Semantics and Verification of Software

Lecture 16: Dataflow Analysis

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: A Dataflow Analysis Framework

Rm Semantics and Verification of Software Summer semester 2007

Available Expressions Analysis

@ For each [€ Lab., AE; C AFEzp, represents the set of available
expressions at the entry of block B
o Formally, for ¢ € CUmd with isolated entry:
AE, { if 1 = init(c)
(e (AEy) | (I',1) € flow(c)} otherwise
where @y : 2487 2ABe denotes the transfer function of block
B, given by
pr(A) == (A \ killag(B")) U genpe(B")
o Characterization of analysis:
forward: starts in init(c) and proceeds downwards
must: () in equation for AE,
flow—sensitive: results depending on order of assignments

o Later: solution not necessarily unique
—> choose greatest one

Rm Semantics and Verification of Software Summer semester 2007

Live Variables Analysis

o For each [€ Lab., LV; C Var, represents the set of live variables at
the exit of block B

@ Formally, for a program ¢ € C'md with isolated exits:
LV, = {(ZJ if [€ final(c)
(Her(LVy) | (1L,T) € flow(c)} otherwise
where oy : 2Vae — 2Vare denotes the transfer function of block
BY, given by
pr(V) = (V \ killy(B)) U genyy (BY)
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: J in equation for LV,

flow—sensitive: results depending on order of assignments
o Later: solution not necessarily unique

= choose least one

Rm Semantics and Verification of Software Summer semester 2007

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
— Look for underlying framework
@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

@ Overall pattern: for c € Umd and [€ Lab., the analysis
information (Al) is described by equations of the form

Al — ifle B
L= |_|{g0l/(A|l/) | (I',]) € F} otherwise
where
o ¢ specifies the initial analysis information
o E is {init(c)} or final(c)
o | JisNorU
o ¢ denotes the transfer function of block BY
o Fis flow(c) or flow™(c) (:= {(I',1) | (I,1") € flow(c)})

Rm Semantics and Verification of Software Summer semester 2007

Characterization of Analyses

o Direction of information flow:
o forward:
@ F = flow(c)
@ Al; concerns entry of B!
9 c has isolated entry

@ backward:
o F = flow"(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

o Quantification over paths:

e may:
o LU=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
o LI=nN
@ property satisfied by all paths
@ interested in greatest solution (later)

Rm Semantics and Verification of Software Summer semester 2007

© Order Theoretic Foundations

Rm Semantics and Verification of Software Summer semester 2007

Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “degree of knowledge”.

Definition 16.1 (Partial order; repetition of Def. 5.3)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every di,ds,ds € D,

reflexivity: dy C di
transitivity: d; C dy and dy C d3 = dy C d3
antisymmetry: di Edy and dp C dy = di = d
It is called total if, in addition, always dy C dy or dp C dj.

@ (Available Expressions) (24P D) is a (non-total) partial order
@ (Live Variables) (2V%¢, C) is a (non-total) partial order

m' Semantics and Verification of Software Summer semester 2007

Upper and Lower Bounds I

Definition 16.3 (Upper and lower bounds)

Let (D,C) be a partial order and S C D.
O An element d € D is called an upper/lower bound of S if
s C d/dC s for every s € S (notation: S C d/dC S).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d E d’ for every upper bound d’ of S
(notation: d = |9).
© A lower bound d of S is called greatest lower bound (GLB) or

infimum of S if d’ C d for every lower bound d’ of S
(notation: d =[1]5).

m Semantics and Verification of Software Summer semester 2007

Upper and Lower Bounds I1

Example 16.4

@ (Available Expressions) (D,C) = (24F%¢ D)
Given Al, 000 ,An Q AEZUPC,

|_|{A17"'7An} = n{A]_,
|_|{A17"'7An} = U{A]_,

@ (Live Variables) (D,C) = (2", €)
Given V4,...,V, C Var,,

LKV, .. Vi = U{V4, ..., Vi } and
[H{V1,. - Vel = W, -, Wi}

m Semantics and Verification of Software Summer semester 2007

Complete Lattices I

Definition 16.5 (Complete lattices)

A complete lattice is a partial order (D, C) such that all subsets of D
have least upper as well as greatest lower bounds. In this case,

L:=10=[]D and
T:=[10=|]D

denote the least and the greatest element of D, respectively.

@ (Available Expressions) (D,C) = (245%¢, D) is a complete lattice
with L = AEzp, and T =0

@ (Live Variables) (D,C) = (2", C) is a complete lattice with
L =0and T = Var,

m' Semantics and Verification of Software Summer semester 2007

Complete Lattices II

Lemma 16.7

For a partial order (D,C) the claims
Q (D,C) is a complete lattice,
Q cvery subset of D has a least upper bound, and

@ every subset of D has a greatest lower bound

are equivalent.

on the board

Semantics and Verification of Software Summer semester 2007

Chains represent the approximation of the analysis information.

Definition 16.8 (Chain; repetition of Def. 5.6 and 5.8)

Let (D,C) be a partial order.
@ A subset S C D is called a chain in D if, for every s1,s2 € S,
s1LsporsyLosy
(that is, S is a totally ordered subset of D).
© (D, L) is called chain complete (CCPO) if every of its chains has a
least upper bound.

O (D, C) satisfies the Ascending Chain Condition (ACC) if each
ascending chain dy C dp C ... eventually stabilizes, i.e., there
exists n € N such that d, =d, 11 = ...

m Semantics and Verification of Software Summer semester 2007

Chains 11

on the board

Every partial order that satisfies ACC is a CCPO.
O

@ (Available Expressions) (D, C) = (24, D) satisfies ACC since
AFzp, (unlike AFEzp) is finite

@ (Live Variables) (D,C) = (2", C) satisfies ACC since Var,
(unlike Var) is finite

m Semantics and Verification of Software Summer semester 2007

Monotonicity of Functions

Transfer functions formalize the impact of a block in the program on
the analysis information.

Definition 16.11 (Monotonicity; repetition of Def. 6.1)

Let (D,C) and (D’,C') be partial orders, and let F': D — D'. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,dy € D,

dy Cdy = F(dy) T’ F(dy).

|

Example 16.12

@ (Available Expressions) (D,C) = (24F%¢ D)
Each transfer function oy (A) := (A \ killag(B")) U genag(BY) is
monotonic

@ (Live Variables) (D,C) = (2", C)
Each transfer function oy (V) := (V' \ killy(BY)) U geny(BY) is
monotonic

m' Semantics and Verification of Software Summer semester 2007

Theorem 16.13 (Fixpoint Theorem; repetition of Thm. 7.1)

Let (D,C) be a« CCPO and F : D — D continuous. Then

fix(F) = LI{F" (L10) | m € N}
1s the least fixpoint of F.

Definition 16.14 (Continuity)

Let (D,C) and (D’,C") be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D',C")) if, for every
non—empty chain S C D,

FUS) = F(S).

Corollary 16.15

Montonic functions on partial orders that satisfy ACC are continuous.

on the board O

m Semantics and Verification of Software Summer semester 2007

© The Framework

Rm Semantics and ri ion of Software Summer semester 2007

Dataflow Systems I

Definition 16.16 (Dataflow system)

A dataflow system S = (Lab, E, F,(D,C),t,) consists of
@ a finite set of (program) labels Lab (here: Lab.),
@ a set of extremal labels E C Lab (here: {init(c)} or final(c)),
o a flow relation F' C Lab x Lab (here: flow(c) or flow%(c)),

@ a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

o an extremal value ¢ € D (for the extremal labels), and

@ a collection of monotonic transfer functions {¢; | I € Lab} of type
wr:D— D.

m Semantics and Verification of Software Summer semester 2007

Dataflow Systems 11

Example 16.17

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flow"(c)

D 2AEzpC 2Varc

C 2 C

L N U

L AFEzp, 0

L 0 0

7 () = (d\ KIl(B)) U gen(B")

m Semantics and Verification of Software Summer semester 2007

	Repetition: A Dataflow Analysis Framework
	Order--Theoretic Foundations
	The Framework

