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The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl :=
least upper bound over all paths leading to l

Definition (Paths)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).
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The MOP Solution II

Definition (MOP solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ Lab,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 19.1 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations: [w := x+1]5

[x := 3]7
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Formalizing Constant Propagation Analysis I

The dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ) is given by

set of labels Lab := Labc,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,⊑) where

D := {δ | δ : Var c → Z ∪ {⊥,⊤}}
δ(x) = z ∈ Z: x has constant value z

δ(x) = ⊥: x undefined
δ(x) = ⊤: x overdefined (i.e., different possible values)

⊑⊆ D × D defined by pointwise extension of ⊥ ⊑ z ⊑ ⊤
(for every z ∈ Z)

Example 19.2

Var c = {w, x, y, z},
δ1 = ( ⊥

︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

), δ2 = ( 3
︸︷︷︸

w

, 1
︸︷︷︸

x

, 4
︸︷︷︸

y

, ⊤
︸︷︷︸

z

)

=⇒ δ1 ⊔ δ2 = ( 3
︸︷︷︸

w

, 1
︸︷︷︸

x

, ⊤
︸︷︷︸

y

, ⊤
︸︷︷︸

z

)
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Formalizing Constant Propagation Analysis II

Dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ) (continued):

extremal value ι := δ⊤ ∈ D where δ⊤(x) := ⊤ for every x ∈ Var c,

transfer functions {ϕl | l ∈ Lab} defined by

ϕl(δ) :=

{
δ if Bl = skip or Bl ∈ BExp

δ[x 7→ AJaKδ] if Bl = (x := a)

where

AJxKδ := δ(x)
AJzKδ := z

AJa1 op a2Kδ :=







z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
⊤ otherwise

if z1 := AJa1Kδ and z2 := AJa2Kδ
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Formalizing Constant Propagation Analysis III

Example 19.3

If δ = ( ⊥
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

), then

ϕl(δ) =







( 0
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := 0)

( 3
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := y+1)

( ⊥
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := w+x)

( ⊤
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := z+2)
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Formalizing Constant Propagation Analysis III

Example 19.4

Constant Propagation Analysis for

c := [x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

ϕ1((a, b, c, d)) = (a, 1, c, d)
ϕ2((a, b, c, d)) = (a, b, 1, d)
ϕ3((a, b, c, d)) = (a, b, c, 1)
ϕ4((a, b, c, d)) = (a, b, c, d)
ϕ5((a, b, c, d)) = (b + c, b, c, d)
ϕ6((a, b, c, d)) = (a, b, c, d)
ϕ7((a, b, c, d)) = (a, c + 2, c, d)

1 Fixpoint solution (on the board)

2 MOP solution (on the board)
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Undecidability of the MOP Solution

Theorem 19.5 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let Γ be some alphabet, n ∈ N, and u1, . . . , un, v1, . . . , vn ∈ Γ+.
Does there exist i1, . . . , im ∈ {1, . . . , n} with m ≥ 1 and i1 = 1 such
that ui1ui2 . . . uim = vi1vi2 . . . vim?

(on the board)
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