Semantics and Verification of Software

Lecture 1: Introduction

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Preliminaries

Rm Semantics and ri ion of Software Summer semester 2007

@ Lectures: Thomas Noll

o Lehrstuhl fiir Informatik 2, Room 4211
o E-mail nol1@cs.rwth-aachen.de

o Phone (0241)80-21213
@ Exercise classes: Daniel Willems

¢ E-mail willems@cs.rwth-aachen.de
o Assistant: Lars Helge Haf}

¢ E-mail (LarsHass@gmx.de)

Rm Semantics and Verification of Software Summer semester 2007

noll@cs.rwth-aachen.de
willems@cs.rwth-aachen.de
LarsHass@gmx.de

Target Audience

o Diploma programme (Informatik)
o Theoretische Informatik
o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung
@ Master programme (Software Systems Engineering)
o Theoretical CS
o Specialization Formal Methods, Programming Languages and
Software Validation
@ In general:
o interest in formal models for programming languages
o application of mathematical reasoning methods
o Expected: basic knowledge in
e essential concepts of imperative and object—oriented programming
languages
o formal languages and automata theory
o mathematical logic

Rm Semantics and Verification of Software Summer semester 2007

Organization

Schedule:

o Lecture Tue 11:45-13:15 AH 3 (starting April 10)
o Lecture Fri 8:15-9:45 AH 2 (starting April 13)
¢ Exercise class Wed 13:30-15:00 AH 2 (starting April 18)

1st assignment sheet: Friday

©

©

Work on assignments in groups of three

Examination (8 ECTS credit points):
written or oral (depending on number of candidates);
date: middle of July

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German

Rm Semantics and Verification of Software Summer semester 2007

© Introduction

Rm Semantics and ri ion of Software Summer semester 2007

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural

components)
Semantics: “What does this program mean?”
(execution evokes state transformations of an [abstract]
machine)
Pragmatics: @ length and understandability of programs
@ learnability of programming language
@ appropriateness for specific applications, ...

Historic development:

o Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler /interpreter

@ Formal semantics since 1970s
(operational/denotational /axiomatic)

Rm Semantics and Verification of Software Summer semester 2007

Motivation for Rigorous Formal Treatment I

@ How often is the following loop traversed?
for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

© What if p = nil in the following program?
while p <> nil and p~.key < val do ...

Pascal: strict boolean operations %
Modula: non—strict boolean operations W

Semantics and Verification of Software Summer semester 2007

Motivation for Rigorous Formal Treatment II

@ Support for development of
@ new programming languages: missing details, ambiguities and
inconsistencies can be recognized
e compilers: automatic compiler generation from appropriately
defined semantics
e programs: exact understanding of semantics avois uncertainties in
the implementation of algorithms
@ Support for correctness proofs of
e programs: comparison of program semantics with desired behaviour
(e.g., termination properties)
e compilers:

. compiler .
programming language — machine code
semantics | | (simple) semantics
. ? .
meaning = meaning

@ optimizing transformations:

optimization
code — code
semantics | | semantics
. ? .
meaning = meaning

Rm Semantics and V tion of Software Summer semester 2007

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Denotational semantics: mathematical definition of input/output

relation of the program by induction on its syntactic
structure (D. Scott, C. Strachey)

Axiomatic semantics: formalization of special properties of the
program by logical formulae (assertions and proof rules;
R. Floyd, T. Hoare)

Rm Semantics and Verification of Software Summer semester 2007

Overview of the Course

©0000060606COC

The imperative model language WHILE

Operational semantics of WHILE

Denotational semantics of WHILE

Equivalence of operational and denotational semantics
Axiomatic semantics of WHILE

Dataflow analysis

Abstract interpretation and abstraction refinement

Extensions: procedures and dynamic data structures

Rm Semantics and Verification of Software Summer semester 2007

(also see the collection [“Handapparat”] at the CS Library)

o Formal semantics:
o G. Winskel: The Formal Semantics of Programming Languages,
The MIT Press, 1996
¢ H.R. Nielson, F. Nielson: Semantics with Applications: A Formal
Introduction, Wiley, 1992
e E. Fehr: Semantik von Programmiersprachen, Springer, 1989
o Dataflow analysis and abstract interpretation:

o F. Nielson, H.R. Nielson, C. Hankin: Principles of Program
Analysis, 2nd ed., Springer, 2005

Rm Semantics and Verification of Software Summer semester 2007

© The Imperative Model Language WHILE

Rm Semantics and V tion of Software Summer semester 2007

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers 7={0,1,-1,...} =z
Truth values B = {true, false} t
Variables Var = {x,y,...} =
Arithmetic expressions AFExp a
Boolean expressions BExp b
Commands (statements) Cmd c

Rm Semantics and Verification of Software Summer semester 2007

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context—free grammar:

a:=z|x|ai+ay | az-az | az*apx € AExp
b=t ‘ a1=as | a1>ar | —b | b1 A by ‘ b1V by € BExp
c:=skip|x :=a|c1;co | if b then ¢; else ¢p | while b do ¢ € Cmd

v

Remarks: we assume that
o the syntax of numbers, truth values and variables is given
(i.e., no “lexical analysis”)
@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

m Semantics and Verification of Software Summer semester 2007

A WHILE Program and its Flow Diagram

X := 6;
y :=T;
z := 0;
while x > 0 do
X :=x - 1;
vV i=y;
while v > 0 do
v :=v - 1;
z =z + 1

Effect: z := x x y = 42

m Semantics and Verification of Software Summer semester 2007

	Preliminaries
	Introduction
	The Imperative Model Language WHILE

