
Semantics and Verification of Software

Lecture 18: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/


Outline

1 Repetition: Solving Dataflow Equation Systems

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

Semantics and Verification of Software Summer semester 2007 2



Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ) consists of

a finite set of (program) labels Lab (here: Labc),

a set of extremal labels E ⊆ Lab (here: {init(c)} or final(c)),

a flow relation F ⊆ Lab × Lab (here: flow(c) or flowR(c)),

a complete lattice (D,⊑) that satisfies ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ Lab} of type
ϕl : D → D.

Semantics and Verification of Software Summer semester 2007 3



The Equation System

Definition (Dataflow equation system)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. S defines the
following equation system over the set of variables {AIl | l ∈ Lab}:

AIl =

{
ι if l ∈ E
⊔
{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

Semantics and Verification of Software Summer semester 2007 4



The Functional and Its Fixpoint

Definition (Dataflow functional)

The equation system of a dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)
induces a functional

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′

ln
)

where Lab = {l1, . . . , ln} and

d′li :=

{
ι if l ∈ E
⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise

Corollary

The fixpoint of ΦS is effectively computable by iteration:

fix(ΦS) =
⊔

{Φi
S(⊥Dn) | i ∈ N}

where ⊥Dn = (⊥D, . . . ,⊥D
︸ ︷︷ ︸

)
Semantics and Verification of Software Summer semester 2007 5



Outline

1 Repetition: Solving Dataflow Equation Systems

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

Semantics and Verification of Software Summer semester 2007 6



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 18.1

1 Available Expressions: see Exercise 9.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = ∅

=⇒ LV3 = ∅

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = {x} or {x, y}, LV3 = LV4 = ∅

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer semester 2007 7



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 18.1

1 Available Expressions: see Exercise 9.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = ∅

=⇒ LV3 = ∅

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = {x} or {x, y}, LV3 = LV4 = ∅

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer semester 2007 7



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 18.1

1 Available Expressions: see Exercise 9.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = ∅

=⇒ LV3 = ∅

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = {x} or {x, y}, LV3 = LV4 = ∅

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer semester 2007 7



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 18.1

1 Available Expressions: see Exercise 9.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = ∅

=⇒ LV3 = ∅

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = {x} or {x, y}, LV3 = LV4 = ∅

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer semester 2007 7



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 18.1

1 Available Expressions: see Exercise 9.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = ∅

=⇒ LV3 = ∅

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = {x} or {x, y}, LV3 = LV4 = ∅

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer semester 2007 7



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 18.1

1 Available Expressions: see Exercise 9.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = ∅

=⇒ LV3 = ∅

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = {x} or {x, y}, LV3 = LV4 = ∅

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer semester 2007 7



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 18.1

1 Available Expressions: see Exercise 9.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = ∅

=⇒ LV3 = ∅

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = {x} or {x, y}, LV3 = LV4 = ∅

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer semester 2007 7



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 18.1

1 Available Expressions: see Exercise 9.2

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = ∅

=⇒ LV3 = ∅

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = {x} or {x, y}, LV3 = LV4 = ∅

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer semester 2007 7



Outline

1 Repetition: Solving Dataflow Equation Systems

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

Semantics and Verification of Software Summer semester 2007 8



A Worklist Algorithm I

Observation: fixpoint iteration computes every AIl in every step
=⇒ redundant if AIl′ at no F–predecessor l′ changed
=⇒ optimization by worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)

Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}

Procedure: W := ε; for (l, l′) ∈ F do W := (l, l′) · W ; % Initialize W

for l ∈ Lab do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D;

while W 6= ε do

(l, l′) := head(W );W := tail(W );
if ϕl(AIl) 6⊑ AIl′ then % Fixpoint not yet reached

AIl′ := AIl′ ⊔ ϕl(AIl);
for (l′, l′′) ∈ F do W := (l′, l′′) · W ;

Output: {AIl | l ∈ Lab}
Semantics and Verification of Software Summer semester 2007 9



A Worklist Algorithm I

Observation: fixpoint iteration computes every AIl in every step
=⇒ redundant if AIl′ at no F–predecessor l′ changed
=⇒ optimization by worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)

Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}

Procedure: W := ε; for (l, l′) ∈ F do W := (l, l′) · W ; % Initialize W

for l ∈ Lab do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D;

while W 6= ε do

(l, l′) := head(W );W := tail(W );
if ϕl(AIl) 6⊑ AIl′ then % Fixpoint not yet reached

AIl′ := AIl′ ⊔ ϕl(AIl);
for (l′, l′′) ∈ F do W := (l′, l′′) · W ;

Output: {AIl | l ∈ Lab}

Semantics and Verification of Software Summer semester 2007 9



A Worklist Algorithm I

Observation: fixpoint iteration computes every AIl in every step
=⇒ redundant if AIl′ at no F–predecessor l′ changed
=⇒ optimization by worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)

Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}

Procedure: W := ε; for (l, l′) ∈ F do W := (l, l′) · W ; % Initialize W

for l ∈ Lab do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D;

while W 6= ε do

(l, l′) := head(W );W := tail(W );
if ϕl(AIl) 6⊑ AIl′ then % Fixpoint not yet reached

AIl′ := AIl′ ⊔ ϕl(AIl);
for (l′, l′′) ∈ F do W := (l′, l′′) · W ;

Output: {AIl | l ∈ Lab}

Semantics and Verification of Software Summer semester 2007 9



A Worklist Algorithm I

Observation: fixpoint iteration computes every AIl in every step
=⇒ redundant if AIl′ at no F–predecessor l′ changed
=⇒ optimization by worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)

Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}

Procedure: W := ε; for (l, l′) ∈ F do W := (l, l′) · W ; % Initialize W

for l ∈ Lab do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D;

while W 6= ε do

(l, l′) := head(W );W := tail(W );
if ϕl(AIl) 6⊑ AIl′ then % Fixpoint not yet reached

AIl′ := AIl′ ⊔ ϕl(AIl);
for (l′, l′′) ∈ F do W := (l′, l′′) · W ;

Output: {AIl | l ∈ Lab}

Semantics and Verification of Software Summer semester 2007 9



A Worklist Algorithm I

Observation: fixpoint iteration computes every AIl in every step
=⇒ redundant if AIl′ at no F–predecessor l′ changed
=⇒ optimization by worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)

Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}

Procedure: W := ε; for (l, l′) ∈ F do W := (l, l′) · W ; % Initialize W

for l ∈ Lab do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D;

while W 6= ε do

(l, l′) := head(W );W := tail(W );
if ϕl(AIl) 6⊑ AIl′ then % Fixpoint not yet reached

AIl′ := AIl′ ⊔ ϕl(AIl);
for (l′, l′′) ∈ F do W := (l′, l′′) · W ;

Output: {AIl | l ∈ Lab}

Semantics and Verification of Software Summer semester 2007 9



A Worklist Algorithm I

Observation: fixpoint iteration computes every AIl in every step
=⇒ redundant if AIl′ at no F–predecessor l′ changed
=⇒ optimization by worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)

Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}

Procedure: W := ε; for (l, l′) ∈ F do W := (l, l′) · W ; % Initialize W

for l ∈ Lab do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D;

while W 6= ε do

(l, l′) := head(W );W := tail(W );
if ϕl(AIl) 6⊑ AIl′ then % Fixpoint not yet reached

AIl′ := AIl′ ⊔ ϕl(AIl);
for (l′, l′′) ∈ F do W := (l′, l′′) · W ;

Output: {AIl | l ∈ Lab}

Semantics and Verification of Software Summer semester 2007 9



A Worklist Algorithm I

Observation: fixpoint iteration computes every AIl in every step
=⇒ redundant if AIl′ at no F–predecessor l′ changed
=⇒ optimization by worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)

Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}

Procedure: W := ε; for (l, l′) ∈ F do W := (l, l′) · W ; % Initialize W

for l ∈ Lab do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D;

while W 6= ε do

(l, l′) := head(W );W := tail(W );
if ϕl(AIl) 6⊑ AIl′ then % Fixpoint not yet reached

AIl′ := AIl′ ⊔ ϕl(AIl);
for (l′, l′′) ∈ F do W := (l′, l′′) · W ;

Output: {AIl | l ∈ Lab}

Semantics and Verification of Software Summer semester 2007 9



A Worklist Algorithm I

Observation: fixpoint iteration computes every AIl in every step
=⇒ redundant if AIl′ at no F–predecessor l′ changed
=⇒ optimization by worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)

Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}

Procedure: W := ε; for (l, l′) ∈ F do W := (l, l′) · W ; % Initialize W

for l ∈ Lab do % Initialize AI
if l ∈ E then AIl := ι else AIl := ⊥D;

while W 6= ε do

(l, l′) := head(W );W := tail(W );
if ϕl(AIl) 6⊑ AIl′ then % Fixpoint not yet reached

AIl′ := AIl′ ⊔ ϕl(AIl);
for (l′, l′′) ∈ F do W := (l′, l′′) · W ;

Output: {AIl | l ∈ Lab}

Semantics and Verification of Software Summer semester 2007 9



A Worklist Algorithm II

Example 18.3 (Worklist algorithm)

Available Expression analysis for c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

(cf. Examples 15.1 and 17.3)

Transfer functions: ϕ1(A) = A ∪ {a+b}
ϕ2(A) = A ∪ {a*b}
ϕ3(A) = A ∪ {a+b}
ϕ4(A) = A \ {a+b, a*b, a+1}
ϕ5(A) = A ∪ {a+b}

Computation protocol: on the board

Semantics and Verification of Software Summer semester 2007 10



A Worklist Algorithm III

Properties of the algorithm:

Theorem 18.4 (Correctnes of worklist algorithm)

Given a dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ), Algorithm 18.2

always terminates and computes fix(ΦS).

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

Semantics and Verification of Software Summer semester 2007 11



A Worklist Algorithm III

Properties of the algorithm:

Theorem 18.4 (Correctnes of worklist algorithm)

Given a dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ), Algorithm 18.2

always terminates and computes fix(ΦS).

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

Semantics and Verification of Software Summer semester 2007 11



Outline

1 Repetition: Solving Dataflow Equation Systems

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

Semantics and Verification of Software Summer semester 2007 12



The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Definition 18.5 (Paths)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer semester 2007 13



The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Definition 18.5 (Paths)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer semester 2007 13



The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Definition 18.5 (Paths)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer semester 2007 13



The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Definition 18.5 (Paths)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer semester 2007 13



The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Definition 18.5 (Paths)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer semester 2007 13



The MOP Solution II

Definition 18.6 (MOP solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ Lab,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Semantics and Verification of Software Summer semester 2007 14



The MOP Solution II

Definition 18.6 (MOP solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ Lab,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Semantics and Verification of Software Summer semester 2007 14



The MOP Solution II

Definition 18.6 (MOP solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ Lab,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Semantics and Verification of Software Summer semester 2007 14



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7(∅))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7(∅)))))
= ϕ2(ϕ3(ϕ4(ϕ5({z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({z}))))
= ϕ2(ϕ3(ϕ4({x}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Summer semester 2007 15



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7(∅))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7(∅)))))
= ϕ2(ϕ3(ϕ4(ϕ5({z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({z}))))
= ϕ2(ϕ3(ϕ4({x}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Summer semester 2007 15



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7(∅))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7(∅)))))
= ϕ2(ϕ3(ϕ4(ϕ5({z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({z}))))
= ϕ2(ϕ3(ϕ4({x}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Summer semester 2007 15



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7(∅))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7(∅)))))
= ϕ2(ϕ3(ϕ4(ϕ5({z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({z}))))
= ϕ2(ϕ3(ϕ4({x}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Summer semester 2007 15



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7(∅))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7(∅)))))
= ϕ2(ϕ3(ϕ4(ϕ5({z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({z}))))
= ϕ2(ϕ3(ϕ4({x}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Summer semester 2007 15



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7(∅))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7(∅)))))
= ϕ2(ϕ3(ϕ4(ϕ5({z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({z}))))
= ϕ2(ϕ3(ϕ4({x}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Summer semester 2007 15



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7(∅))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7(∅)))))
= ϕ2(ϕ3(ϕ4(ϕ5({z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({z}))))
= ϕ2(ϕ3(ϕ4({x}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Summer semester 2007 15



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7(∅))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7(∅)))))
= ϕ2(ϕ3(ϕ4(ϕ5({z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({z}))))
= ϕ2(ϕ3(ϕ4({x}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Summer semester 2007 15



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7(∅))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7(∅)))))
= ϕ2(ϕ3(ϕ4(ϕ5({z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({z}))))
= ϕ2(ϕ3(ϕ4({x}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Summer semester 2007 15



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7(∅))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7(∅)))))
= ϕ2(ϕ3(ϕ4(ϕ5({z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({z}))))
= ϕ2(ϕ3(ϕ4({x}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Summer semester 2007 15


	Repetition: Solving Dataflow Equation Systems
	Uniqueness of Solutions
	Efficient Fixpoint Computation
	The MOP Solution

