
Semantics and Verification of Software

Lecture 19: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Outline

1 Repetition: The MOP Solution

2 Another Analysis: Constant Propagation

3 Undecidability of the MOP Solution

4 MOP vs. Fixpoint Solution

Semantics and Verification of Software Summer semester 2007 2

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl :=
least upper bound over all paths leading to l

Definition (Paths)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer semester 2007 3

The MOP Solution II

Definition (MOP solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ Lab,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Semantics and Verification of Software Summer semester 2007 4

Outline

1 Repetition: The MOP Solution

2 Another Analysis: Constant Propagation

3 Undecidability of the MOP Solution

4 MOP vs. Fixpoint Solution

Semantics and Verification of Software Summer semester 2007 5

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 19.1 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations: [w := x+1]5

[x := 3]7

Semantics and Verification of Software Summer semester 2007 6

Formalizing Constant Propagation Analysis I

The dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ) is given by

set of labels Lab := Labc,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,⊑) where

D := {δ | δ : Var c → Z ∪ {⊥,⊤}}
δ(x) = z ∈ Z: x has constant value z

δ(x) = ⊥: x undefined
δ(x) = ⊤: x overdefined (i.e., different possible values)

⊑⊆ D × D defined by pointwise extension of ⊥ ⊑ z ⊑ ⊤
(for every z ∈ Z)

Example 19.2

Var c = {w, x, y, z},
δ1 = (⊥

︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

), δ2 = (3
︸︷︷︸

w

, 1
︸︷︷︸

x

, 4
︸︷︷︸

y

, ⊤
︸︷︷︸

z

)

=⇒ δ1 ⊔ δ2 = (3
︸︷︷︸

w

, 1
︸︷︷︸

x

, ⊤
︸︷︷︸

y

, ⊤
︸︷︷︸

z

)

Semantics and Verification of Software Summer semester 2007 7

Formalizing Constant Propagation Analysis II

Dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ) (continued):

extremal value ι := δ⊤ ∈ D where δ⊤(x) := ⊤ for every x ∈ Var c,

transfer functions {ϕl | l ∈ Lab} defined by

ϕl(δ) :=

{
δ if Bl = skip or Bl ∈ BExp

δ[x 7→ AJaKδ] if Bl = (x := a)

where

AJxKδ := δ(x)
AJzKδ := z

AJa1 op a2Kδ :=







z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
⊤ otherwise

if z1 := AJa1Kδ and z2 := AJa2Kδ

Semantics and Verification of Software Summer semester 2007 8

Formalizing Constant Propagation Analysis III

Example 19.3

If δ = (⊥
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

), then

ϕl(δ) =







(0
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := 0)

(3
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := y+1)

(⊥
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := w+x)

(⊤
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := z+2)

Semantics and Verification of Software Summer semester 2007 9

Formalizing Constant Propagation Analysis III

Example 19.4

Constant Propagation Analysis for

c := [x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

ϕ1((a, b, c, d)) = (a, 1, c, d)
ϕ2((a, b, c, d)) = (a, b, 1, d)
ϕ3((a, b, c, d)) = (a, b, c, 1)
ϕ4((a, b, c, d)) = (a, b, c, d)
ϕ5((a, b, c, d)) = (b + c, b, c, d)
ϕ6((a, b, c, d)) = (a, b, c, d)
ϕ7((a, b, c, d)) = (a, c + 2, c, d)

1 Fixpoint solution (on the board)

2 MOP solution (on the board)

Semantics and Verification of Software Summer semester 2007 10

Outline

1 Repetition: The MOP Solution

2 Another Analysis: Constant Propagation

3 Undecidability of the MOP Solution

4 MOP vs. Fixpoint Solution

Semantics and Verification of Software Summer semester 2007 11

Undecidability of the MOP Solution

Theorem 19.5 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let Γ be some alphabet, n ∈ N, and u1, . . . , un, v1, . . . , vn ∈ Γ+.
Does there exist i1, . . . , im ∈ {1, . . . , n} with m ≥ 1 and i1 = 1 such
that ui1ui2 . . . uim = vi1vi2 . . . vim?

(on the board)

Semantics and Verification of Software Summer semester 2007 12

	Repetition: The MOP Solution
	Another Analysis: Constant Propagation
	Undecidability of the MOP Solution
	MOP vs. Fixpoint Solution

