

Semantics and Verification of Software

Lecture 17: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw/>

Summer semester 2007

1 Repetition: The Dataflow Analysis Framework

2 Solving Dataflow Equation Systems

Definition (Complete lattices)

A **complete lattice** is a partial order (D, \sqsubseteq) such that all subsets of D have least upper as well as greatest lower bounds. In this case,

$$\begin{aligned}\perp &:= \bigsqcup \emptyset = \bigsqcap D \text{ and} \\ \top &:= \bigsqcap \emptyset = \bigsqcup D\end{aligned}$$

denote the **least** and the **greatest element** of D , respectively.

Example

- ➊ (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \supseteq)$ is a complete lattice with $\perp = AExp_c$ and $\top = \emptyset$
- ➋ (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$ is a complete lattice with $\perp = \emptyset$ and $\top = Var_c$

Chains represent the approximation of the analysis information.

Definition (Chain; repetition of Def. 5.6 and 5.8)

Let (D, \sqsubseteq) be a partial order.

- ① A subset $S \subseteq D$ is called a **chain** in D if, for every $s_1, s_2 \in S$,
$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$
(that is, S is a totally ordered subset of D).
- ② (D, \sqsubseteq) is called **chain complete (CCPO)** if every of its chains has a least upper bound.
- ③ (D, \sqsubseteq) satisfies the **Ascending Chain Condition (ACC)** if each ascending chain $d_1 \sqsubseteq d_2 \sqsubseteq \dots$ eventually stabilizes, i.e., there exists $n \in \mathbb{N}$ such that $d_n = d_{n+1} = \dots$

Definition (Monotonicity; repetition of Def. 6.1)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \rightarrow D'$. F is called **monotonic** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies F(d_1) \sqsubseteq' F(d_2).$$

Example

- ➊ (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \supseteq)$

Each transfer function $\varphi_{l'}(A) := (A \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$ is monotonic

- ➋ (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$

Each transfer function $\varphi_{l'}(V) := (V \setminus \text{kill}_{\text{LV}}(B^{l'})) \cup \text{gen}_{\text{LV}}(B^{l'})$ is monotonic

Theorem (Fixpoint Theorem; repetition of Thm. 7.1)

Let (D, \sqsubseteq) be a CCPo and $F : D \rightarrow D$ continuous. Then

$$\text{fix}(F) := \bigsqcup \{F^n(\bigsqcup \emptyset) \mid n \in \mathbb{N}\}$$

is the least fixpoint of F .

Definition (Continuity; repetition of Def. 6.5)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be CCPOs and $F : D \rightarrow D'$ monotonic. Then F is called **continuous** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every non-empty chain $S \subseteq D$,

$$F(\bigsqcup S) = \bigsqcup F(S).$$

Corollary

Monotonic functions on partial orders that satisfy ACC are continuous.

Definition (Dataflow system)

A **dataflow system** $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) **labels** Lab (here: Lab_c),
- a set of **extremal labels** $E \subseteq Lab$ (here: $\{\text{init}(c)\}$ or $\text{final}(c)$),
- a **flow relation** $F \subseteq Lab \times Lab$ (here: $\text{flow}(c)$ or $\text{flow}^R(c)$),
- a **complete lattice** (D, \sqsubseteq) that satisfies ACC
(with LUB operator \sqcup and least element \perp),
- an **extremal value** $\iota \in D$ (for the extremal labels), and
- a collection of monotonic **transfer functions** $\{\varphi_l \mid l \in Lab\}$ of type $\varphi_l : D \rightarrow D$.

Example

Problem	Available Expressions	Live Variables
E	$\{\text{init}(c)\}$	$\text{final}(c)$
F	$\text{flow}(c)$	$\text{flow}^R(c)$
D	2^{AExp_c}	2^{Var_c}
\sqsubseteq	\supseteq	\subseteq
\sqcup	\bigcap	\bigcup
\perp	$AExp_c$	\emptyset
ι	\emptyset	\emptyset
φ_l	$\varphi_l(d) = (d \setminus \text{kill}(B^l)) \cup \text{gen}(B^l)$	

1 Repetition: The Dataflow Analysis Framework

2 Solving Dataflow Equation Systems

Definition 17.1 (Dataflow equation system)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. S defines the following **equation system** over the set of variables $\{\text{Al}_l \mid l \in Lab\}$:

$$\text{Al}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\text{Al}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

Just as in the denotational semantics of `while` loops, the equation system determines a functional whose fixpoints are the solutions of the equation system.

Definition 17.2 (Dataflow functional)

The equation system of a dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ induces a **functional**

$$\Phi_S : D^n \rightarrow D^n : (d_{l_1}, \dots, d_{l_n}) \mapsto (d'_{l_1}, \dots, d'_{l_n})$$

where $Lab = \{l_1, \dots, l_n\}$ and

$$d'_{l_i} := \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l_i) \in F\} & \text{otherwise} \end{cases}$$

Remarks:

- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice** satisfying **ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Every transfer function φ_l monotonic in D
 $\implies \Phi_S$ monotonic in D^n
- Thus the fixpoint is effectively computable by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

- If maximal length of chains in D is m
 \implies maximal length of chains in D^n is $m \cdot n$
 \implies fixpoint iteration requires at most $m \cdot n$ steps

Remarks:

- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice satisfying ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Every transfer function φ_I monotonic in D
 $\implies \Phi_S$ monotonic in D^n
- Thus the fixpoint is effectively computable by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = \underbrace{(\perp_D, \dots, \perp_D)}_{n \text{ times}}$

- If maximal length of chains in D is m
 \implies maximal length of chains in D^n is $m \cdot n$
 \implies fixpoint iteration requires at most $m \cdot n$ steps

Remarks:

- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice satisfying ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Every transfer function φ_l **monotonic** in D
 $\implies \Phi_S$ **monotonic** in D^n
- Thus the fixpoint is effectively computable by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = \underbrace{(\perp_D, \dots, \perp_D)}_{n \text{ times}}$

- If maximal length of chains in D is m
 \implies maximal length of chains in D^n is $m \cdot n$
 \implies fixpoint iteration requires at most $m \cdot n$ steps

Remarks:

- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice satisfying ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Every transfer function φ_l **monotonic** in D
 $\implies \Phi_S$ **monotonic** in D^n
- Thus the **fixpoint is effectively computable** by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

- If maximal length of chains in D is m
 \implies maximal length of chains in D^n is $m \cdot n$
 \implies fixpoint iteration requires at most $m \cdot n$ steps

Remarks:

- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice satisfying ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Every transfer function φ_l **monotonic** in D
 $\implies \Phi_S$ **monotonic** in D^n
- Thus the **fixpoint is effectively computable** by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

- If maximal length of chains in D is m
 \implies maximal length of chains in D^n is $m \cdot n$
 \implies fixpoint iteration requires at most $m \cdot n$ steps

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 15.1)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 15.1)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 15.1)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 15.1)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 15.1)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 15.1)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 15.1)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Example 17.4 (Live Variables; cf. Example 15.4)

Program:

```
[x := 2]1; [y := 4]2;  

[x := 1]3;  

if [y > 0]4 then  

  [z := x]5  

else  

  [z := y*y]6;  

[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \emptyset \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset

Example 17.4 (Live Variables; cf. Example 15.4)

Program:

```
[x := 2]1; [y := 4]2;  

[x := 1]3;  

if [y > 0]4 then  

    [z := x]5  

else  

    [z := y*y]6;  

[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \emptyset \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset

Example 17.4 (Live Variables; cf. Example 15.4)

Program:

```
[x := 2]1; [y := 4]2;  

[x := 1]3;  

if [y > 0]4 then  

  [z := x]5  

else  

  [z := y*y]6;  

[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \emptyset \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset

Example 17.4 (Live Variables; cf. Example 15.4)

Program:

```
[x := 2]1; [y := 4]2;  

[x := 1]3;  

if [y > 0]4 then  

  [z := x]5  

else  

  [z := y*y]6;  

[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \emptyset \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset

Example 17.4 (Live Variables; cf. Example 15.4)

Program:

```
[x := 2]1; [y := 4]2;  

[x := 1]3;  

if [y > 0]4 then  

    [z := x]5  

else  

    [z := y*y]6;  

[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \emptyset \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset

Example 17.4 (Live Variables; cf. Example 15.4)

Program:

```
[x := 2]1; [y := 4]2;  

[x := 1]3;  

if [y > 0]4 then  

  [z := x]5  

else  

  [z := y*y]6;  

[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \emptyset \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	\emptyset