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Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (Lab, E, F,(D,C),t, ) consists of

a finite set of (program) labels Lab (here: Lab.),

a set of extremal labels E C Lab (here: {init(c)} or final(c)),
a flow relation F C Lab x Lab (here: flow(c) or flow®(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

o an extremal value ¢ € D (for the extremal labels), and

©

¢ ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € Lab} of type
wr:D— D.
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The Equation System

Definition (Dataflow equation system)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system. S defines the
following equation system over the set of variables {Al; |l € Lab}:

AL {t ifleR
P\ er(Alr) | (1) € F} otherwise
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The Functional and Its Fixpoint

Definition (Dataflow functional)

The equation system of a dataflow system S = (Lab, E, F,(D,C), ¢, )
induces a functional

Og: D" — D" (dyy,...,d,) — (d),-...d] )
where Lab = {ly,...,l,} and

ifle B

A R
;5= {U{@l'(dl’) | (I',1l;) € F} otherwise

Corollary

The fixpoint of ®g is effectively computable by iteration:
fix(Ps) = | [{®5(Lpn) | i€ N}

where Lpn = (Lp,..
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© Uniqueness of Solutions
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 18.1

@ Available Expressions: see Exercise 9.2

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVo = LV; U {x}
[x := x+1]3; LV3 = V4 \ {y}
y == of* V4 =0
— |_V3 = @
— LV; =LVLoU {X}
=LV U {X}

— Solutions: LV = LV, = {x} or {x,y}, LV3 =LV4 =1

Here: least solution {x} (maximal potential for optimization)
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© Efficient Fixpoint Computation
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A Worklist Algorithm I

Observation: fixpoint iteration computes every Al; in every step
— redundant if Aly at no F—predecessor I’ changed
—> optimization by worklist

Algorithm 18.2 (Worklist algorithm)

Input:
Variables:

Procedure:

Output:

dataflow system S = (Lab, E, F,(D,C), ¢, )
W € (Lab x Lab)*, {Al; € D |l € Lab}
W =g for (,I') € F do W := (I,I') - W; % Initialize W
for | € Lab do % Initialize Al
if [ € E then Al; := ¢ else Al; := 1 p;
while W # ¢ do
(1,1") := head(W); W := tail(W);
if p;(Al) Z Aly then % Fizpoint not yet reached
Aly = Aly U@y (Aly);
for (I',1") € F do W := (I',1") - W;
{Al, |l € Lab}
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A Worklist Algorithm II

Example 18.3 (Worklist algorithm)

Available Expression analysis for ¢ = [x := a+b]!;
[y := axb]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

Transfer functions: ¢1(A4) = AU {a+b}
p2(A) = AU {axb}
w3(A) = AU {a+b}
Pa(A) = A\ {ab,axb, a+1}
ws5(A) = AU {a+b}

Computation protocol: on the board
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A Worklist Algorithm III

Properties of the algorithm:

Theorem 18.4 (Correctnes of worklist algorithm)

Given a dataflow system S = (Lab, E, F,(D,C),¢, ), Algorithm 18.2
always terminates and computes fix(®g).

see [Nielson/Nielson/Hankin 2005, p. 75 ff]
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@ The MOP Solution
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The MOP Solution I

@ Other solution method for dataflow systems

@ MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Definition 18.5 (Paths)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system. For every
[ € Lab, the set of paths up to [ is given by

Path(l) == {[l1, ..., ls_1] | k> 1,1 € E,
(liyliy1) € F for every 1 <i < k, I, = l}.

For a path p = [l1,...,{k—1] € Path(l), we define the transfer function
¢p: D — D by
Ppi=i,_,0...0p, oidp

(so that oy = idp).
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The MOP Solution I1

Definition 18.6 (MOP solution)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system where
Lab ={l1,...,l,}. The MOP solution for S is determined by

mop(.S) := (mop(l1),...,mop(l,)) € D"
where, for every [ € Lab,

mop(l) i=|_Jen(t) | p € Path(D)}.

Remark:
o Path(l) is generally infinite
— not clear how to compute mop(l)
@ In fact: MOP solution generally undecidable (later)
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The MOP Solution III

7.4)
c=[x := 2]} — mOP(l)—90[75432](L)'—'90[76432](L)
[y := 4J%; = pa(w3(palps(p7(0))))) U
[x := 1]3; P2(03(pa(ps(7(0)))))
if [y > 0]* then = 902(903(904(%({2})))) U
[z := x]° ©2(03(pa(ps({2}))))
else = 902(S03(904({X}))) N
[z := y*y]°; ©2(p3(pa({y})))
[x := 2]’ = 302(903({X v}) Uea(es({y}))
— Path(1) = {[7,5,4,3,2], _ 53({@ y}) Hea(iy))
[776’47 3’2]} : @
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