in final(c) and proceeds upwards
may:

⋃

in equation for LVl

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose least one

Semantics and Verification of Software Summer semester 2007 16

The Equation System I

For each l ∈ Labc, LVl ⊆ Var c represents the set of live variables at
the exit of block Bl

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{

∅ if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

where ϕl′ : 2Varc → 2Varc denotes the transfer function of block
Bl

′

, given by
ϕl′(V) := (V \ killLV(Bl

′

)) ∪ genLV(Bl
′

)

Characterization of analysis:

backward: starts in final(c) and proceeds upwards
may:

⋃

in equation for LVl

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose least one

Semantics and Verification of Software Summer semester 2007 16

The Equation System II

Reminder: LVl =

{

∅ if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

ϕl′ (V) = (V \ killAE(Bl
′

)) ∪ genAE(Bl
′

)

Example 15.4 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

l ∈ Labc killLV(Bl) genLV(Bl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = ∅

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {z}
LV6 = {z}
LV7 = ∅

Semantics and Verification of Software Summer semester 2007 17

The Equation System II

Reminder: LVl =

{

∅ if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

ϕl′ (V) = (V \ killAE(Bl
′

)) ∪ genAE(Bl
′

)

Example 15.4 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

l ∈ Labc killLV(Bl) genLV(Bl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = ∅

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {z}
LV6 = {z}
LV7 = ∅

Semantics and Verification of Software Summer semester 2007 17

The Equation System II

Reminder: LVl =

{

∅ if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

ϕl′ (V) = (V \ killAE(Bl
′

)) ∪ genAE(Bl
′

)

Example 15.4 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

l ∈ Labc killLV(Bl) genLV(Bl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = ∅

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {z}
LV6 = {z}
LV7 = ∅

Semantics and Verification of Software Summer semester 2007 17

The Equation System II

Reminder: LVl =

{

∅ if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

ϕl′ (V) = (V \ killAE(Bl
′

)) ∪ genAE(Bl
′

)

Example 15.4 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

l ∈ Labc killLV(Bl) genLV(Bl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = ∅

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {z}
LV6 = {z}
LV7 = ∅

Semantics and Verification of Software Summer semester 2007 17

The Equation System II

Reminder: LVl =

{

∅ if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

ϕl′ (V) = (V \ killAE(Bl
′

)) ∪ genAE(Bl
′

)

Example 15.4 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

l ∈ Labc killLV(Bl) genLV(Bl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = ∅

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {z}
LV6 = {z}
LV7 = ∅

Semantics and Verification of Software Summer semester 2007 17

Outline

1 Repetition: Dataflow Analysis

2 Available Expressions Analysis (continued)

3 Live Variables Analysis

4 A Dataflow Analysis Framework

Semantics and Verification of Software Summer semester 2007 18

Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Labc, the analysis
information (AI) is described by equations of the form

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

where

ι specifies the initial analysis information
E is {init(c)} or final(c)
⊔

is
⋂

or
⋃

ϕl′ denotes the transfer function of block Bl
′

F is flow(c) or flowR(c) (:= {(l′, l) | (l, l′) ∈ flow(c)})

Semantics and Verification of Software Summer semester 2007 19

Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Labc, the analysis
information (AI) is described by equations of the form

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

where

ι specifies the initial analysis information
E is {init(c)} or final(c)
⊔

is
⋂

or
⋃

ϕl′ denotes the transfer function of block Bl
′

F is flow(c) or flowR(c) (:= {(l′, l) | (l, l′) ∈ flow(c)})

Semantics and Verification of Software Summer semester 2007 19

Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Labc, the analysis
information (AI) is described by equations of the form

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

where

ι specifies the initial analysis information
E is {init(c)} or final(c)
⊔

is
⋂

or
⋃

ϕl′ denotes the transfer function of block Bl
′

F is flow(c) or flowR(c) (:= {(l′, l) | (l, l′) ∈ flow(c)})

Semantics and Verification of Software Summer semester 2007 19

Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Labc, the analysis
information (AI) is described by equations of the form

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

where

ι specifies the initial analysis information
E is {init(c)} or final(c)
⊔

is
⋂

or
⋃

ϕl′ denotes the transfer function of block Bl
′

F is flow(c) or flowR(c) (:= {(l′, l) | (l, l′) ∈ flow(c)})

Semantics and Verification of Software Summer semester 2007 19

Characterization of Analyses

Direction of information flow:

forward:

F = flow(c)
AIl concerns entry of B

l

c has isolated entry

backward:

F = flowR(c)
AIl concerns exit of B

l

c has isolated exits

Quantification over paths:

may:
F

=
S

property satisfied by some path
interested in least solution (later)

must:
F

=
T

property satisfied by all paths
interested in greatest solution (later)

Semantics and Verification of Software Summer semester 2007 20

Characterization of Analyses

Direction of information flow:

forward:

F = flow(c)
AIl concerns entry of B

l

c has isolated entry

backward:

F = flowR(c)
AIl concerns exit of B

l

c has isolated exits

Quantification over paths:

may:
F

=
S

property satisfied by some path
interested in least solution (later)

must:
F

=
T

property satisfied by all paths
interested in greatest solution (later)

Semantics and Verification of Software Summer semester 2007 20

	Repetition: Dataflow Analysis
	Available Expressions Analysis (continued)
	Live Variables Analysis
	A Dataflow Analysis Framework

