

Semantics and Verification of Software

Lecture 16: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw/>

Summer semester 2007

- 1 Repetition: A Dataflow Analysis Framework
- 2 Order-Theoretic Foundations
- 3 The Framework

Available Expressions Analysis

- For each $l \in Lab_c$, $\mathsf{AE}_l \subseteq AExp_c$ represents the **set of available expressions at the entry of block B^l**
- Formally, for $c \in Cmd$ with isolated entry:

$$\mathsf{AE}_l = \begin{cases} \emptyset & \text{if } l = \mathsf{init}(c) \\ \bigcap \{\varphi_{l'}(\mathsf{AE}_{l'}) \mid (l', l) \in \mathsf{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{AExp_c} \rightarrow 2^{AExp_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(A) := (A \setminus \mathsf{kill}_{\mathsf{AE}}(B^{l'})) \cup \mathsf{gen}_{\mathsf{AE}}(B^{l'})$$

- Characterization of analysis:
 - forward:** starts in $\mathsf{init}(c)$ and proceeds downwards
 - must:** \bigcap in equation for AE_l
 - flow-sensitive:** results depending on order of assignments
- Later: solution **not necessarily unique**
 \implies choose **greatest one**

Live Variables Analysis

- For each $l \in Lab_c$, $\text{LV}_l \subseteq Var_c$ represents the set of **live variables at the exit of block B^l**
- Formally, for a program $c \in Cmd$ with isolated exits:

$$\text{LV}_l = \begin{cases} \emptyset & \text{if } l \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(\text{LV}_{l'}) \mid (l, l') \in \text{flow}(c)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{Var_c} \rightarrow 2^{Var_c}$ denotes the **transfer function** of block $B^{l'}$, given by

$$\varphi_{l'}(V) := (V \setminus \text{kill}_{\text{LV}}(B^{l'})) \cup \text{gen}_{\text{LV}}(B^{l'})$$

- Characterization of analysis:

backward: starts in $\text{final}(c)$ and proceeds upwards

may: \bigcup in equation for LV_l

flow-sensitive: results depending on order of assignments

- Later: solution **not necessarily unique**

\implies choose **least one**

Similarities between Analysis Problems

- **Observation:** the analyses presented so far have some **similarities**
⇒ Look for underlying **framework**
- **Advantage:** possibility for designing (efficient) **generic algorithms** for solving **dataflow equations**
- **Overall pattern:** for $c \in Cmd$ and $l \in Lab_c$, the **analysis information** (AI) is described by **equations** of the form

$$AI_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(AI_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

where

- ι specifies the initial analysis information
- E is $\{\text{init}(c)\}$ or $\text{final}(c)$
- \bigsqcup is \cap or \bigcup
- $\varphi_{l'}$ denotes the transfer function of block $B^{l'}$
- F is $\text{flow}(c)$ or $\text{flow}^R(c)$ ($:= \{(l', l) \mid (l, l') \in \text{flow}(c)\}$)

- Direction of information flow:

- forward:

- $F = \text{flow}(c)$
 - Al_l concerns entry of B^l
 - c has isolated entry

- backward:

- $F = \text{flow}^R(c)$
 - Al_l concerns exit of B^l
 - c has isolated exits

- Quantification over paths:

- may:

- $\sqcup = \bigcup$
 - property satisfied by some path
 - interested in least solution (later)

- must:

- $\sqcup = \bigcap$
 - property satisfied by all paths
 - interested in greatest solution (later)

1 Repetition: A Dataflow Analysis Framework

2 Order-Theoretic Foundations

3 The Framework

The domain of analysis information usually forms a partial order where the ordering relation compares the “degree of knowledge”.

Definition 16.1 (Partial order; repetition of Def. 5.3)

A **partial order (PO)** (D, \sqsubseteq) consists of a set D , called **domain**, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called **total** if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 16.2

- ❶ (Available Expressions) $(2^{AExp_c}, \supseteq)$ is a (non-total) partial order
- ❷ (Live Variables) $(2^{Var_c}, \subseteq)$ is a (non-total) partial order

Definition 16.3 (Upper and lower bounds)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.

- ① An element $d \in D$ is called an **upper/lower bound** of S if $s \sqsubseteq d/d \sqsubseteq s$ for every $s \in S$ (notation: $S \sqsubseteq d/d \sqsubseteq S$).
- ② An upper bound d of S is called **least upper bound (LUB)** or **supremum** of S if $d \sqsubseteq d'$ for every upper bound d' of S (notation: $d = \sqcup S$).
- ③ A lower bound d of S is called **greatest lower bound (GLB)** or **infimum** of S if $d' \sqsubseteq d$ for every lower bound d' of S (notation: $d = \sqcap S$).

Example 16.4

① (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \supseteq)$

Given $A_1, \dots, A_n \subseteq AExp_c$,

$$\begin{aligned}\sqcup\{A_1, \dots, A_n\} &= \bigcap\{A_1, \dots, A_n\} \text{ and} \\ \sqcap\{A_1, \dots, A_n\} &= \bigcup\{A_1, \dots, A_n\}\end{aligned}$$

② (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$

Given $V_1, \dots, V_n \subseteq Var_c$,

$$\begin{aligned}\sqcup\{V_1, \dots, V_n\} &= \bigcup\{V_1, \dots, V_n\} \text{ and} \\ \sqcap\{V_1, \dots, V_n\} &= \bigcap\{V_1, \dots, V_n\}\end{aligned}$$

Definition 16.5 (Complete lattices)

A **complete lattice** is a partial order (D, \sqsubseteq) such that all subsets of D have least upper as well as greatest lower bounds. In this case,

$$\begin{aligned}\perp &:= \bigsqcup \emptyset = \bigsqcap D \text{ and} \\ \top &:= \bigsqcap \emptyset = \bigsqcup D\end{aligned}$$

denote the **least** and the **greatest element** of D , respectively.

Example 16.6

- ➊ (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \supseteq)$ is a complete lattice with $\perp = AExp_c$ and $\top = \emptyset$
- ➋ (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$ is a complete lattice with $\perp = \emptyset$ and $\top = Var_c$

Lemma 16.7

For a partial order (D, \sqsubseteq) the claims

- ① (D, \sqsubseteq) is a complete lattice,
- ② every subset of D has a least upper bound, and
- ③ every subset of D has a greatest lower bound

are equivalent.

Proof.

on the board

Chains represent the approximation of the analysis information.

Definition 16.8 (Chain; repetition of Def. 5.6 and 5.8)

Let (D, \sqsubseteq) be a partial order.

- ① A subset $S \subseteq D$ is called a **chain** in D if, for every $s_1, s_2 \in S$,
$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$
(that is, S is a totally ordered subset of D).
- ② (D, \sqsubseteq) is called **chain complete (CCPO)** if every of its chains has a least upper bound.
- ③ (D, \sqsubseteq) satisfies the **Ascending Chain Condition (ACC)** if each ascending chain $d_1 \sqsubseteq d_2 \sqsubseteq \dots$ eventually stabilizes, i.e., there exists $n \in \mathbb{N}$ such that $d_n = d_{n+1} = \dots$

Corollary 16.9

Every partial order that satisfies ACC is a CCPo.

Proof.

on the board

Example 16.10

- ➊ (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \supseteq)$ satisfies ACC since $AExp_c$ (unlike $AExp$) is finite
- ➋ (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$ satisfies ACC since Var_c (unlike Var) is finite

Monotonicity of Functions

Transfer functions formalize the impact of a block in the program on the analysis information.

Definition 16.11 (Monotonicity; repetition of Def. 6.1)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \rightarrow D'$. F is called **monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq'))** if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies F(d_1) \sqsubseteq' F(d_2).$$

Example 16.12

① (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \supseteq)$

Each transfer function $\varphi_{l'}(A) := (A \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$ is monotonic

② (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$

Each transfer function $\varphi_{l'}(V) := (V \setminus \text{kill}_{\text{LV}}(B^{l'})) \cup \text{gen}_{\text{LV}}(B^{l'})$ is monotonic

Theorem 16.13 (Fixpoint Theorem; repetition of Thm. 7.1)

Let (D, \sqsubseteq) be a CCPO and $F : D \rightarrow D$ continuous. Then

$$\text{fix}(F) := \bigsqcup \{F^n(\bigsqcup \emptyset) \mid n \in \mathbb{N}\}$$

is the least fixpoint of F .

Definition 16.14 (Continuity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be CCPOs and $F : D \rightarrow D'$ monotonic. Then F is called **continuous** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every non-empty chain $S \subseteq D$,

$$F(\bigsqcup S) = \bigsqcup F(S).$$

Corollary 16.15

Monotonic functions on partial orders that satisfy ACC are continuous.

Proof.

on the board

- 1 Repetition: A Dataflow Analysis Framework
- 2 Order-Theoretic Foundations
- 3 The Framework

Definition 16.16 (Dataflow system)

A **dataflow system** $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) **labels** Lab (here: Lab_c),
- a set of **extremal labels** $E \subseteq Lab$ (here: $\{\text{init}(c)\}$ or $\text{final}(c)$),
- a **flow relation** $F \subseteq Lab \times Lab$ (here: $\text{flow}(c)$ or $\text{flow}^R(c)$),
- a **complete lattice** (D, \sqsubseteq) that satisfies ACC
(with LUB operator \sqcup and least element \perp),
- an **extremal value** $\iota \in D$ (for the extremal labels), and
- a collection of monotonic **transfer functions** $\{\varphi_l \mid l \in Lab\}$ of type $\varphi_l : D \rightarrow D$.

Example 16.17

Problem	Available Expressions	Live Variables
E	$\{\text{init}(c)\}$	$\text{final}(c)$
F	$\text{flow}(c)$	$\text{flow}^R(c)$
D	2^{AExp_c}	2^{Var_c}
\sqsubseteq	\supseteq	\subseteq
\sqcup	\bigcap	\bigcup
\perp	$AExp_c$	\emptyset
ι	\emptyset	\emptyset
φ_l	$\varphi_l(d) = (d \setminus \text{kill}(B^l)) \cup \text{gen}(B^l)$	