

Semantics and Verification of Software

Lecture 18: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw/>

Summer semester 2007

- 1 Repetition: Solving Dataflow Equation Systems
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- 4 The MOP Solution

Definition (Dataflow system)

A **dataflow system** $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) **labels** Lab (here: Lab_c),
- a set of **extremal labels** $E \subseteq Lab$ (here: $\{\text{init}(c)\}$ or $\text{final}(c)$),
- a **flow relation** $F \subseteq Lab \times Lab$ (here: $\text{flow}(c)$ or $\text{flow}^R(c)$),
- a **complete lattice** (D, \sqsubseteq) that satisfies ACC
(with LUB operator \sqcup and least element \perp),
- an **extremal value** $\iota \in D$ (for the extremal labels), and
- a collection of monotonic **transfer functions** $\{\varphi_l \mid l \in Lab\}$ of type $\varphi_l : D \rightarrow D$.

Definition (Dataflow equation system)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. S defines the following **equation system** over the set of variables $\{\text{Al}_l \mid l \in Lab\}$:

$$\text{Al}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\text{Al}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

The Functional and Its Fixpoint

Definition (Dataflow functional)

The equation system of a dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ induces a **functional**

$$\Phi_S : D^n \rightarrow D^n : (d_{l_1}, \dots, d_{l_n}) \mapsto (d'_{l_1}, \dots, d'_{l_n})$$

where $Lab = \{l_1, \dots, l_n\}$ and

$$d'_{l_i} := \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l_i) \in F\} & \text{otherwise} \end{cases}$$

Corollary

The fixpoint of Φ_S is effectively computable by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = (\perp_D, \dots, \perp_D)$

- 1 Repetition: Solving Dataflow Equation Systems
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- 4 The MOP Solution

Uniqueness of Solutions

Just as in the denotational semantics of `while` loops, solutions of dataflow equation systems are not unique.

Example 18.1

- ➊ Available Expressions: see Exercise 9.2
- ➋ Live Variables: consider

$$\begin{array}{ll} \text{while } [x > 1]^1 \text{ do} & \implies LV_1 = LV_2 \cup (LV_3 \cup \{x\}) \\ \quad [\text{skip}]^2; & LV_2 = LV_1 \cup \{x\} \\ \quad [x := x+1]^3; & LV_3 = LV_4 \setminus \{y\} \\ \quad [y := 0]^4 & LV_4 = \emptyset \\ & \implies LV_3 = \emptyset \\ & \implies LV_1 = LV_2 \cup \{x\} \\ & \quad = LV_1 \cup \{x\} \end{array}$$

\implies **Solutions**: $LV_1 = LV_2 = \{x\}$ or $\{x, y\}$, $LV_3 = LV_4 = \emptyset$

Here: **least** solution $\{x\}$ (maximal potential for optimization)

- 1 Repetition: Solving Dataflow Equation Systems
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- 4 The MOP Solution

A Worklist Algorithm I

Observation: fixpoint iteration computes every Al_l in every step
 \implies redundant if $\text{Al}_{l'}$ at no F -predecessor l' changed
 \implies optimization by **worklist**

Algorithm 18.2 (Worklist algorithm)

Input: *dataflow system* $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (Lab \times Lab)^*$, $\{\text{Al}_l \in D \mid l \in Lab\}$

Procedure: $W := \varepsilon$; **for** $(l, l') \in F$ **do** $W := (l, l') \cdot W$; % Initialize W
 for $l \in Lab$ **do** % Initialize Al
 if $l \in E$ **then** $\text{Al}_l := \iota$ **else** $\text{Al}_l := \perp_D$;
 while $W \neq \varepsilon$ **do**
 $(l, l') := \text{head}(W)$; $W := \text{tail}(W)$;
 if $\varphi_l(\text{Al}_l) \not\subseteq \text{Al}_{l'}$ **then** % Fixpoint not yet reached
 $\text{Al}_{l'} := \text{Al}_{l'} \sqcup \varphi_l(\text{Al}_l)$;
 for $(l', l'') \in F$ **do** $W := (l', l'') \cdot W$;

Output: $\{\text{Al}_l \mid l \in Lab\}$

A Worklist Algorithm II

Example 18.3 (Worklist algorithm)

Available Expression analysis for $c = [x := a+b]^1;$
 $[y := a*b]^2;$
 $\text{while } [y > a+b]^3 \text{ do}$
 $[a := a+1]^4;$
 $[x := a+b]^5$

(cf. Examples 15.1 and 17.3)

Transfer functions:

- $\varphi_1(A) = A \cup \{a+b\}$
- $\varphi_2(A) = A \cup \{a*b\}$
- $\varphi_3(A) = A \cup \{a+b\}$
- $\varphi_4(A) = A \setminus \{a+b, a*b, a+1\}$
- $\varphi_5(A) = A \cup \{a+b\}$

Computation protocol: on the board

Properties of the algorithm:

Theorem 18.4 (Correctnes of worklist algorithm)

Given a dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$, Algorithm 18.2 always terminates and computes $\text{fix}(\Phi_S)$.

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

□

- 1 Repetition: Solving Dataflow Equation Systems
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- 4 The MOP Solution

- Other **solution method** for dataflow systems
- MOP = **Meet Over all Paths**
- Analysis information for block B^l = **least upper bound over all paths leading to l**

Definition 18.5 (Paths)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $l \in Lab$, the set of **paths up to l** is given by

$$\begin{aligned} Path(l) := \{[l_1, \dots, l_{k-1}] \mid k \geq 1, l_1 \in E, \\ (l_i, l_{i+1}) \in F \text{ for every } 1 \leq i \leq k, l_k = l\}. \end{aligned}$$

For a path $p = [l_1, \dots, l_{k-1}] \in Path(l)$, we define the **transfer function** $\varphi_p : D \rightarrow D$ by

$$\varphi_p := \varphi_{l_{k-1}} \circ \dots \circ \varphi_{l_1} \circ \text{id}_D$$

(so that $\varphi_{[]} = \text{id}_D$).

Definition 18.6 (MOP solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $Lab = \{l_1, \dots, l_n\}$. The **MOP solution** for S is determined by

$$\mathsf{mop}(S) := (\mathsf{mop}(l_1), \dots, \mathsf{mop}(l_n)) \in D^n$$

where, for every $l \in Lab$,

$$\mathsf{mop}(l) := \bigsqcup \{\varphi_p(\iota) \mid p \in Path(l)\}.$$

Remark:

- $Path(l)$ is generally infinite

⇒ not clear how to compute $\mathsf{mop}(l)$

- In fact: MOP solution generally undecidable (later)

Example 18.7 (Live Variables; cf. Examples 15.4 and 17.4)

$$\begin{aligned} c = & [x := 2]^1; & \implies \text{mop}(1) = \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\ & [y := 4]^2; & = \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\emptyset)))))) \sqcup \\ & [x := 1]^3; & \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\emptyset)))))) \\ & \text{if } [y > 0]^4 \text{ then} & = \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{z\})))) \sqcup \\ & \quad [z := x]^5 & \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{z\})))) \\ & \text{else} & = \varphi_2(\varphi_3(\varphi_4(\{x\}))) \sqcup \\ & \quad [z := y*y]^6; & \varphi_2(\varphi_3(\varphi_4(\{y\}))) \\ & [x := z]^7 & = \varphi_2(\varphi_3(\{x, y\})) \sqcup \varphi_2(\varphi_3(\{y\})) \\ \implies \text{Path}(1) = & \{[7, 5, 4, 3, 2], & = \varphi_2(\{y\}) \sqcup \varphi_2(\{y\}) \\ & [7, 6, 4, 3, 2]\} & = \emptyset \sqcup \emptyset \\ & & = \emptyset \end{aligned}$$