Semantics and Verification of Software

Lecture 18: Dataflow Analysis

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Solving Dataflow Equation Systems

Rm Semantics and Verification of Software Summer semester 2007



Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (Lab, E, F,(D,C),t, ) consists of

a finite set of (program) labels Lab (here: Lab.),

a set of extremal labels E C Lab (here: {init(c)} or final(c)),
a flow relation F C Lab x Lab (here: flow(c) or flow®(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

o an extremal value ¢ € D (for the extremal labels), and

©

¢ ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € Lab} of type
wr:D— D.

m Semantics and Verification of Software Summer semester 2007



The Equation System

Definition (Dataflow equation system)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system. S defines the
following equation system over the set of variables {Al; |l € Lab}:

AL {t ifleR
P\ er(Alr) | (1) € F} otherwise

m' Semantics and Verification of Software Summer semester 2007



The Functional and Its Fixpoint

Definition (Dataflow functional)

The equation system of a dataflow system S = (Lab, E, F,(D,C), ¢, )
induces a functional

Og: D" — D" (dyy,...,d,) — (d),-...d] )
where Lab = {ly,...,l,} and

ifle B

A R
;5= {U{@l'(dl’) | (I',1l;) € F} otherwise

Corollary

The fixpoint of ®g is effectively computable by iteration:
fix(Ps) = | [{®5(Lpn) | i€ N}

where Lpn = (Lp,..

Semantlcs and Verification of Software Summer semester 2007



© Uniqueness of Solutions

Rm S i ification of Software Summer semester 2007



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Rm Semantics and Verification of Software Summer semester 2007



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 18.1

@ Available Expressions: see Exercise 9.2

Semantics and Verification of Software Summer semester 2007



Uniqueness of Solutions

Example 18.1

@ Available Expressions: see Exercise 9.2
© Live Variables: consider

while [x>1]! do

[skip]?;
[x := x+1]3;
[y := o*

Semantics and Verification of Software Summer semester 2007



Uniqueness of Solutions

Example 18.1

@ Available Expressions: see Exercise 9.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVo = LV; U {x}

[x := x+1]*; LV3 = V4 \ {y}

[y = o LVa =10

Semantics and Verification of Software Summer semester 2007



Uniqueness of Solutions

Example 18.1

@ Available Expressions: see Exercise 9.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVo = LV; U {x}
[x := x+1]3; LV3 = V4 \ {y}
[y oS 0]4 |_V4 = @
— |_V3 = @

Semantics and Verification of Software Summer semester 2007



Uniqueness of Solutions

Example 18.1

@ Available Expressions: see Exercise 9.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVo = LV; U {x}
[x := x+1]3; LV3 = V4 \ {y}
y == of* V4 =0
— |_V3 = @
— LV; =LVLoU {X}
=LV U {X}

Semantics and Verification of Software Summer semester 2007



Uniqueness of Solutions

Example 18.1

@ Available Expressions: see Exercise 9.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVo = LV; U {x}
[x := x+1]3; LV3 = V4 \ {y}
y == of* V4 =0
— |_V3 = @
— LV; =LVLoU {X}
=LV U {X}

— Solutions: LV = LV, = {x} or {x,y}, LV3 =LV4 =1

Semantics and Verification of Software Summer semester 2007



Uniqueness of Solutions

Example 18.1

@ Available Expressions: see Exercise 9.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVo = LV; U {x}
[x := x+1]3; LV3 = V4 \ {y}
y == of* V4 =0
— |_V3 = @
— LV; =LVLoU {X}
=LV U {X}

— Solutions: LV = LV, = {x} or {x,y}, LV3 =LV4 =1

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer semester 2007



© Efficient Fixpoint Computation

Rm Semantics and Verification of Software Summer semester 2007



A Worklist Algorithm I

Observation: fixpoint iteration computes every Al; in every step

Rm Semantics and Verification of Software Summer semester 2007



A Worklist Algorithm I

Observation: fixpoint iteration computes every Al; in every step
— redundant if Aly at no F—predecessor I’ changed

Rm Semantics and Verification of Software Summer semester 2007



A Worklist Algorithm I

Observation: fixpoint iteration computes every Al; in every step
— redundant if Aly at no F—predecessor I’ changed
—> optimization by worklist

Rm Semantics and Verification of Software Summer semester 2007



A Worklist Algorithm I

Observation: fixpoint iteration computes every Al; in every step
— redundant if Aly at no F—predecessor I’ changed
—> optimization by worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F,(D,C), ¢, )

m' Semantics and Verification of Software Summer semester 2007



A Worklist Algorithm I

worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F,(D,C), ¢, )
Variables: W € (Lab x Lab)*, {Al; € D |l € Lab}

m' Semantics and Verification of Software Summer semester 2007



A Worklist Algorithm I

worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F,(D,C), ¢, )
Variables: W € (Lab x Lab)*, {Al; € D |l € Lab}
Procedure: W :=¢;for (I,I') € F do W := (I,I') - W; % Initialize W
for [ € Lab do % Initialize Al
if [ € E then Al; := 1 else Al; .= 1 p;

m' Semantics and Verification of Software Summer semester 2007



A Worklist Algorithm I

worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F,(D,C), ¢, )
Variables: W € (Lab x Lab)*, {Al; € D |l € Lab}
Procedure: W :=¢;for (I,I') € F do W := (I,I') - W; % Initialize W
for [ € Lab do % Initialize Al
if [ € E then Al; := 1 else Al; .= 1 p;
while W # ¢ do
(1,1") := head(W); W := tail(W);
if ¢;(Al;) Z Aly then % Fizpoint not yet reached
Aly = Aly U@y (Aly);
for (I',1") € F do W := (I',1") - W;

m' Semantics and Verification of Software Summer semester 2007



A Worklist Algorithm I

worklist

Algorithm 18.2 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F,(D,C), ¢, )
Variables: W € (Lab x Lab)*, {Al; € D |l € Lab}
Procedure: W :=¢;for (I,I') € F do W := (I,I') - W; % Initialize W
for [ € Lab do % Initialize Al
if [ € E then Al; := 1 else Al; .= 1 p;
while W # ¢ do
(1,1") := head(W); W := tail(W);
if ¢;(Al;) Z Aly then % Fizpoint not yet reached
Aly = Aly U@y (Aly);
for (I',1") € F do W := (I',1") - W;
Output: {Al; |l € Lab}

m' Semantics and Verification of Software Summer semester 2007




A Worklist Algorithm II

Example 18.3 (Worklist algorithm)

Available Expression analysis for ¢ = [x := a+b]!;
[y := axb]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

Transfer functions: ¢1(A4) = AU {a+b}
p2(A) = AU {axb}
w3(A) = AU {a+b}
Pa(A) = A\ {ab,axb, a+1}
ws5(A) = AU {a+b}

Computation protocol: on the board

m' Semantics and Verification of Software Summer semester 2007



A Worklist Algorithm III

Properties of the algorithm:

Theorem 18.4 (Correctnes of worklist algorithm)

Given a dataflow system S = (Lab, E, F,(D,C),¢, ), Algorithm 18.2
always terminates and computes fix(®g).

Rm Semantics and Verification of Software Summer semester 2007




A Worklist Algorithm III

Properties of the algorithm:

Theorem 18.4 (Correctnes of worklist algorithm)

Given a dataflow system S = (Lab, E, F,(D,C),¢, ), Algorithm 18.2
always terminates and computes fix(®g).

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

m' Semantics and Verification of Software Summer semester 2007




@ The MOP Solution

Rm Semantics and Verification of Software Summer semester 2007



The MOP Solution I

@ Other solution method for dataflow systems

Rm Semantics and Verification of Software Summer semester 2007



The MOP Solution I

@ Other solution method for dataflow systems
o MOP = Meet Over all Paths

Rm Semantics and Verification of Software Summer semester 2007



The MOP Solution I

@ Other solution method for dataflow systems

@ MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Rm Semantics and Verification of Software Summer semester 2007



The MOP Solution I

@ Other solution method for dataflow systems
@ MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Definition 18.5 (Paths)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system. For every
[ € Lab, the set of paths up to [ is given by

Path(l) == {[l1, ..., ls_1] | k> 1,1 € E,
(liyliy1) € F for every 1 <i < k, I, = l}.

m Semantics and Verification of Software Summer semester 2007



The MOP Solution I

@ Other solution method for dataflow systems

@ MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Definition 18.5 (Paths)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system. For every
[ € Lab, the set of paths up to [ is given by

Path(l) == {[l1, ..., ls_1] | k> 1,1 € E,
(liyliy1) € F for every 1 <i < k, I, = l}.

For a path p = [l1,...,{k—1] € Path(l), we define the transfer function
¢p: D — D by
Ppi=i,_,0...0p, oidp

(so that oy = idp).

m Semantics and Verification of Software Summer semester 2007



The MOP Solution I1

Definition 18.6 (MOP solution)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system where
Lab ={l1,...,l,}. The MOP solution for S is determined by

mop(.S) := (mop(l1),...,mop(l,)) € D"
where, for every [ € Lab,

mop(l) i=|_Jen(t) | p € Path(D)}.

m Semantics and Verification of Software Summer semester 2007



The MOP Solution I1

Definition 18.6 (MOP solution)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system where
Lab ={l1,...,l,}. The MOP solution for S is determined by

mop(.S) := (mop(l1),...,mop(l,)) € D"
where, for every [ € Lab,

mop(l) i=|_Jen(t) | p € Path(D)}.

Remark:
o Path(l) is generally infinite

— not clear how to compute mop(l)

m Semantics and Verification of Software Summer semester 2007



The MOP Solution I1

Definition 18.6 (MOP solution)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system where
Lab ={l1,...,l,}. The MOP solution for S is determined by

mop(.S) := (mop(l1),...,mop(l,)) € D"
where, for every [ € Lab,

mop(l) i=|_Jen(t) | p € Path(D)}.

Remark:
o Path(l) is generally infinite
— not clear how to compute mop(l)
@ In fact: MOP solution generally undecidable (later)

m Semantics and Verification of Software Summer semester 2007



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

m Semantics and Verification of Software Summer semester 2007



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

else
[z := y*y]%;
[x := 2]’
= Path(1) = {[7,5,4,3,2],

[7,6,4,3,2]}

m Semantics and Verification of Software Summer semester 2007



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c=[x := 2]} = mop(1l) = ¢[7,54,32(t) U ¥[7,6.4,32()
[y = 4]2,
[x := 1]%;
if [y > 0]* then
[z := x°
else
[z := yxy]%
[x := 2]’
— Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}

m Semantics and Verification of Software Summer semester 2007



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c=[x := 2]} = mop(1l) = 754,32 (t) U ¥p7,6.4,32(¢)
[y := 4]% = p2(p3(pa(ps(p7(0))))) U
[x := 1]%; p2(p3(pa(pe(v7(0)))))
if [y > 0]* then
[z := x]°
else
[z = y*y]°;
[x := 2]’
— Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}

m Semantics and Verification of Software Summer semester 2007



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c=[x := 2]} = mop(1) = ¢75.432() U pl7,6432(¢)
[y := 4] = ©2(3(pa(es(p7(0))))) U
[x := 1]*; ©2(03(a(ws(07(0)))))
if [y > 0]* then = soz( 3(pa(es({z})))) U
[z := x|° ©2(03(pales({2}))))
else
[z := yxy]°
[x := 2]’
— Path(1) = {[7,5,4,3,2],
[776’47 3?2]}

m Semantics and Verification of Software Summer semester 2007



The MOP Solution III

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

c=[x := 2]} = mop(1l) = 754,32 (t) U ¥p7,6.4,32(¢)
[y := 4] = pa(w3(palps(p7(0))))) U
[x := 1]3; P2(03(pa(ps(7(0)))))
if [y > 0]* then = 902(903(904(%({2})))) U

[z := x]° ©2(03(pa(ps({2}))))

else = 902(S03(904({X}))) N
[ [z =]7y*y]6 e2(p3(pa({y})))

— Path(1) = {[7,5,4,3,2],

[77 6? 47 37 2]}

m Semantics and Verification of Software



The MOP Solution III

7.4)
c=[x := 2]} == mOP(l) = 80[75432](L)|—'80[76432](L)
[y := 4J%; = pa(w3(palps(p7(0))))) U
[x := 1]3; P2(03(pa(ps(7(0)))))
if [y > 0]* then = 902(903(904(%({2})))) U
[z := x]° ©2(03(pa(ps({2}))))
else = 902(S03(904({X}))) N
[z := y*y]° ©2(p3(pa({y})))
[x := 2] = @z(@s({x,y})) Upa(e3({y}))
— Path(1) = {[7,5,4,3,2),
[7,6,4,3,2]}

m Semantics and Verification of Software



The MOP Solution III

7.4)
c=[x := 2]} — mOP(l) = 90[75432](L) |—|90[76432](L)
[y := 4] = 2(p3(pa(es(p7(0))))) U
[x := 1]*; ©2(23(pa(we(7(0)))))
if [y > 0]* then = 902(903(904(%({2})))) L
[z := x]° ©2(03(pales({2}))))
else = 902(903(904({X}))) U
[z := y*y]° o2(03(pa({y})))
[x := 2] = @z(@a({x v1) Uea(es({y}))
— Path(1) = {[7,5,4,3,2), = #2(iy) U e2(y})
[7,6,4,3,2]}




The MOP Solution III

7.4)
c=[x := 2]} — mOP(l)—90[75432](L)'—'90[76432](L)
[y := 4J%; = pa(w3(palps(p7(0))))) U
[x := 1]3; P2(03(pa(ps(7(0)))))
if [y > 0]* then = 902(903(904(%({2})))) N
[z := x]° ©2(03(pa(ps({2}))))
else = 902(S03(904({X}))) .
[z := y*y]°; ©2(p3(pa({y})))
[x := 2] = s02(903({X v1H) U e2(e3({y}))
— Path(1) = {[7,5,4,3,2], _ 53({@ y}) Hea(iy))
[7,6,4,3,2]} B




The MOP Solution III

7.4)
c=[x := 2]} — mOP(l)—90[75432](L)'—'90[76432](L)
[y := 4J%; = pa(w3(palps(p7(0))))) U
[x := 1]3; P2(03(pa(ps(7(0)))))
if [y > 0]* then = 902(903(904(%({2})))) U
[z := x]° ©2(03(pa(ps({2}))))
else = 902(S03(904({X}))) N
[z := y*y]°; ©2(p3(pa({y})))
[x := 2]’ = 302(903({X v}) Uea(es({y}))
— Path(1) = {[7,5,4,3,2], _ 53({@ y}) Hea(iy))
[776’47 3’2]} : @




	Repetition: Solving Dataflow Equation Systems
	Uniqueness of Solutions
	Efficient Fixpoint Computation
	The MOP Solution

